Рискуя собственной шкурой. Скрытая асимметрия повседневной жизни — страница 20 из 23

 Журналисты, карьерные ученые и другие рабы без шкуры на кону в конкретной области сливаются в «благомыслии», которое поддается манипуляциям и игнорирует факты. Причина проста: отклонения от монокультуры часто караются ярлыками вроде «путинист», «убийца детей», «расист» (шарлатаны всегда используют детей как сенсационалистский аргумент). Почти так же с увеличением территории острова уменьшается экологическое разнообразие (см. «Черный лебедь»).

Торговля добродетелью. Девальвация добродетели путем превращения ее в маркетинговую стратегию. Античные авторы предписывали хранить добродетель в тайне, но это противоречит современным сигналам типа «спасем окружающую среду». Торговцы добродетелью зачастую лицемерны. Далее, добродетель, лишенная храбрости, самопожертвования и шкуры на кону, – не добродетель. Торговля добродетелью схожа с симонией (в Средние века – торговля церковными постами) и индульгенциями (покупка прощения грехов за деньги).

Золотое правило (симметрия). Поступайте с другими так же, как вы хотите, чтобы поступали с вами.

Серебряное правило (негатив золотого правила). Не поступайте с другими так, как не хотите, чтобы поступали с вами. Отметим отличие от золотого правила: серебряное останавливает назойливых людей, которые пытаются указывать вам, как жить.

Принцип доброжелательности. В интеллектуальных дебатах придерживайтесь симметрии; представляйте доводы оппонента так же, как вы хотите, чтобы кто-то другой представлял ваши. Противоположность – аргумент типа «чучело».

Специальное приложение

А. Шкура на кону и хвостовые вероятности

В этом разделе мы проанализируем вероятностную нестыковку хвостовых рисков и отдачи в присутствии проблемы принципала – агента.

Перенос ущерба. Если агент получает прибыль от положительной отдачи в форме случайной величины, но не терпит убытков от отрицательной и оценивается исключительно на базе прошлых результатов, он мотивирован скрывать риски в левом хвосте, используя отрицательно скошенное (или, в более общем виде, асимметричное) распределение результатов. Ситуацию можно обобщить на любую отдачу, в отношении которой агент не несет полные риски и огражден от отрицательных последствий своих действий.


Рис. 7. Бизнес Боба Рубина. Отдача в скошенной ситуации, когда выгода видима (и таит в себе вознаграждение), а ущерб возникает редко (и тот, кто его нанес, не страдает благодаря тому, что не ставит шкуру на кон). Может наблюдаться в политике и везде, где штраф за ущерб мал


Пусть P(K, M) – отдача (выплаты) для оператора над М периодами мотивации:



где  – независимые, одинаково распределенные случайные величины, представляющие распределение прибыли в определенный период , и К – «перегородка»:  – характеристическая функция момента остановки, в который условия прошлых результатов не удовлетворяются (а именно – условие достижения определенных результатов за некое число лет; при невыполнении условия отдача прекращается, игра завершается, количество положительных мотиваторов обнуляется). Константа  – «агентская выплата», ставка вознаграждения за результаты, не обязательно выраженная в деньгах (при условии, что ее можно определить как «выгоду»). Величина  определяет меру риска в момент  (вследствие сдвига Ито: результат в период s определяется через q в определенный более ранний период < s).

Пусть  – семейство вероятностных мер  на . Каждой мере соответствует характеристика среднего/скошенности, так что мы можем разделить их свойства на две части по обе стороны параметра «центральности» К на «верхнее» и «нижнее» распределение. Запишем  как , тогда  и   – «верхнее» и «нижнее» распределение, каждое соответствует определенному условному ожиданию  и .

Определим  как К-центрированную непараметрическую меру асимметрии, , со значениями >1 для положительной асимметрии и <1 для отрицательной. Как можно видеть, при скошенности вероятность и ожидание движутся в разных направлениях: чем больше отрицательная отдача, тем меньше вероятность вознаграждения.

Мы не предполагаем «честную игру», иначе говоря, при неограниченной отдаче  что можно записать как m+ m= m.

Упрощающие предположения: q – константа и момент остановки определяется одним условием

Допустим, что q – константа, q = 1, и упростим условие момента остановки, определив его как отсутствие убытков в прошлые периоды, , что ведет к

Поскольку выплаты агенту независимы и одинаково распределены, ожидание в момент остановки соответствует ожиданию момента остановки, помноженному на ожидаемое вознаграждение агенту . Отсюда .

Ожидание момента остановки выражается через вероятность успеха при условии отсутствия убытков в прошлом:

Мы можем записать условие момента остановки в виде непрекращающихся периодов успеха. Пусть ∑ – упорядоченное множество последовательных периодов успеха ∑ ≡ {{F}, {SF}, {SSF}, …, {(M – 1) последовательных S, F}}, где S – успех, а F – неудача за период ∆t, со связанными вероятностями ,



М велико, и, поскольку , мы можем считать предыдущую формулу почти равенством, так как


Наконец, ожидаемая выплата агенту составит:


и ее можно увеличить, 1) увеличив  и 2) минимизировав вероятность потери , даже если, и это ключевой момент, условия 1) и 2) выполняются за счет m, совокупного ожидаемого от пакета.

Не может не тревожить следующее: поскольку , агент не беспокоится об уменьшении совокупной ожидаемой отдачи m, если это проявляется в левой части распределения, m. В скошенном пространстве ожидаемая отдача агента максимизируется при распределении j с минимальным значением vj (максимальная отрицательная асимметрия). Совокупное ожидание положительной мотивации без шкуры на кону зависит от отрицательной скошенности, а не от m.


Рис. 8. Indy Mac, компания, потерпевшая банкротство во время кризиса ненадежных кредитов (Taleb 2009). Пример характеризует риски, которые при отсутствии убытков постоянно увеличиваются – вплоть до внезапной катастрофы

Б. Вероятностная устойчивость и эргодичность

Динамическое принятие риска. Если вы принимаете риск – любой риск – повторно, следует учитывать количество моментов риска на продолжительность жизни: такие риски уменьшают оставшийся срок жизни.

Свойства катастрофы. Вероятность катастрофы для отдельного агента лежит в области времени и никак не соотносится с хвостовыми вероятностями пространства состояний (или ансамбля). Ожидания между этими областями не взаимозаменяемы. Таким образом, утверждения о «переоценке» агентами хвостовых событий (включая катастрофу), основанные на оценках пространства состояний, неверны. Многие теории «рациональности» агентов базируются на операторах и/или вероятностных мерах, связанных с ложной оценкой.

Это основной аргумент в пользу стратегии штанги.

Это особый случай, когда мы путаем случайную переменную – и отдачу, выраженную функцией от времени и пути.

В переводе на человеческий язык: никогда не переходите реку, которая в среднем метровой глубины[124].

Упрощенный общий случай

Рассмотрим чрезвычайно упрощенный пример: дана последовательность независимых случайных переменных  (область определения – положительные вещественные числа . Теоремы сходимости классической теории вероятностей определяют поведение суммы или среднего как lim по (слабому) закону больших чисел (сходимость по вероятности). Как показано в примере с казино в главе 19, когда n стремится к бесконечности, оно сходится по вероятности к истинной средней отдаче m. Хотя закон больших чисел применим к набору событий i, строго различимых во времени, он допускает (некоторую) независимость – и, конечно, независимость от пути.

Теперь рассмотрим последовательность , в которой каждому параметру состояния присвоен индекс момента времени t: 0 < t < T. Допустим, что «моменты времени» взяты из точно такого же распределения вероятностей: P() = P.

Определим вероятность по времени как эволюцию во времени для отдельного агента i.

В присутствии конечной, то есть необратимой катастрофы всякое последующее наблюдение зависит от некоего свойства предыдущего: то, что происходит в момент t, зависит от t – 1, то, что происходит в момент t – 1, зависит от t – 2 и так далее. Мы установили зависимость от пути.

Теперь сформулируем исчезновение эргодичности:

Теорема 1 (неравенство континуума состояний). Пусть и – ожидание по пространству состояний для статического начального периода t, а  – ожидание по времени для всякого агента i, обе формулы получены через слабый закон больших чисел. Тогда:


Доказательство:

,

где  – индикаторная функция, требующая выживания в предыдущий период. Границы n для t показывают уменьшение ожидания по времени: .

На деле мы можем доказать и расхождение.

Как можно видеть, если T < ∞, по закону повторных ожиданий мы получаем неравенство для всех Т.

Мы видим наличие ансамбля рискующих индивидов, ожидающих отдачи m, в любой период t, в то время как каждый отдельный рискующий индивид в конце концов гарантированно разорится.

Другие подходы. Мы можем подойти к доказательству с точки зрения более формальной теории меры и показать, что пространственные множества для «некатастрофы» не пересекаются, а временные – наоборот. Доказательство основано на том, что для меры :

 не обязательно равно .

Почти ни в одной статье на тему актуарной «переоценки» хвостового риска через опции (см. обзор в Barberis 2003) нет неравенства теоремы 1. Очевидно, статьи основываются на том, что агент принимает только одно решение и проходит через один момент риска. Проще говоря, научные статьи, постулирующие «предвзятость», исходят из того, что агенты более не примут ни одного решения за всю оставшуюся жизнь.

Обычно зависимость от пути – если наблюдается зависимость от катастрофы – устраняется введением функции Х, позволяющей среднему по ансамблю (не зависящему от пути) совпадать по свойствам со средним по времени (оно зависит от пути) – или средним, сопряженным с выживанием. Отличным кандидатом на такую функцию видится натуральный логарифм. Следовательно, log (Xi) и log (Xt) входят в один и тот же вероятностный класс; значит, вероятностная мера одного инвариантна и для другого – это и называется эргодичностью. В этом смысле, анализируя риск и результаты в условиях катастрофы, необходимо использовать логарифмическое преобразование (Peters 2011) или ограниченность левого хвоста (Kelly 1956), максимизируя возможности правого хвоста (Gell-Mann 2016) или ограниченность левого хвоста (Geman et al. 2015).

Мы демонстрируем здесь, что, если не задействовать логарифмическое преобразование (или аналогичную – гладкую – функцию, порождающую –∞ при катастрофе в X = 0), ожидания разойдутся. Суть принципа предосторожности – избегать необходимости полагаться на логарифмы и преобразования посредством уменьшения вероятности катастрофы.

В авторитетном исследовании Питерс и Гелл-Манн (2014) показали: Бернулли использовал логарифм не для вогнутой функции «полезности», а (как и в случае критерия Келли) чтобы восстановить эргодичность. Немного истории:

– Бернулли открыл логарифмическое принятие риска под маской «полезности»;

– Келли и Торп вновь открыли логарифм для критерия максимального роста в качестве оптимальной стратегии игрока. Ничего общего с полезностью;

– Самуэльсон отверг логарифм как агрессивную стратегию, не увидев, что возможно полулогарифмическое (или частично логарифмическое) преобразование, применимое к части благосостояния. Многие специалисты по теории решений от Менгера до Эрроу (через Чернова и Самуэльсона) ошибались в том, что касается эргодичности;

– в 1975 году Питмен показал, что броуновское движение при наличии поглощающего барьера в точке 0 и усеченных путей поглощения превращается в трехмерный бесселевский процесс. Дрейф выживших путей составляет , что при интегрировании превращается в логарифм;

– Питерс и Гелл-Манн переоткрыли пользу логарифма для эргодичности и вдобавок обосновали результат Келли – Торпа в строгом физическом аспекте;

– мы с Кирилло (Taleb and Cirillo 2015) обнаружили, что логарифм – уникальное гладкое преобразование, позволяющее создать двойственное распределение. Как следствие, исчезает однохвостная компактная область определения – и можно использовать теорию экстремальных значений;

– можно показать (Briys and Taleb, статья не завершена, частное обсуждение), что логарифмическое преобразование необходимо, если мы хотим избежать катастрофы. На деле это особый случай класса полезности HARA (гиперболическое абсолютное уклонение от риска).

Модификация теоремы 1 для броуновского движения

Следствия из упрощенного случая не меняются при переходе к более сложным моделям, таким, как полный стохастический процесс с барьером поглощения. Конечно, в естественной среде может произойти не просто остановка, но прекращение всей предшествующей жизни вообще (Xt может принять крайнее отрицательное значение). Довод Питерса и Гелл-Манна разгадывает также так называемую загадку премии за приобретение акций: вспомним о жирных хвостах (результаты куда сильнее подталкивают эквивалент определенного уровня к катастрофе) и отсутствии взаимозаменяемости времени и ансамбля. Никакой загадки тут нет.

У проблемы есть инвариант в реальной жизни: стохастический процесс типа броуновского движения с поглощающим барьером. Вместо упрощенного примера мы получим для процесса, подверженного риску L, которому соответствует поглощающий барьер снизу, в арифметической версии:



или в геометрической версии:



где Z – случайная переменная.

При переходе к непрерывному времени в геометрической версии пусть  – момент остановки. Идея в том, что простое ожидание момента остановки соответствует сроку оставшейся жизни – или характеризует его по порядку величины.

Мы сместили фокус с вероятности на несоответствие между моментом остановки τ для катастрофы и сроком оставшейся жизни.

В. Принцип вероятностной устойчивости