Рассказы о металлах — страница 32 из 62

Любопытно, что знаменитый английский изобретатель Генри Бессемер, прославившийся созданием сталеплавильного конвертера, в 1868 году сконструировал солнечную печь, в которой удавалось плавить цинк и медь. Печь, однако, была технически несовершенна, да к тому же природные условия Туманного Альбиона явно не благоприятствовали ее практическому применению.

Свою трудовую деятельность цинк, как уже говорилось, начал задолго до рождения: металлурги древнего мира, бросая в огонь вместе с углем и медью серые камни, содержащие соединения цинка, получали латунь — отличный сплав, обладающий высокой прочностью и пластичностью, коррозионной стойкостью и красивым цветом, точнее гаммой цветов, зависящих от содержания цинка и других компонентов. В отличие от обычной красной меди, латунь на Руси называли желтой медью: при увеличении содержания цинка цвет сплава меняется от красноватого до светло-желтого. Латунь с небольшой добавкой алюминия имеет приятный золотистый цвет и используется в наши дни для изготовления знаков отличия и художественных изделий. Еще Аристотель писал о меди, которая "отличается от золота только вкусом". Очевидно, "золотая медь" — не что иное, как латунь.

Долгое время считалось, что памятник Минину и Пожарскому, сооруженный в начале прошлого века на Красной площади в Москве, выполнен из бронзы. Но недавние реставрационные работы внесли коррективы в этот вопрос: как оказалось, материалом для замечательного творения скульптора И.П. Мартоса послужила не бронза, а латунь.

В Индии есть селение Бидар, известное своими декоративными изделиями, которые местные мастера изготовляют из сплава меди, цинка и олова. Литые заготовки — кувшины, тарелки, статуэтки — покрывают особым раствором, после чего металл становится совершенно черным. Затем художники наносят на него разные узоры или рисунки, напоминающие инкрустацию серебром. Эти узоры никогда не тускнеют, чем и объясняется популярность изделий из Бидара не только в Индии, но и далеко за ее пределами.

Обычно цинк и медь выступают в сплавах как союзники, дополняя и обогащая друг друга. Но вот недавно они оказались в положении "конкурирующих фирм", причем цинк в буквальном смысле вытеснил медь из сплава. Произошло это в США, где до последнего времени цент — самая мелкая монета — чеканился из сплава, содержащего 95 % меди и 5 % цинка. Несколько лет назад принято решение изменить состав сплава. В него войдут те же компоненты, но уже совсем в другом соотношении: 97,6 % цинка и всего 2,4 % меди. Эта "перестановка" обусловлена тем, что цинк значительно дешевле меди, в связи с чем рационализаторское предложение финансистов сулит казне немалую выгоду.

Известно немало цинковых сплавов (с незначительными добавками алюминия, меди, магния), характеризующихся хорошими литейными свойствами и низкой температурой плавления. Из них отливают сложные тонкостенные детали и другие точные изделия, в том числе миниатюрные типографские литеры. В середине прошлого века по проекту русского скульптора И.П. Витали были отлиты и установлены в Георгиевском зале Большого Кремлевского дворца в Москве восемнадцать цинковых колонн с декоративным орнаментом и статуями, увенчанными лавровыми венками.

Уникальной коллекцией цинкового литья располагает один из жителей ГДР. Вот уже четверть века он собственноручно отливает из цинка маленькие, не более 5 сантиметров высотой, фигурки людей и животных. Коллекция включает около полутора тысяч интересных композиций. Пожалуй, самая впечатляющая из них посвящена происшедшей в 1813 году вблизи Лейпцига битве, где армия Наполеона, не оправившаяся еще после Бородинского сражения, потерпела крупное поражение от войск России, Пруссии, Австрии и Швеции. Композиция "Битва народов" состоит примерно из тысячи элементов — фигурок солдат и лошадей, орудий, повозок.

Увлечению немецкого коллекционера в немалой степени способствует сравнительно невысокая температура плавления цинка — около 420 °C. Многие свойства этого металла зависят от его чистоты. Как правило, он легко растворяется в кислотах, но если довести чистоту до "пяти девяток" (99,999 %), то те же кислоты уже не могут справиться с ним даже при сильном нагревании. Чистота служит для цинка залогом не только химической неуязвимости, но и высокой пластичности: такой металл легко вытягивается в тончайшие нити. А вот обычный технический цинк проявляет довольно капризный характер: он соглашается прокатываться в ленту, листы и пластины лишь в определенном интервале температур — от 100 до 150 °C, а при обычных температурах и выше 250 °C вплоть до точки плавления этот металл весьма хрупок — его можно без труда растереть в порошок.

В современных химических источниках тока цинковые пластины играют "отрицательную роль" — служат электродом со знаком "минус", где происходит окисление металла. Впервые цинк попробовал свои силы на этом поприще еще в 1800 году, когда итальянский ученый Алессандро Вольта создал свой гальванический элемент ("вольтов столб"). Спустя два года с помощью огромной по тем временам гальванической батареи, состоявшей из 4200 медных и цинковых кружков, русский физик В.В. Петров впервые получил электрическую дугу.

В 1838 году русский электротехник Б.С. Якоби сконструировал электроход — лодку с электрическим двигателем, питавшимся током от гальванических батарей. Некоторое время лодка плавала вверх и вниз по Неве, перевозя до четырнадцати пассажиров. Однако такой двигатель был очень неэкономичным, что дало немецкому химику Юстусу Либиху основание заявить: "Гораздо выгоднее прямо сжигать уголь для получения теплоты или (заботы, чем расходовать этот уголь на добывание цинка, а затем уже сжиганием его в батареях получать работу в электродвигателях". Не нашли тогда успеха и попытки применить электрическую тягу от батарей на суше. Знаменитый английский физик Джеймс Прескотт Джоуль будто бы однажды то ли в шутку, то ли всерьез заметил, что дешевле прокормить лошадь, чем менять цинк в электрической батарее.

В наши дни эта идея обрела второе дыхание: по дорогам многих стран уже снуют тысячи электромобилей, причем их конструкторы при выборе движущей силы склонны отдать предпочтение воздушно-цинковым аккумуляторным батареям, которые заменяют десятки лошадей, позволяя проходить без "подкормки", т. е. без подзарядки, более сотни километров. Крохотные источники тока такого типа используются в слуховых аппаратах, часовых индикаторах, фотоэкспонометрах, микрокалькуляторах. В обычной плоской батарейке карманного фонарика под бумажной рубашкой находятся три цинковых цилиндрика: "сгорая" (т. е. окисляясь), цинк рождает ток, зажигающий лампочку фонарика. Для более солидных устройств надежными источниками тока, способными одновременно питать десятки приборов, служат аккумуляторы с электродами из серебра и цинка. Такой аккумулятор работал, например, на борту одного из советских искусственных спутников Земли.



Возникший в последние годы энергетический кризис заставил заняться поисками источников энергии многие крупные научные и промышленные организации. Но от профессиональных изобретателей не отстают и любители. Так, некий часовщик из английского города Киддерминстер решил воспользоваться для этой цели… обычным лимоном. Вставив в него цинковую и медную пластинки с выводами, изобретатель получил оригинальную электрическую батарею. В результате реакции лимонной кислоты с медью и цинком возникал ток, которым в течение нескольких месяцев питался крохотный моторчик, приводивший в движение рекламную табличку в витрине часовой мастерской. Чем не изобретение? Но вот беда: по подсчетам специалистов, чтобы обеспечить током, например, всего один телевизор, нужна батарея из нескольких миллионов лимонов.

Более мощный растительный источник тока предложил американский биохимик лауреат Нобелевской премии Мелвин Калвин. Он разработал солнечную батарею, в которой ток создают совместными усилиями оксид цинка и хлорофилл растений. С поверхности зеленой электроплантации размером с небольшую комнату можно собрать "урожай" тока мощностью в 1 киловатт.

Видимо, в недалеком будущем, может быть уже в конце нашего века, мы станем свидетелями новых достижений солнечно-растительной энергетики, но пока вернемся вновь в прошлое столетие, чтобы познакомиться с тремя важными событиями, имеющими прямое отношение к цинку.

Первое из них произошло в 1850 году: француз Жилло предложил оригинальный способ изготовления типографских клише. На цинковую пластину кислотостойкой краской вручную наносили рисунок и затем поверхность металла протравливали азотной кислотой. При этом окрашенные участки оставались целыми и невредимыми, а в местах, где не было краски, кислота "съедала" цинк, образуя углубления. Изображение становилось рельефным и при печати на бумаге появлялся нужный рисунок. В дальнейшем жиллотипия (так поначалу назывался этот способ) заметно усовершенствовалась и превратилась в цинкографию, с помощью которой печатные машины всего мира ежедневно воспроизводят несметное число рисунков и фотографий в книгах, газетах, журналах.

В 1887 году известный немецкий ученый Генрих Рудольф Герц обнаружил явление фотоэффекта — испускание веществом электронов под действием света. Спустя год фотоэффект был тщательно изучен русским физиком А. Г. Столетовым, который провел в лаборатории Московского университета изящный опыт, вошедший в историю науки. К отрицательному полюсу гальванической батареи он присоединил цинковую пластинку, а к положительному — металлическую сетку, расположив ее напротив пластины на некотором от нее расстоянии. Естественно, что по этой разомкнутой цепи ток не шел, и стрелка гальванометра неподвижно стояла на нуле до тех пор, пока ученый не направил на цинковую пластинку яркий луч света — стрелка тотчас же сдвинулась с места. Это означало, что по цепи пошел ток. Столетов еще более усилил освещение пластинки и стрелка переместилась дальше, свидетельствуя об увеличении тока. Как только свет был отключен, ток в цепи исчез и стрелка вновь замерла на нуле. Этот прибор по сути дела был первым фотоэлементом — устройством, без которого немыслима современная техника.