Поэтому и нельзя ожидать постепенного перерастания авиации атмосферной в авиацию космическую. Пути развития той и другой по временам сближались, перекрещивались, но уже сегодня разошлись, и чем дальше, тем больше будут расходиться. Генеалогическую линию самолета надо начинать с идей Леонардо да Винчи и модели вертолета М. В. Ломоносова, проводить через аэродинамические исследования Н. Е. Жуковского, через реальные конструкции турбомоторных и реактивных самолетов вплоть до сегодняшних сверхзвуковых машин.
Развитие же космического корабля начинается с пороховой ракеты — всем известной игрушки, изобретенной в Китае в незапамятные времена — проходит через работы К. Э. Циолковского и ведет через сегодняшние составные жидкостные ракеты, которые уже далеко перекрыли достижения авиации и по скорости и по высоте полета и которые нельзя считать логическим развитием авиации. Видимо, эти ракетные аппараты и явятся прямыми предками грядущих космических кораблей.
Вместе с тем было бы неправильно считать, что развитие авиации не способствовало развитию высотной ракетной техники, что авиация не осуществила своим опытом разведку полета вообще, что целым рядом интереснейших технических решений, найденных в авиации, не пользуются конструкторы высотных ракет и не воспользуются конструкторы космических кораблей. И в этом плане развитие авиации, ее современное состояние и главным образом современное состояние реактивного двигателя, принятого на вооружение современной авиацией, не может не представить огромного интереса для астронавтики.
Авиация и астронавтика — родственные области науки и техники. Было время, когда развитие первой подготовляло путь для второй; настанет время, когда вторая поделится своими достижениями с первой и поможет ее дальнейшему развитию.
Развитие авиации было стремительным, торжество ее — беспримерным в истории. Ни одна отрасль науки и техники никогда до этого не развивалась с такой быстротой и размахом.
За кратчайший исторический срок в авиации сменился целый ряд двигателей. Первые изобретатели пытались ставить на свои самолеты паровую машину. Ее скоро сменил двигатель внутреннего сгорания, достигший значительного совершенства. В последнее десятилетие он был вытеснен со скоростных самолетов реактивным двигателем. А в настоящее время в ряде стран ведутся работы по использованию в качестве самолетного двигателя атомного реактора.
Соответственно изменялась и предельная высота полета — так называемый «потолок» самолета.
Семейство реактивных двигателей (снизу вверх): 1 — пороховые ракеты и сегодня применяющиеся как дополнительные двигатели при взлете тяжело нагруженных воздушных кораблей. 2 — турбокомпрессорный реактивный двигатель — самый распространенный двигатель современной скоростной авиации. Встречный воздух сжимается компрессором а; в него в камере сгорания б впрыскивается горючее; газы горения вращают турбину в и, вылетая через сопло г, создают реактивную силу. 3 — в прямоточном реактивном двигателе встречный воздух, пройдя решетку а, попадает в камеру сгорания б, и газы горения выбрасываются через сопло в. 4 — жидкостный реактивный двигатель — двигатель будущих космических кораблей. Горючее а и окислитель б подаются турбонасосами в в смесительную камеру г. Горючая смесь сгорает в камере д, и газы горения вырываются в сопло е. Для привода турбонасоса используется перекись водорода ж.
Первые самолеты летали очень низко над землей — высота их подъема едва достигала нескольких десятков метров. К 1920 году «потолок» самолета поднялся до 4000 метров. Сегодня он превзошел 18 тыс. метров, хотя серийные самолеты, как правило, и не поднимаются на такую высоту.
История авиации — это в значительной степени история борьбы за скорость и высоту полета.
Первые самолеты имели скорость 40–50 километров в час, и это казалось тогда стремительным полетом. Всего 45 лет назад она не превышала 80 километров в час, а сегодня зарегистрированным рекордом скорости самолета является 1215 километров в час! Эта скорость почти равна скорости звука. Нерегистрируемые скорости на пикировании в высотных слоях атмосферы значительно превосходят и эту официальную скорость. Скорости же в 1100, 1200 километров в час стали обычными скоростями серийных скоростных самолетов.
Исследователи истории авиации начертили по годам кривую роста скоростей самолета. И вот оказалось, что получилась не плавная линия, на которой год за годом происходил рост скоростей на определенную величину, а волнистая линия с участками крутого роста, сменяемыми участками почти горизонтальными — роста скорости не происходило.
Ученые сопоставили эти участки крутого подъема с появившимися в те годы конструкциями самолетов, и оказалось, что они совпадали с моментом, когда в конструкцию самолета вводилось какое-либо серьезное техническое новшество.
Так, в 20-х годах быстрый рост скоростей самолетов объясняется переходом от тонкого крыла к толстому, в котором можно было спрятать шасси с колесами, что в значительной степени уменьшало сопротивление самолету потока воздуха. Следующий скачкообразный рост скоростей в первой половине 30-х годов совпадает с введением наддува в цилиндры двигателя. До этого двигатель вынужден был «дышать» забортным воздухом, который чем выше, тем становился разреженнее. Двигатель «задыхался» в этом разреженном воздухе, терял мощность. И самолет не мог использовать из-за этого преимуществ, даваемых уменьшившимся сопротивлением воздуха.
Боевые пороховые ракеты — близкие родственники осветительных ракет — были могучим оружием советских летчиков в борьбе против фашистских оккупантов.
Введение наддува обеспечило двигателю самолета возможность и в разреженных слоях атмосферы «дышать» уплотненным воздухом. И скорость самолета повысилась на добрых 150–200 километров в час.
Но самый большой и резкий скачок кривой роста скоростей самолетов произошел где-то около 1945 года. Это в авиацию пришел реактивный двигатель. Скорость самолета поднялась на 250–300 километров в час. Замена поршневого двигателя на самолете реактивным двигателем была подлинной технической революцией. Вместе с тем это момент, когда линии развития авиации и астронавтики сблизились и пересеклись, взаимно обогащая друг друга.
Первое и основное преимущество реактивного двигателя перед поршневым состояло в чрезвычайно высокой мощности при небольшом весе. Борьба за снижение «удельного веса» авиационного двигателя — снижение веса двигателя на единицу развиваемой мощности — велась очень давно. Если в 1910 году «вес 1 лошадиной силы» составлял свыше 2,5 килограмма, то к 1950 году — за 40 лет — он упал до 0,4 килограмма.
Мощность реактивного двигателя имеет несколько иное выражение, чем у поршневых двигателей, поэтому сравнение «удельных весов» поршневых и реактивных двигателей несколько затруднительно. Однако все же некоторое сравнение возможно. Так, если взять обычный авиационный жидкостный реактивный двигатель весом в 150 килограммов, развивающий силу тяги до 3000 килограммов, то при скорости полета в 2000 километров в час полезную тяговую мощность такого двигателя следует считать равной примерно 22 тыс. лошадиных сил. Значит, каждая лошадиная сила этого двигателя «весит» всего 6 граммов — в несколько десятков раз меньше, чем у лучших поршневых двигателей.
О возможностях, которые открыл реактивный двигатель авиации, говорит такой факт. В настоящее время в авиации не редки реактивные скоростные самолеты с тяговым усилием двигателей в 4300 килограммов. Пересчет показывает, что при обычной для таких самолетов скорости в 1100 километров в час это тяговое усилие эквивалентно мощности поршневого двигателя в 35 тыс. лошадиных сил. Даже самые лучшие поршневые двигатели с «удельным весом» всего в 400 граммов на лошадиную силу, развивающие такую мощность, должны весить около 14 тонн. Между тем общий взлетный вес скоростного реактивного самолета с рассматриваемыми характеристиками может быть меньше 14 тонн, а вес самих реактивных двигателей едва ли превосходит 3 тонны.
Современные авиационные реактивные двигатели очень отличаются от тех двигателей, которые будут работать на космических кораблях. Однако многое из этих двигателей может быть освоено и использовано двигателями космических кораблей. Это относится и к жаропрочным материалам и к форме камер сгорания и сопел и т. д.
Посмотрим, как устроены и работают современные авиационные реактивные двигатели.
Двигатели этих скоростных реактивных самолетов — ближайшие родственники двигателей будущих космических кораблей.
ДВИГАТЕЛЬ СКОРОСТНОГО САМОЛЕТА
Предложенный К. Э. Циолковским ракетный двигатель, работающий на жидком топливе, содержал в своих баках все — и горючее и окислитель. Он был рассчитан для работы в безвоздушном пространстве; для этой цели предложенная Циолковским конструкция была единственно возможной и единственно правильной.
Но ведь самолет рассчитан для полета в воздухе, в котором вполне достаточно кислорода для горения любого практически применяемого топлива. Поэтому не следует возить с собой на самолете окислитель, который можно брать прямо из атмосферы.
В том, что реактивный двигатель самолета использует в качестве окислителя кислород воздуха, а ракетный двигатель космического корабля должен будет взять его с собой — основная разница между ними.
…С прозрачного синего неба, в котором, словно подчеркивая его синеву и прозрачность, лишь кое-где плавают легкие кучевые облачка, доносится гул самолета. Люди поднимают головы, смотрят в сторону этого гула, стараясь увидеть его источник. Но небо в той стороне чисто. И только совсем в стороне случайно некоторые замечают черную точку, несущуюся по небосклону. Вот она качнулась в воздухе, и в лучах солнца сверкнули серебристые крылья. Она изменила движение и пошла почти вертикально вверх. Вот она почти растаяла в голубом просторе. А звуки доносятся к нам из той части неба, в которой ее уже давно нет. Это летает реактивный самолет.
Еще несколько стремительных разворотов в воздухе, мертвых петель, вертикальных взлетов и падений — и, стремительно снизившись, краснозвездный самолет уже бежит по бетонной дорожке аэродрома. У него красивое тонкое тело, узкие, отброшенные назад, крылья, высоко поднятое хвостовое оперение. Он похож на метательный снаряд, на стрелу, выбрасываемую гигантской катапультой. И полет его — отнюдь не парение в воздухе прежних самолетов. Воздух больше мешает, чем помогает его полету…
В передней части корпуса самолета большое круглое отверстие. Когда самолет движется с большой скоростью, в это отверстие попадает встречная струя воздуха. Она сразу же поступает на лопасти компрессора, вращающиеся со скоростью 14–15 тыс. оборотов в минуту. Компрессор сжимает воздух, делает его более плотным. Этот сжатый воздух направляется в камеры сгорания, в которые вбрызгивается и жидкое топливо. Оно смешивается с воздухом и моментально сгорает. Температура в камере сгорания поднимается выше 1500°, и этот раскаленный поток сжатых газов устремляется в выхлопные сопла. Но на пути их встречается неожиданное препятствие — лопасти газовой турбины. Огненный вихрь ударяет в них и заставляет вращаться. Эта турбина и приводит в движение компрессор, который сжимает входящий в двигатель воздух. Пройдя турбину, поток раскаленного газа попадает в выхлопное сопло.
Сопло устроено расширяющимся к выходному отверстию. В таком расширяющемся сопле по мере продвижения газов от наиболее узкого места к широкому газы расширяются, снижаются их температура и давление, но непрерывно растет скорость движения. А мы уже знаем, что чем больше скорость выхлопных газов, тем больше будет тяга двигателя, тем он будет мощнее.
Современный реактивный авиационный двигатель — двигатель высоких параметров. Свыше 1500° температура в его камере сгорания, сотни и тысячи метров в секунду — скорость газовых потоков в реактивном сопле, 15 тыс. оборотов в секунду — скорость вращения дисков компрессора и турбины.
Вместе с тем реактивный двигатель очень прост по своему устройству. У него нет частей, совершающих возвратно-поступательное движение, как у поршневого двигателя, нет или почти нет зубчатых и других передач. Даже в тех случаях, когда на валу такого двигателя устанавливают впереди пропеллер, это не требует сложных устройств, вроде тех, что существуют у поршневых моторов для превращения возвратно-поступательного движения во вращательное.
Но, конечно, торжество реактивного двигателя в авиации еще отнюдь не означает окончательной смерти поршневого двигателя. Реактивный двигатель в настоящее время еще несколько менее экономичен, чем поршневой. Поэтому он применяется главным образом в тех случаях, когда необходимо развить высокую скорость полета. На малых же скоростях полета, километров до 750 в час, еще долго основным видом самолетного двигателя будет поршневой двигатель внутреннего сгорания.
Современная техника знает несколько видов реактивного двигателя. Мы здесь рассказали о так называемом турбореактивном двигателе (сокращенно — ТРД), наиболее широко распространенном в наше время. Такой двигатель наиболее удобен, экономичен для работы на скоростях свыше 750 километров в час и до 1500 километров в час.
При более высокой, чем последняя названная скорость целый ряд деталей реактивного двигателя становится ненужным, лишним. Двигатель еще упрощается.
В первую очередь отпадает необходимость в компрессоре. При скоростях свыше 1500 километров в час воздух специально сжимать уже не надо; он достаточно уплотняется стремительным движением самолета. Отпадает необходимость и в газовой турбине. Двигатель превращается по существу в трубу, в головное отверстие которой врывается сжатый движением воздух, в середине производится впрыскивание топлива и его сгорание, а задняя часть представляет собой расширяющееся сопло. Вообще никаких вращающихся и движущихся частей (если не учитывать насосов для подачи горючего) не содержит такой двигатель. Он называется прямоточным воздушно-реактивным двигателем (сокращенно — ПВРД).
ПВРД — двигатель будущего, двигатель сверхзвуковых самолетов.
Есть и другие системы реактивных двигателей: пульсирующий, с открывающимися и закрывающимися клапанами, турбовинтовые, снабженные в качестве движителя не только соплом, но и винтом, пороховые, работающие на твердом топливе, и т. д. Но они удобны при более низких скоростях, чем ТРД и ПВРД. В решении проблемы космических полетов они не сыграли и, по всей вероятности, не сыграют никакой роли.