Растения - гениальные инженеры природы — страница 8 из 38

А что же происходит с колонной? Поскольку она совершенно симметрична, напряжение на изгиб может возникать в любом направлении. Поэтому колонну нужно армировать таким образом, чтобы продольные стальные стержни располагались в ней по всему периметру, в непосредственной близости от поверхности и по всей высоте колонны. Для того чтобы до и в момент заливки бетоном прутковая основа не распалась, стержни связывают Друг с другом мягкой проволокой. В середине колонны, где напряжения не возникают, ставить арматуру нет необходимости.

На фото 12 показан идеальный арматурный каркас, или «короб», как его называют специалисты. Каркас уже построен, остается возвести опалубку и начать заливку бетоном.

Фото 12. Стальной арматурный каркас железобетонной опоры будущего автодорожного моста внутри полый. Он будет располагаться по периферии готовой опоры.


Читателю должно быть известно, что изобретатель железобетона не был ни инженером, ни архитектором. Им оказался французский садовник Ж. Монье. В 1867 году, пытаясь изготовить для своих цветов кадки из цементного раствора, он впервые применил каркас из металлической сетки. Но и он не «изобрел», а скорее «открыл» железобетон, ибо, будучи садовником, Ж. Монье не мог не видеть, каким образом растения усиливают свои несущие конструкции.

Без открытия Ж. Монье были бы просто немыслимы многие современные сооружения из бетона: мосты, небоскребы, телебашни, свободнонесущие конструкции зданий аэропорта и даже навесы автозаправочных станций.

Принцип армирования известен растениям на протяжении уже более 250 миллионов лет. У некоторых видов кактусов, в частности у цереусов, напоминающих своей формой гигантские канделябры, мягкие ткани после отмирания полностью разрушаются, открывая взору внутренний скелет растения (фото 13). Как и в железобетонной конструкции (фото 12), арматура кактуса располагается в непосредственной близости от поверхности ствола, вся же внутренняя часть тела растения свободна от каркаса. Иная, решетчатая форма расположения механических тканей характерна для другой разновидности кактусов — опунции (Opuntia bigelowii) (фото 14). Но и здесь эти ткани находятся близ поверхности, в самом же теле опунции арматурные элементы отсутствуют.

Фото 13. Арматурная структура отмершего канделябровидного кактуса похожа на стальной каркас железобетонной опоры автодорожного моста: она располагается вблизи поверхности «живой» колонны и внутри полая.


Фото 14. Решетчатый остов опунций внутри также пустой.


Но не только оптимальное расположение механических тканей обусловливает совершенство растительных конструкций. По прочности на разрыв и изгиб некоторые растения могут успешно конкурировать со стальной проволокой. Так, стебель злака, диаметром не более 3—5 миллиметров, а высотой до 1,5 метра, выдерживает вес тяжелого колоска и, не ломаясь, сгибается под напором ветра почти до земли, а затем эластично выпрямляется.

На плато Колорадо в североамериканском штате Аризона колония отмерших 15-метровой высоты кактусов-канделябров (разновидность цереусов) представляет собой весьма причудливую, фантастическую картину: словно гигантские кисточки для бритья, принадлежащие какому-то исполину, стоят они, скрашивая собой в высшей степени монотонный пейзаж пустыни. Как видно на фото 13, лишь в нижней части кактуса несущие структуры арматурного каркаса связаны между собой, выше в стволе они располагаются совершенно свободно. Как только мягкие ткани разрушатся, арматурные связки под напором ветра отходят друг от друга, распадаются, и растение приобретает сходство с расплетенным, «размочаленным» концом веревки или каната. Стволы некоторых лиан почти целиком сложены многочисленными механическими тяжами, которые при сгибании растения могут легко перемещаться относительно друг друга. Этим они напоминают тросы, сплетенные из большого числа стальных проволочек.

Вьющиеся и лазящие канаты

Чем экстремальнее условия обитания, тем гениальнее и разнообразнее приспособляемость растений к превратностям окружающей среды. Нередко приспособление заходит столь далеко, что внешняя среда начинает полностью определять форму растения. И тогда растения, относящиеся к различным семействам, но обитающие в одних и тех же суровых условиях, часто становятся внешне столь похожими друг на друга, что это может ввести в заблуждение в отношении истинности их родственных связей. Например, в пустынных областях для многих видов, и, прежде всего, для кактусов, наиболее рациональной оказалась форма шара. Однако не все то, что имеет шарообразную форму и утыкано шипами-колючками, — кактусы. Столь целесообразная конструкция, позволяющая выжить в тяжелейших условиях пустынь и полупустынь, возникла и в других систематических группах растений, не принадлежащих к семейству кактусовых (фото 71).

И наоборот, кактусы не всегда приобретают форму шара или колонны, усеянных колючками. Один из самых известных в мире кактусоведов Курт Баккеберг в своей книге «Чудесный мир кактусов» рассказывает о том, как могут выглядеть эти растения, помещенные в те или иные условия обитания. Вот что он пишет:

«Ночь на Кубе полна таинственных шорохов и звуков. Крупные летучие мыши, словно тени, бесшумно проносятся мимо нас в полной темноте, лишь светится пространство вокруг старых, умирающих деревьев, в котором мириады светлячков исполняют свой огненный танец. Непроглядная тропическая ночь с ее давящей духотой плотно окутала землю. Длительный путь, проделанный нами верхом, отнял у нас последние силы, и теперь мы, забравшись под москитные сетки, пытаемся хотя бы немножко отдохнуть. Конечная цель нашей экспедиции — край изумительно красивых зеленых кактусов группы рипсалиевых.

Но вот наступил час седлать лошадей. И хотя эту несложную операцию мы проделываем ранним утром, пот буквально заливает нам глаза. Вскоре наш небольшой караван вновь отправляется в путь.

После нескольких часов дороги зеленоватый мрак девственного леса начинает постепенно рассеиваться. Нашим глазам до самого горизонта открывается полная солнца местность, сплошь покрытая кустарником. Лишь кое-где над ним возвышаются вершины низкорослых деревьев, да иногда можно видеть одиночные мощные стволы, увенчанные громадными кронами.

Однако до чего странно выглядят ветви деревьев! На них как бы двойная вуаль: покачиваясь от дуновений теплого приземного ветерка, с веток почти до земли свисают длинные нити-стебли одного из видов бромелиевых (Tillandsia usneoides), чем-то похожие на длинные, усыпанные серебром седины сказочные бороды. Между ними висит масса тонких, сплетающихся в клубки растений-веревок: это — место обитания колоний безлистных эпифитов, кактусов, родственных рипсалиевым. Точно спасаясь бегством от буйной наземной растительности, они стремятся забраться повыше в кроны деревьев, поближе к солнечному свету. Какое многообразие форм! Здесь тонкие нитевидные стебли либо громоздкие покрытые нежным пушком мясистые выросты, там — сильно разросшиеся побеги, напоминающие по виду ребристые цепочки. Сложное переплетение вьющихся растений самых причудливых форм: спиральных, зазубренных, витых, волнистых — кажется причудливым произведением искусства. В период цветения вся эта зеленая масса увешана изящными венками или изукрашена разноцветьем мельчайших крапинок. Позже растения надевают на себя пестрые ожерелья из ярко-белых, вишневых, золотисто-желтых и темно-голубых ягод».

Кактусы, которые приспособились жить в кронах лесных великанов и стебли которых, подобно лианам, свисают до самой земли, широко распространены в тропических лесах Центральной и Южной Америки. Некоторые из них обитают даже на Мадагаскаре и Цейлоне.

Лазящие кактусы — это ли не поразительный пример способности растений приспосабливаться к новым условиям жизни? Но он не единственный из многих сотен других. Обычными обитателями тропических джунглей являются вьющиеся и лазящие растения, а также растения-эпифиты, поселяющиеся в кронах древесных растений. Все они стремятся как можно скорее выбраться из вечных сумерек густого подлеска девственных тропических лесов. Они находят путь наверх, к свету, не создавая при этом мощных стволов и опорных систем, требующих огромных затрат строительного материала. Они спокойно карабкаются вверх, пользуясь «услугами» других растений, выступающих в роли опор. Для того чтобы успешно справиться с этой новой задачей, растения изобрели разнообразные и довольно совершенные в техническом отношении органы: цепляющиеся корни и черешки листьев с выростами на них, шипы на ветвях, цепляющиеся оси соцветия и т. д. В распоряжении растений имеются петли-арканы; специальные диски, с помощью которых одно растение своей нижней частью прикрепляется к другому; подвижные усиковидные крючочки, вначале впивающиеся в ствол растения-хозяина, а затем разбухающие в нем; разного рода сдавливающие приспособления и, наконец, весьма изощренный аппарат захватывания.

Выше мы приводили описание структуры листьев банана, данное Г. Хаберландтом. Не менее красочно описывает он и ротанг — одну из разновидностей лазящих пальм:

«Если сойти с пешеходной дорожки Ботанического сада в Богоре (остров Ява) и несколько углубиться в заросли, то уже через несколько шагов можно остаться без головного убора. Десятки разбросанных повсюду крючочков будут цепляться за наши одежды и многочисленные царапины на лице и руках станут призывать к большей осторожности и вниманию. Оглядевшись вокруг и присмотревшись к аппарату „хватания“ растений, в зоне действия которого мы оказались, мы обнаружили, что черешки грациозных и весьма сложных листьев ротанга имеют длинные, до одного-двух метров, исключительно гибкие и эластичные отростки, усеянные многочисленными твердыми и к тому же полуподвижными шипами, каждый из которых представляет собой согнутый и наклоненный назад крючок-зацепку. Любой лист пальмы снабжен таким наводящим страх крючкообразным шипом, не так-то просто расстающимся с тем, что зацепилось за него. Предел упругости „крюка“, состоящего почти целиком из прочных лубяных волокон, чрезвычайно высок. „На него можно подвесить целого быка“,— шут