3 Nüsslein-Volhard C., Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980; 287: 795–801; Haskett D. R. Hedgehog signaling pathway. Embryo Project Encyclopedia. 2015 (http://embryo.asu.edu/handle/10776/8685).
4 Изображение белка Hedgehog мушки Drosophila melanogaster основано на структуре 2IBG из Protein Data Bank: https://www.rcsb.org/structure/2IBG; McLellan J. S. et al. Structure of a heparin-dependent complex of hedgehog and ihog. Proc. Natl. Acad. Sci. 2006; 103: 17208–17213. Изображение человеческого белка Sonic hedgehog основано на структуре 3MXW из Protein Data Bank: https://www.rcsb.org/structure/3MXW; Maun H. R. et al. Hedgehog pathway antagonist 5E1 binds hedgehog at the pseudo-active site. J. Biol. Chem. 2010; 285: 26570–26580.
5 Towers M. et al. Insights into bird wing evolution and digit specification from polarizing region fate maps. Nature Communications. 2011; 2: 426.
6 Tarazona O. A. et al. Evolution of limb development in cephalopod mollusks. eLife. 2019; 8: e43828.
7 Kim S. et al. Epigenetic regulation of mammalian hedgehog signaling to the stroma determines the molecular suptype of bladder cancer. eLife. 2019; 8: e43024.
8 Turing A. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society London, B: Biological Sciences. 1952; 237: 37–72.
9 Forrest K. M., Gavis E. R. Live imaging of endogenous RNA reveals a diffusion and entrapment mechanism for nanos mRNA localization in Drosophila. Current Biology. 2003; 13: 1159–1168; Lucas T. et al. 3 minutes to precisely measure morphogen concentration. PLOS Genetics. 2018; 14: e1007676.
10 Ilsley G. R. et al. Cellular resolution models for even skipped regulation in the entire Drosophila embryo. eLife. 2013; 2: e00522; Petkova M. D. et al. Optimal decoding of cellular identities in a genetic network. Cell. 2019; 176: 844–855.e15.
11 Dubuis J. O. et al. Positional information, in bits. Proc. Natl. Acad. Sci. 2013; 110: 16301–16308.
12 Eddison M. et al. Notch signaling in the development of the inner ear: Lessons from Drosophila. Proc. Natl. Acad. Sci. 2000; 97: 11692–11699.
13 Doe C. Q., Goodman C. S. Early events in insect neurogenesis: II. The role of cell interactions and cell lineage in the determination of neuronal precursor cells. Developmental Biology. 1985; 111: 206–219.
14 Об открытии роли латерального торможения в структурировании развивающегося организма см. Bussell K. Milestone 3 (1937): Inhibit thy neighbour. Nat. Rev. Neurosci. 2004. О белке Notch, его расщеплении и роли в клеточной сигнализации и в латеральном торможении: Gordon W. R. et al. The molecular logic of Notch signaling – a structural and biochemical perspective. Journal of Cell Science. 2008; 121: 3109–3119; Sjöqvist M., Andersson E. R. Do as I say, Not (ch) as I do: Lateral control of cell fate. Developmental Biology. 2019; 447: 58–70.
15 Gomez C. et al. Control of segment number in vertebrate embryos. Nature. 2008; 454: 335–339.
16 Cooke J., Zeeman E. C. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 1976; 58: 455–476.
17 Palmeirim I. et al. Avian hairy gene expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell. 1997; 91: 639–648; Oates A. C. et al. Patterning embryos with oscillations: Structure, function and dynamics of the vertebrate segmentation clock. Development. 2012; 139: 625–639.
18 What is the future of developmental biology? Cell. 2017; 170: 6–7.
Глава 8. Конструирование органов
1 Potten C. S., Morris R. J. Epithelial stem cells in vivo. J. Cell Sci. 1988; 45–62. Считают, что в день теряется около 1011 клеток при массе каждой около 11–12 килограммов, а это соответствует потере около 3 тысяч килограммов в течение жизни.
2 Engler J. et al. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126: 677–689.
3 Keung J. et al. Presentation counts: Microenvironmental regulation of stem cells by biophysical and material cues. Annual Review of Cell and Developmental Biology. 2010; 26: 533–556.
4 Haswell E. S. et al. Mechanosensitive channels: What can they do and how do they do it? Structure. 2011; 19: 1356–1369; Peyronnet R. et al. Mechanosensitive channels: Feeling tension in a world under pressure. Front. Plant Sci. 2014; 5: 558.
5 Aragona M. et al. Mechanisms of stretch-mediated skin expansion at single-cell resolution. Nature. 2020; 584: 268–273.
6 Yamamoto K. et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American Journal of Physiology-Heart and Circulatory Physiology. 2005; 288: H1915 – H1924 (2005); Wang H. et al. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005; 25: 1817–1823.
7 Landecker H. Culturing Life: How Cells Became Technologies. Cambridge, MA: Harvard University Press, 2010; Steinberg M. S., Takeichi M. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. Proc. Natl. Acad. Sci. 1994; 91: 206–209.
8 Simian M., Bissell M. J. Organoids: A historical perspective of thinking in three dimensions. J. Cell Biol. 2017; 216: 31–40.
9 Sato T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009; 459: 262–265.
10 Eiraku M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011; 472: 51–56.
11 Eiraku M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008; 3: 519–532.
12 Lancaster M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013; 501: 373–379.
13 Cepelewicz J. An ethical future for brain organoids takes shape. Quanta Magazine. 2020; January 13 (https://www.quantamagazine.org/an-ethical-future-for-brain-organoids-takes-shape-20200123/).
14 Huh D. et al. Reconstituting organ-level lung functions on a chip. Science. 2010; 328: 1662–1668.
15 McAleer C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Science Translational Medicine. 2019; 11: eaav1386; Edington C. D. et al. Interconnected microphysiological systems for quantitative biology and pharmacology studies. Sci. Rep. 2018; 8: 1–18.
Глава 9. Экосистема внутри вас
1 Sender R. et al. Revised estimates for the number of human and bacteria cells in the body. PLOS Biology. 2016; 14: e1002533.
2 Venter J. C. et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004; 304: 66–74.
3 Schlomann B. H., Parthasarathy R. Timescales of gut microbiome dynamics. Current Opinion in Microbiology. 2019; 50: 56–63.
4 Durack J., Lynch S. V. The gut microbiome: Relationships with disease and opportunities for therapy. Journal of Experimental Medicine. 2019; 216: 20–40; Douglas A. E. Fundamentals of Microbiome Science: How Microbes Shape Animal Biology. Princeton, NJ: Princeton University Press, 2018; The Gut Microbiome in Health and Disease / Haller D. (ed.). Cham, Switzerland: Springer, 2018; Tremlett H. et al. The gut microbiome in human neurological disease: A review. Ann. Neurol. 2017; 81: 369–382; Griffiths J. A., Mazmanian S. K. Emerging evidence linking the gut microbiome to neurologic disorders. Genome Medicine. 2018; 10: 98.
5 Drew L. Microbiota: Reseeding the gut. Nature. 2016; 540: S109 – S112; van Nood E. et al. Duodenal infusion of donor feces for recurrent clostridium difficile. New England Journal of Medicine. 2013; 368: 407–415; Colman R. J., Rubin D. T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis. J. Crohns Colitis. 2014; 8: 1569–1581.
6 Zmora N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018; 174: 1388–1405.e21.
7 Round J. L., Mazmanian S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 2009; 9: 313–323; Hooper L. V. et al. Interactions between the microbiota and the immune system. Science. 2012; 336: 1268–1273; Jones T. A., Guillemin K. Racing to stay put: How resident microbiota stimulate intestinal epithelial cell proliferation. Curr. Pathobiol. Rep. 2018; 6: 23–28.
8 Hill J. H. et al. A conserved bacterial protein induces pancreatic beta cell expansion during zebrafish development. eLife. 2016; 5: e20145.
9 Schwarzer M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016; 351: 854–857.
10 Finucane M. M. et al. A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter. PLoS ONE. 2014; 9: e84689; Sze M. A., Schloss P. D. Looking for a signal in the noise: Revisiting obesity and the microbiome. mBio. 2016; 7: e01018– e01016.
11 О заболеваемости холерой и ее лечении см. статьи на сайтах ВОЗ (