Бор опубликовал свой шедевр, посвященный атому, в июле 1913 года. Ради этой победы он изрядно потрудился. С лета 1912-го до того вдохновенного мига в феврале 1913-го он день и ночь возился со своими соображениями и выкладывался так, что даже прилежные его коллеги диву давались. Они даже думали, что он начнет падать от утомления. Одного примера будет достаточно: 1 августа 1912 года он собрался жениться – и женился, но медовый месяц в живописной Норвегии отменил и просидел в гостиничном номере в Кембридже, надиктовывая статью на тему своей работы новоиспеченной супруге.
Новая теория Бора, эдакий ералаш, очевидно была лишь началом. К примеру, он называл разрешенные орбиты «стационарными состояниями», поскольку электроны, когда ничего не излучают, должны, согласно классической теории, вести себя так, будто не движутся. При этом он часто говорил о «состоянии движения» электронов, изображая их обращающимися вокруг ядра по разрешенным орбитам, покуда они либо не слетали на орбиту с меньшей энергией, либо не поглощали внешнее излучение и не переходили в более высокоэнергетическое состояние. Я про это говорю, чтобы проиллюстрировать, что Бор применял противоречивые образы. Таков подход многих пионеров теоретической физики – в литературе предлагается не смешивать метафоры, а в физике, если мы знаем, что одна метафора не полностью подходит, вполне допустимо (осторожно) смешать ее с другой.
В данном случае Бор не выказывал пылкой приязни к классической «планетарной» модели атома, но с нее он начал и, чтобы создать новую теорию, применил уравнения классической физики, увязывавшие радиус и энергию электронных орбит, попутно добавив новые квантовые представления вроде принципа стационарных состояний, тем самым создав видоизмененную картину.
Боровскую модель поначалу встретили неоднозначно. В Университете Мюнхена влиятельный физик Арнольд Зоммерфельд (1868–1951) не только мгновенно распознал в этой работе веху науки, но и подключился к ней сам, взявшись исследовать ее связь с теорией относительности. Меж тем Эйнштейн сказал, что Бор сделал «одно из величайших открытий [в истории]»[366]. Но, вероятно, самое красноречивое свидетельство того, до чего потрясающей показалась модель Бора физикам его времени, – еще один комментарий Эйнштейна. Человек, которому хватило отваги выдвинуть предположение не только о существовании световых квантов, но и о взаимосвязи между пространством, временем и гравитацией, сказал, что ему приходило в голову нечто похожее на модель Бора, но из-за «чрезвычайной новизны» он не осмелился эти взгляды обнародовать.
Издание этой работы действительно потребовало смелости – об этом можно судить по другим откликам на работу Бора. К примеру, в Университете Гёттингена, ведущем немецком научном центре, все пришли к единодушному мнению, что «вся эта затея – ужасная чушь, граничащая с мошенничеством». Один гёттингенский ученый, эксперт в спектроскопии, изложил отношение Гёттингена письменно: «В высшей степени жаль, что литература оказывается засорена подобными жалкими данными, выдающими такое невежество»[367]. Один из зубров британской физики, лорд Рэлей [Рейли], сказал, что не смог заставить себя поверить, будто «Природа ведет себя вот так»[368]. Но все же прозорливо добавил, что «людям за семьдесят не стоит слишком поспешно выражать свое мнение о новых теориях»[369]. Другой ведущий британский ученый, Артур Эддингтон[370], тоже не пылал энтузиазмом, прежде отмахнувшись от квантовых представлений Планка и Эйнштейна как от «немецких измышлений».
Даже Резерфорд отозвался отрицательно. Ему уж точно не дорога была теоретическая физика. Но допекало его в работе Бора, которая, как ни крути, ревизовала его собственную модель атома, что его датский коллега не предложил никакого механизма, коим электрон осуществляет свои прыжки между объявленными энергетическими уровнями. К примеру, если электрон, перемещаясь на энергетический уровень, отвечающий меньшей орбите, «прыгает» на нее, а не непрерывно движется по спирали к ядру, каким именно маршрутом происходит этот «прыжок», и что его провоцирует?
Как позднее выяснится, возражения Резерфорда коснулись в точности сути. Не только такого механизма никогда не установят, но и квантовая теория дозреет до состояния теории природы, и из нее последует, что ответов у таких вопросов нет, а значит, им нет места в современной науке.
То, что в конце концов убедило мир физиков в правильности видения Бора[371], а значит – и ранних работ Планка и Эйнштейна, накопилось за десять лет, с 1913-го по 1923 год. Применяя свою теорию и воззрения других ученых к атомам разных химических элементов тяжелее водорода, Бор понял, что упорядочением элементов по атомному номеру, а не по массе атома, как это сделал Менделеев, можно устранить кое-какие ошибки в Периодической системе.
Атомная масса определяется числом протонов и нейтронов в ядре атома. Атомный номер же равен числу протонов, которое, поскольку атом в целом не имеет никакого заряда, равно числу электронов в этом атоме. Чем больше у атома протонов в ядре, тем больше там нейтронов, но их количества не обязательно совпадают, то есть порядок элементов по атомной массе и атомному номеру может разниться. Теория Бора показала, что атомный номер – подходящий параметр, на котором и следует выстраивать Периодическую таблицу, поскольку именно протоны и электроны, а не нейтроны, определяют химические свойства вещества. На этот вывод ушло более пятидесяти лет, но, благодаря Бору, наука наконец смогла объяснить, почему таинственная таблица Менделеева действенна.
С вызреванием квантовых представлений до общей структуры, которая заместит законы Ньютона, физики наконец смогли записать уравнения, из которых, в принципе, можно вывести поведение всех возможных атомов, хотя в большинстве случаев для этого требуется мощь суперкомпьютеров. Но чтобы проверить предположения Бора о важности атомного номера, никому ждать суперкомпьютеров не пришлось: в традиции Менделеева Бор предсказал свойства еще не открытого тогда элемента, и именно его Менделеев, основывая систему на атомной массе, определил ошибочно.
Элемент этот был открыт вскоре после прогноза Бора, в 1923 году, и назвали его гафнием, в честь Гафнии – так на латыни именуется родной город Бора, Копенгаген. С тех пор уж ни один физик[372] (или химик) никогда больше не усомнится в истинности теории Бора. Лет пятьдесят спустя имя Бора войдет в таблицу Менделеева – сто седьмой элемент получит название «борий». В тот же год бывший наставник, а иногда и критик датского физика будет удостоен той же чести: элемент 104 называется резерфордием[373].
Глава 12Квантовая революция
Несмотря на обилие блистательных и пытливых умов, сосредоточившихся на представлении о кванте, и отдельные истины, которые они предположили или открыли, к началу 1920-х никакой общей теории кванта все еще не возникло, и даже намека, что такая теория вообще возможна, не появилось. Бор состряпал кое-какие принципы, которые, окажись правдой, объясняли бы, почему атомы стабильны и почему у них такие спектральные линии, но с чего бы этим принципам быть истинными и как применять их к анализу других систем? Этого не знал никто.
Многие физики-квантовики разочаровались. Макс Борн (1882–1970), будущий Нобелевский лауреат, вскоре предложивший понятие фотона, писал: «Без всякой надежды думаю о квантовой теории, пытаюсь найти рецепт расчета устройства гелия и других атомов; но успехов никаких… Кванты и впрямь безнадежная неразбериха»[374]. А Вольфганг Паули (1900–1958), еще один получатель Нобелевской премии, предложивший, а затем и разработавший математическую теорию характеристики электрона под названием «спин», выразился так: «Физика сейчас очень мутная; для меня-то она во всяком случае чрезмерно трудна, лучше б я был комиком в кино, или кем-нибудь в этом роде, и никогда о физике не слыхал»[375].
Природа подкидывает нам загадки, и кому как не нам их разгадывать. Про физиков можно сказать одно: они глубоко верят, что в этих загадках скрыты фундаментальные истины. Мы убеждены, что природой управляют общие законы и что она – не винегрет не связанных между собой явлений. Первые исследователи-квантовики не знали, какая она будет, квантовая теория, но не сомневались, что такая теория должна возникнуть. Мир, исследуемый ими, упрямо не желал поддаваться объяснениям, но физики допускали, что в нем можно разобраться. Мечты питали их труд. Не скрыться им было от сомнений и отчаяния, как и всем нам, и все же они двигались вперед – трудным путем, который сжирал годы их жизней, а вела их вера, что в конце этого пути им достанется награда – истина. Как и в любом нелегком предприятии, как нам известно, преуспевают лишь те, в ком сильно стремление, а маловеры сходят с дистанции прежде, чем достигнут чего-либо.
Легко понять отчаяние Борна или Паули: квантовая теория – крепкий орешек не только сама по себе, но и созревала она в трудное время. Большинство пионеров кванта трудились в Германии или перемещались между Германией и институтом, на который Бор собрал деньги и который учредил в 1921 году при Университете Копенгагена, и потому им суждено было вести исследования нового научного порядка в поры, когда общественный и политический порядок распался и превратился в хаос. В 1922 году убили министра иностранных дел Германии. В 1923-м курс немецкой марки рухнул до одной триллионной ее довоенной цены, и на покупку килограмма хлеба требовалось пятьсот миллиардов «немецких талеров». И все же новые квантовые физики искали подпитки в понимании атома и вообще глубинных законов природы, действующих в этих мельчайших масштабах.