Растения и чистота природной среды — страница 14 из 37

2 в воздухе в течение лета ниже, чем зимой, на 0,00008 %, а в Южном полушарии — на 0,00002 %.

Интенсивность усвоения CO2 различными лесными породами неодинакова. Если принять скорость усвоения этого газа единицей площади елового насаждения за 100 %, то такая же площадь лиственничного леса усвоит 120 %, соснового — 160, липового — 250, дубового — 450, тополиного — 700 %.

Сернистый газ

Различные виды растений обладают неодинаковой способностью к поглощению сернистого газа. За вегетационный период (с мая по сентябрь) газопоглотительная способность растений выражается, по данным Ю. З. Кулагина (1974), следующими цифрами (в пересчете на сухое вещество 10 кг листвы дерева и 3 кг листвы кустарника) (г):

Тополь бальзамическийДо 180Дерен белый42
Ясень зеленый140Сирень обыкновенная20
Вяз гладкий120Акация желтая13
Липа мелколистная100Жимолость татарская17
Береза пушистая100Барбарис обыкновенный12
Клен ясенелистный30Роза морщинистая8
Клен остролистный20Чубушник венечный

По другим данным, акация белая за вегетационный период может поглотить 69 г сернистого газа на 1 кг абсолютно сухих листьев, вяз обыкновенный — 39, лох узколистный — 87, тополь черный 157 г. Рододендрон (Rhododendron catawbiense) в эксперименте поглощал сернистый газ менее интенсивно, чем пираканта (Pyracanta coccinea). За 1 ч 1 дм2 поверхности рододендрона усваивал 0,081 мг двуокиси серы, тогда как такая же площадь листьев пираканты — 0,128.

Различия в газопоглотительной способности растений необходимо учитывать при создании санитарно-защитных зон. Некоторые виды (клен ясенелистный, клен остролистный, роза морщинистая, чубушник венечный) характеризуются низкой газопоглотительной способностью и благодаря этому являются высокоустойчивыми к сернистому газу. Поэтому их рекомендуют использовать в посадках, принимающих на себя действие высококонцентрированных газовых потоков.

Некоторые растения отличаются высокой газопоглотительной способностью и одновременно являются устойчивыми к сернистому газу (тополь бальзамический, дерен белый). Эти растения очень удобны для создания лесных полос, предназначенных для очистки воздуха от этого токсиканта. Они зимостойки и засухоустойчивы. К тому же тополь бальзамический растет очень быстро, а дерен теневынослив, благодаря чему может быть использован в качестве подлесочной породы.

В условиях степной зоны Украины сернистый газ усваивается из воздуха целым рядом растений. В зависимости от способности аккумулировать серу эти виды располагаются в следующем порядке: берест>шелковица>бирючина>акация>бузина>айлант>тополь.

Прекрасными объектами для озеленения загазованных районов в Белоруссии считаются: тополь канадский, тополь душистый, тополь бальзамический, тополь берлинский, дерен белый, ива белая. Они отличаются высокой газоустойчивостью и вместе с тем являются весьма ценными для очистки воздуха от газообразных соединений серы.

Благодаря поглощению сернистого газа лесными растениями концентрация его на опушке леса и внутри лесного массива неодинакова.

Движущей силой поглощения двуокиси серы растениями является диффузия молекул главным образом через устьица. Чем сильнее опушены листья, тем меньше поглощают они сернистого газа. Так, например, низкой поглотительной способностью обладают липа войлочная и клен серебристый. Напротив, снежноягодник и желтая акация интенсивно поглощают двуокись серы.

После поступления газа внутрь листа происходит его растворение в жидкой фазе клеток. По этой причине скорость поступления фитотоксиканта оказалась сильно зависимой от влажности воздуха и насыщенности листьев водой. Если листья увлажнены, то они поглощают сернистый газ в несколько раз быстрее по сравнению с сухими листьями. Влажность воздуха также оказывает влияние на этот процесс. При относительной влажности воздуха 75 % растения фасоли поглощали сернистый газ в 2–3 раза интенсивнее, чем растения, произрастающие при влажности 35 %. То же самое наблюдается и у гинкго.

Кроме того, скорость поглощения зависит от освещения. На свету листья вяза поглощали серу на 1/3 быстрее, чем в темноте.

Наконец, поглощение сернистого газа имеет связь с температурой. При температуре 32° растения фасоли более интенсивно поглощали этот газ по сравнению с температурой 13 и 21°. В опытах с различными по устойчивости видами злаков показана прямая связь между концентрацией сернистого газа в растениях и температурой. В связи с тем, что в дневные часы температура выше, чем ночью, побеги сосны в полдень поглощали сернистый газ в 3–4 раза быстрее по сравнению с ночным временем суток.

Поглощенная листьями двуокись серы окисляется до сульфатов, благодаря чему токсичность ее резко снижается. Сульфатная сера включается в обменные реакции, протекающие в листьях, а частично может накапливаться в растениях без возникновения функциональных нарушений. Если скорость поступления двуокиси серы соответствует скорости превращения ее растениями, влияние этого соединения на них невелико. Поглощенный надземными частями сернистый газ передвигается по растению, доходя до корней. Некоторые исследователи обнаружили, что корневыми системами соединения серы выводятся в почву. Возможно, что таким образом растения могут регулировать содержание серы в тканях и избавляться от вредных концентраций фитотоксиканта. Выяснено также, что сернистый газ может поглощаться корнями и перемещаться из них в листья.

Специальные исследования показали, что растения фасоли, культивируемые на питательной среде без серы, в случае газации сернистым газом концентрации 0,5 мг/кг в течение 30 ч на 80 % удовлетворяют свои потребности в сере. После четырех недель газации сухая масса вегетирующих растений в условиях недостатка сульфатов в почве была более чем в 3,5 раза выше, чем в контроле (в чистом воздухе). При этом возрастает также площадь ассимиляционной поверхности. Растения подсолнечника в случае газации сернистым газом удовлетворяли свои потребности в сере на 60 %. После 5 недель газации сернистым газом концентрации 0,5 мг/кг у растений, выращенных на питательной среде без серы, наблюдалось более чем трехкратное увеличение ассимиляционной поверхности, трехкратное возрастание длины стеблей.

Сероводород

Сероводород, загрязняющий иногда атмосферу, может поглощаться листопадными и вечнозелеными растениями, причем разные виды накапливают этот фитотоксикант с различной скоростью.

В высоких концентрациях сероводород вреден для растений, однако низкие его концентрации могут повышать темпы их роста. Так, например, доза этого соединения 300 мг/кг воздуха вызывала депрессию роста салата и сахарной свеклы, а в концентрации 30 мг/кг урожай салата, вес свежих и высушенных листьев и корней сахарной свеклы в условиях теплицы увеличивался. Добавление к сероводороду углекислого газа устраняло депрессию роста этих растений, вызванную высокой концентрацией сероводорода, а в случае хлопчатника и люцерны ускоряло рост растений по сравнению с контролем.

В растениях сероводород может окисляться до сульфатов и транспортироваться в другие органы или накапливаться в листьях. Кроме того, он может связываться с образованием аминокислот (метионина, цистеина и цистина). Эти аминокислоты передвигаются преимущественно по флоэме в растущие органы. Некоторые авторы предполагают, что образование серосодержащих аминокислот — один из способов детоксикации сероводорода. В то же время этот способ его детоксикации играет, по-видимому, незначительную роль.

Успешно произрастают на промышленных площадках, загрязненных сероводородом, алиссум морской, левкой двурогий, а также однолетний, тагетесы прямостоячий и раскидистый, целозия гребенчатая. Эти растения ученые рекомендуют использовать при озеленении территорий, загрязненных сероводородом.

Хлор и его соединения

Отдельно взятые деревья ивы, тополя и ясеня, имеющие как минимум 5 кг листьев, способны поглотить за вегетационный период 200–250 г хлора, кустарники — 100–150 г. Лох узколистный, шелковица, акация белая, тамариск способны накапливать в своих органах до 1 % хлора, оставаясь неповрежденными.

Бельгийская комиссия по озеленению промышленных предприятий, выбрасывающих в атмосферный воздух хлористый водород, располагает изученные виды в следующий ряд (начиная с наименее устойчивых): лещина обыкновенная, дуб черешчатый, береза белая, клен нолевой, ива пепельная, лиственница европейская, ежевика, ясень обыкновенный, тополь серебристый, осина, туя восточная, роза.

Окислы азота

Окислы азота поступают в однолетние сеянцы сосны тем быстрее, чем выше их концентрация в окружающей среде. При этом NO2 поглощается растениями в три раза более энергично, чем NO.

По данным С. В. Дурмишидзе (1977), усвоение и превращение двуокиси азота листьями растений происходит с высокой скоростью. Уже после двухминутной экспозиции побега виноградной лозы в атмосфере 15NO2 все органеллы клеток листьев: ядра, пластиды, митохондрии, рибосомы — оказались обогащенными меченым азотом. Двуокись азота поглощается из воздуха как травянистыми, так и древесными растениями. Из листьев меченый азот передвигается затем в другие органы — стебли и корни. По интенсивности поглощения и включения 15NO2 в азотсодержащие соединения выделялись сосна эльдарская, ясень, клен американский, сосна черная, граб кавказский, дуб имеретинский, дуб грузинский, яблоня обыкновенная, райграс английский. Двуокись азота усваивается корнями и зелеными побегами растений. Особенно интенсивно поглощается она всасывающими корнями. Из корней