В 1761 году, спустя более чем столетие после основания Академии дель Чименто, шотландский химик Джозеф Блэк открыл, что воздействие тепла на вещество не всегда меняет температуру. В частности, нагревание смеси льда и воды не поднимает температуру, а только повышает соотношение воды ко льду. Температура воды начнет расти лишь после того, как весь лед растает. Блэк пришел к выводу, что то же верно для смеси холодной воды и пара: нагревание не будет повышать температуру, пока вся вода не испарится.
Отличие тепла от температуры не вписывалось в господствовавшую в то время теорию источника и получателя. До Блэка все исходили из того, что термометр измеряет тепло, а не температуру, поэтому разделение тепла и температуры при фазовом переходе было необъяснимым.
Это открытие заставило Блэка разработать новую теорию тепловых явлений, но это была не кинетическая теория, принятая в современной термодинамике. Теория Блэка различала тепло и температуру, но все еще продолжала считать тепло веществом — теплородом[66]. В точках таяния и кипения теплород накапливается внутри веществ, меняя их химический состав, но не температуру. Потребовалось еще целое столетие, чтобы ученые отказались от этой теории в пользу кинетического (основанного на энергии) взгляда на тепло. Но не-ученые держатся за нее. Подобные представления лежат в основе большинства рассуждений о теплоте, хотя старое название давно забыто и теплород называют просто теплом.
Тепло — это форма энергии, совокупная энергия молекул физической системы, но мы интуитивно рассматриваем ее как разновидность вещества согласно с описанными выше устаревшими теориями. Интуитивные теории тепла совпадают с историческими воззрениями во многих аспектах, начиная с формулировок. Тепло описывают как нечто движущееся само по себе («тепло из ванны уходит, рассеивается, улетучивается). Его можно поймать и сдержать («теплица удерживает солнечное тепло», «закройте дверь, чтобы не напустить жары»). Для некоторых это просто метафора. Проще сказать «все тепло ушло из ванны», чем «вода в ванне достигла теплового равновесия с окружающей средой». Большинство же людей понимают это не менее буквально, чем фразу «из ванны вытекла вся вода» или «закрой дверь, чтобы не проникал запах».
Откуда известно о том, что эти формулировки буквальны? Например, использующие их люди делают совершенно иные прогнозы о тепловых феноменах, чем не использующие. Мы еще обсудим это. Другая причина заключается в том, что если нужно объяснить «вещественные» формулировки, то многие излагают теорию, полностью основанную на веществе, как в представленной ниже беседе между ученым, исследующим преподавание физики, и студентом колледжа, изучающим физику:
Ученый: Вы только что использовали глагол «перетекать» для описания процесса передачи тепла[67]. Как представляете себе передачу тепла в этом вопросе?
Студент: Как движение воды. Вода течет из более высокого места в более низкое, а тепло — из более теплой области в более холодную. По-моему, принцип схожий.
Другое сходство между интуитивными и историческими теориями тепла заключается в том, что в обоих случаях проводится различие между теплом и холодом и, следовательно, между источниками холода и источниками тепла. Холод — это не более чем восприятие определенного состояния. Вещества, отводящие тепло от тела, ощущаются холодными, а передающие телу тепло — горячими. И тем не менее по-разному воспринимаемые состояния кажутся материальными, как разные вещества. Подумайте об объяснениях, которые приводили студенты на вводном курсе физики, когда их спрашивали, почему стакан чуть теплой воды теряет температуру при контакте с кубиком льда или металлическим столом:
— Часть холода из кубика переходит в воду[68].
— Когда стакан касается металлического стола, молекулы стола добавляют чашке холода.
— Стакан становится холоднее, потому что стол передает чашке холодные молекулы, а чашка передает горячие молекулы столу. Когда это происходит, стол становится горячее, а чашка — холоднее.
В последнем объяснении высказано не только предположение, что холод отличается от тепла, но и что он состоит из другого вещества: «молекул холода». Может появиться искушение интерпретировать это объяснение с точки зрения энергетических состояний: «горячие молекулы» высокоэнергетические, а «холодные» — низкоэнергетические. Однако студент явно полагал, что от вещества к веществу передаются именно сами молекулы, а не их энергия. Взгляд на жар и холод как на дуэль двух веществ хорошо выразил другой участник того же исследования, определивший температуру как «меру смеси тепла и холода внутри предмета»[69].
Третье сходство между интуитивными и историческими теориями, в частности теорией источника и получателя, заключается в том, что они не разделяют тепло и температуру. В результате тщательных наблюдений за фазовыми переходами Блэк открыл, что тепло отличается от температуры. В быту то же отличие можно наблюдать, когда предметы, обладающие одинаковой температурой, передают разное количество тепла. В ванной, например, хлопчатобумажные полотенца на полу кажутся теплее, чем керамическая плитка под ними, металлические пряжки ремней безопасности в горячей машине — теплее, чем виниловая обивка сиденья, а алюминиевые сковородки в духовке — теплее, чем окружающий их воздух. Причина разных ощущений в том, что одни материалы передают тепло лучше, чем другие, и более эффективно передающие вещества (проводники тепла) кажутся горячее или холоднее, чем те, которые проводят тепло хуже (теплоизоляторы).
Таким образом, чтобы понять, почему два материала с одинаковой температурой при прикосновении ощущаются по-разному, нужно отличать тепло и передачу тепла от температуры. Большинство людей этого не делают и исходят из того, что предмет чувствуется горячим, потому что он и есть горячий, потому что одни предметы теплее от природы (например, полотенцу присуща большая теплота, чем плитке) или потому что некоторые вещества лучше улавливают тепло (например, хлопок от природы лучше улавливает тепло, чем керамика)[70]. Мы склонны считать пальцы тепловыми сенсорами, но пальцы не измеряют ни тепло, ни температуру. Они измеряют гораздо более субъективный параметр: получает или теряет кожа тепло, и насколько быстро. С эволюционной точки зрения это самое главное, потому что от этого зависит, есть ли опасность умереть от ожогов или обморожения. Важнейший фактор тепловых травм — не тепло, а его передача. Если бы тепло само по себе имело столь же серьезное значение, невозможно было бы вынуть сковородку из духовки, потому что воздух обжигал бы кожу еще до того, как рука коснется сковородки. Наша кожа в безопасности потому, что воздух передает тепло гораздо медленнее металла. Мы можем переносить контакт с воздухом, нагретым до 200°C, хотя не можем вынести контакта со сковородой той же температуры.
Возможно, восприятие тепла (теплоты) более оторвано от самого тепла, чем восприятие веса (тяжесть) от собственно веса. В обоих случаях важную роль играет материал, но на восприятие тепла он влияет значительно сильнее, чем на восприятие веса. Подумайте, например, о разнице между алюминием и пробкой. Килограмм алюминия будет казаться тяжелее, потому что пробка занимает больше места, что повлияет на восприятие ее веса[71]. Однако отклонение от реальности не доходит до такой степени, что алюминий начинает казаться неподъемным. В то же время воспринимаемая и реальная теплота предметов отличаются гораздо сильнее. При 100°C пробку все еще можно потрогать, а алюминий сразу же обожжет кожу[72].
Представьте, что у вас два шарика, наполненных гелием, — бумажный и резиновый. Оба шара плотно закрыты. Если оставить их на несколько часов в кладовке, какой шар сохранит большую подъемную силу? Теперь представьте, что у вас два стакана кофе: один из пенопласта, другой керамический. Оба стакана герметично закрыты крышкой. Если оставить их на столе на двадцать минут, в каком напиток будет горячее?
С научной точки зрения эти мысленные эксперименты относятся к совершенно разным явлениям: диффузии газов и передаче тепла. В первом случае происходит рассеивание вещества, а во втором — обмен энергией. Следовательно, физики будут исходить из разных соображений: пористости бумаги по сравнению с резиной в первом случае и теплопроводности пенопласта по сравнению с керамикой во втором.
Однако не слишком знакомые с физикой люди основывают свои ответы на пористости материала. Иными словами, и физики, и новички сходятся во мнении, что резиновый шарик будет более летучим, чем бумажный, но по-разному предсказывают, в каком из стаканов кофе окажется горячее. Физики считают, что в пенопластовом, так как он лучше изолирует, а новички — что в керамическом, поскольку керамика не такая пористая[73].
Это одна из нескольких парных задач, разработанных исследовательской группой психолога Мишлен Чи[74]. Ученые стремились сопоставить преобразования материи со структурно схожими случаями передачи энергии. Некоторые задачи относились к теплоте, некоторые — к свету, некоторые — к электричеству. Независимо от вида рассматриваемой энергии, мало знакомые с физикой люди (в данном случае девятиклассники) считали, что результат передачи энергии будет таким же, как и при тесно совпадающем материальном преобразовании. Для обоснования своих суждений в отношении материи и энергии они использовали те же формулировки: глаголы, подразумевающие содержание