Сборник основных формул по химии для ВУЗов — страница 10 из 19

Кислотно-основная классификация анионов

I группа: SO42-, CO32-, PO43-, SiO32-

групповой реагент – Ba(NO3)2

II группа: CI¯, S2-

групповой реагент – AgNO3

III группа: NO3¯, MoO42-, WO42-, VO3¯, CH3COO¯

групповой реагент – отсутствует

3.1. I аналитическая группа

Ион: SO42-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

SO42- + Ba(NO3)2 = BaSO4↓ + 2NO3¯

Наблюдения: белый осадок, нерастворим в HNO3.

Ион: CO32-

1. Реактив, условия: Ba(NO3)2

Уравнения реакций:

CO32- + Ba(NO3)2 = ВaCO3↓ + 2NO3¯

ВaCO3↓ + 2Н+ = Ва2+ + CO2↑ + Н2O

Наблюдения: белый осадок, легко растворимый в соляной, азотной и уксусной кислотах с выделением оксида углерода(IV) CO2.

2. Реактив, условия: минеральные кислоты (HCl, HNO3, H2SO4), известковая вода (Са(OH)2).

Уравнения реакций:

CO32- + 2H+ = CO2↑ + Н2O

Са(OH)2 + CO2 = CaCO3↓ + Н2O

Наблюдения: выделение газа, помутнение известковой воды.

Ион: PO43-

1. Реактив, условия: Ba(NO3)2

Уравнение реакции:

Na3PO4 + Ba(NO3)2 = Ba3(PO4)2↓ + 2NaNO3

Наблюдения: белый осадок, растворимый в минеральных кислотах.

2. Реактив, условия: молибденовая жидкость, раствор молибдата аммония (NH4)2MoO4 в азотной кислоте, NH4NO3

Уравнение реакции:

PO43- + 3NH4+ + 12МоO42- + 24Н+ = (NH4)3[P(Mo3O10)4]↓ + 12Н2O

Наблюдения: желтый кристаллический осадок.

Ион: SiO32-

1. Реактив, условия: разбавленные растворы кислот.

Уравнение реакции:

SiO32- + 2H+ = H2SiO3

Наблюдения: образование геля кремниевой кислоты.

2. Реактив, условия: соли аммония (NH4Cl, или (NH4)2SO4, или NH4NO3).

Уравнение реакции:

SiO32- + 2NH4+ + (2Н2O) = H2SiO3↓ + 2NH3 + (2Н2O)

Наблюдения: образование геля кремниевой кислоты.

3.2. II аналитическая группа

Ион: Cl¯

Реактив, условия: AgNO3, NH4OH, HNO3.

Уравнения реакций:

Ag+ + CI¯ = AgCl↓

AgCl↓ + 2NH4OH = [Ag(NH3)2]Cl + 2H2O

[Ag(NH3)2]Cl + 2HNO3 = AgCl↓ + 2NH4NO3

Наблюдения: белый осадок, растворим в NH4OH, образуется в HNO3.

Ион: S2-

1. Реактив, условия: разбавленные растворы кислот, фильтровальная бумага, смоченная ацетатом свинца РЬ2(CH3COО)2.

Уравнения реакций:

S2- + 2Н+ = H2S↑

H2S↑ + Pb2+ + 2CH3COО¯ = PbS↓ + 2CH3COOH

Наблюдения: резкий запах, почернение фильтровальной бумаги, смоченной ацетатом свинца.

2. Реактив, условия: соли сурьмы(III), Sb2S3

Уравнение реакции:

3S2- + 2Sb3+ = Sb2S3

Наблюдения: оранжевый осадок.

3. Реактив, условия: соли кадмия(II), Cd(NO3)2

Уравнение реакции: S2- + Cd2+ = CdS↓

Наблюдения: желтый осадок.

3.3. III аналитическая группа

Ион: NO3¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ионы: МoO42-, WO42-, VO3¯

Реактив, условия: дифениламин (C6H5)2NH в H2SO4 (конц.)

Наблюдения: темно-синее окрашивание на стенках пробирки.

Ион: VO3¯

1. Реактив, условия: Н2O2, эфир. Уравнение реакции:

VO3¯ + Н2O2 = VO4¯ + Н2O

Наблюдения: окрашивание органической фазы в оранжевый цвет.

2. Реактив, условия: лигнин (газетная бумага)

Наблюдения: лигнин, содержащийся в газетной бумаге, восстанавливает ион VOдо низших степеней окисления, которые окрашивают газетную бумагу в черно-зеленый цвет.

Ион: CH3COО¯

Реактив, условия: H2SO4 (конц.)

Уравнение реакции:

CH3COО¯ + Н+ = CH3COOH

Наблюдения: запах уксуса.

4. Количественный анализ

4.1. Титриметрический (объемный) анализ

Молярная концентрация сэ = nэ/V, где nэ – количество вещества эквивалентов, моль; V– объем раствора, л; единица измерения концентрации – моль/л.

Количество вещества эквивалента (nэ) nэ = m/Mэ = cэ V, где m – масса вещества, г; Mэ – молярная масса эквивалента, г/моль, V – объем раствора, л.

Закон эквивалентов: nэ(А) = nэ(В) или

Титр – количество граммов растворенного вещества, содержащегося в 1 мл раствора.

Титр по определяемому веществу – количество граммов определяемого вещества, которое реагирует с 1 мл титранта.

Прямое титрование – простейший прием титрования, заключающийся в том, что к определенному объему раствора определяемого вещества (А) по каплям приливают титрант (рабочий раствор) вещества (В).

Обратное титрование – процесс титрования, при котором к определенному объему раствора определяемого вещества (А) приливают точно известный объем титранта (В1), взятого в избытке. Избыток не вошедшего в реакцию вещества (В1) оттитровывают раствором другого титранта (В2) точно известной концентрации.

Заместительное титрование. Процесс титрования, при котором к определяемому веществу (А) прибавляют вспомогательное вещество (Р), реагирующее с ним с выделением эквивалентного количества нового вещества (А1), которое оттитровывают соответствующим титрантом (В). Таким образом, вместо непосредственного титрования определяемого вещества (А) титруют его заместитель (А1). Так как количества A и A1 эквивалентны, то количество вещества эквивалента определяемого вещества nэ(А) равно количеству вещества эквивалента титранта nэ(В):

4.2. Метод нейтрализации

Уравнение реакции: Н+ + OH¯ → Н2O или Н3O+ + OH¯ → 2Н2O.

Основные титранты (рабочие растворы): растворы сильных кислот (HCl или H2SO4) и сильных оснований (NaOH или KOH).

Установочные вещества (или первичные стандарты): тетраборат натрия Na2B4O7 × 10 Н2O, карбонат натрия Na2CO3, щавелевая кислота Н2С2O4 • 2Н2O, янтарная кислота Н2С4Н4O4.

Индикаторы: кислотно-основные индикаторы (см. таблицу).

Характеристики некоторых индикаторов приведены в таблице.

Некоторые примеры кислотно-основного титрования

Титрование сильной кислоты сильным основанием

HCl + NaOH → NaCl + Н2O

Н+ + OH¯ → Н2O

В точке эквивалентности образуется соль сильной кислоты и сильного основания, которая не подвергается гидролизу. Реакция среды будет нейтральной (рН = 7). В данном случае индикатором может служить лакмус.

Титрование слабой кислоты сильным основанием

CH3COOH + NaOH → CH3COONa + Н2O

CH3COOH + OH¯ – > CHgCOO¯ + Н2O

Образующаяся соль слабой кислоты и сильного основания в растворе подвергается гидролизу:

CH3COO¯ + HOH → CH3COOH + OH¯

Точка эквивалентности в этом случае будет находиться в щелочной среде, поэтому следует применять индикатор, меняющий окраску при рН < 7, например фенолфталеин.

Титрование слабого основания сильной кислотой

NH4OH + HCl → NH4Cl + Н2O

NH4OH + Н+ → NH4+ + Н2O

Образующаяся соль в растворе подвергается гидролизу:

NH4+ + HOH → NH4OH + Н+

Точка эквивалентности будет находиться в кислой среде, поэтому можно применять индикатор, меняющий свою окраску при рН < 7, например метилоранж.

4.3. Метод комплексонометрии

Комплексонометрия – титриметриче-ский метод анализа, основанный на реакциях комплексообразования определяемых ионов металлов с некоторыми органическими веществами, в частности с комплексонами.

Комплексоны – аминополикарбоновые кислоты и их производные (соли).

В титриметрическом анализе широко используется один из представителей класса комплексонов – динатриевая соль этилендиаминтетрауксусной кислоты (Ма2Н2ЭДТА). Этот комплексон часто называют также трилоном Б или комплексном III:

или [Na2H2ЭДTA]

Трилон Б со многими катионами металлов образует прочные, растворимые в воде внутрикомплексные соединения (хелаты). При образовании хелата катионы металла замещают два атома водорода в карбоксильных группах трилона Б и образуют координационные связи с участием атомов азота аминогрупп.

Уравнение реакции: Ме2+ + Н2ЭДТА2- → [МеЭДТА]2- + 2Н+

Основные титранты (рабочие растворы): трилон Б, MgSO4, CaCl2

Установочные вещества (или первичные стандарты): MgSO4, CaCl2

Индикаторы: металлохромные индикаторы, эриохром черный Т

При рН = 7-11 анион этого индикатора (HInd2-) имеет синюю окраску. С катионами металлов (Са2+, Mg2+, Zn2+ и др.) в слабощелочном растворе в присутствии аммиачного буфера (рН = 8-10) он образует комплексные соединения винно-красного цвета по схеме:

При титровании исследуемого раствора трилоном Б:

Константы нестойкости комплексов равны соответственно:

Kн([CaInd]¯) = 3,9 • 10-6

Kн([СаЭДТА]2-) = 2,7 • 10-11

Kн([MgInd]¯) = 1,0 •1 0-7

Kн([MgЭДTA]2-) = 2,0 • 10-9

4.4. Жесткость воды. Определение жесткости воды

Гидрокарбонатная (временная) жесткость обусловлена присутствием в воде бикарбонатов кальция и магния: Са(HCO3)2 и Mg(HCO3)2. Она почти полностью устраняется при кипячении воды, так как растворимые гидрокарбонаты при этом разлагаются с образованием нерастворимых карбонатов кальция и магния и гидроксо-карбонатов магния:

Са(HCO3)2 = CaCO3↓ + CO2↑ + H2O

Mg(HCO3)2 = MgCO3↓ + CO2↑ + H2O

2Mg(HCO3)2 = (MgOH)2CO3↓ + 3CO2↑ + H2O

Постоянная жесткость воды обусловлена присутствием в ней преимущественно сульфатов и хлоридов кальция и магния и при кипячении не устраняется.

Сумма величин временной и постоянной жесткости составляет общую жесткость воды:

Жобщ. = Жвр. + Жпост.

Существуют различные способы определения жесткости воды: определение временной жесткости с помощью метода нейтрализации; комплексонометрический метод определения общей жесткости.

Гидрокарбонатная жесткость воды определяется титрованием воды раствором соляной кислоты в присутствии метилового оранжевого, так как рН в точке эквивалентности находится в области перехода окраски этого индикатора.

Са(HCO3)2 + 2HCl → CaCl2 + 2Н2CO3

Mg(HCO3)2 + 2HCl → MgCl2 + 2H2CO3

До начала титрования рН раствора гидрокарбонатов кальция и магния больше 7 за счет гидролиза солей с участием аниона слабой кислоты. В точке эквивалентности раствор имеет слабокислую реакцию, обусловленную диссоциацией слабой угольной кислоты:

Н2CO3 ↔ HCO3¯ + Н+

Жвр2O) = сэ(солей) • 1000 (ммоль/л).

Общая жесткость воды (общее содержание ионов кальция и магния) определяется с использованием метода комплексонометрии.

Жпост2O) = сэ(солей) • 1000 (ммоль/л).

4.5. Методы редоксиметрии

Методы редоксиметрии, в зависимости от используемых титрантов, подразделяются на:

1) перманганатометрию. Титрант – раствор перманганата калия КMnO4. Индикатор – избыточная капля титранта;

2) иодометрию. Титрант – раствор свободного иода I2 или тиосульфата натрия Na2S2O3. Индикатор – крахмал.

Вычисление молярных масс эквивалентов окислителей и восстановителей

При вычисления молярных масс эквивалентов окислителей и восстановителей исходят из числа электронов, которые присоединяет или отдает в данной реакции молекула вещества. Для нахождения молярной массы эквивалента окислителя (восстановителя) нужно его молярную массу разделить на число принятых (отданных) электронов в данной полуреакции.

Например, в реакции окисления сульфата железа(II) перманганатом калия в кислой среде:

2KMnO4 + 10FeSO4 + 8H2SO4 = 2MnSO4 + 5Fe2(SO4)3 + K2SO4 + 8H2O

1 | MnO4¯ + 8Н+ + 5ē → Mn2+ + 4H2O

5 | Fe2+ – ē → Fe3+

ион MnO4¯ как окислитель принимает пять электронов, а ион Fe2+ как восстановитель отдает один электрон. Поэтому для расчета молярных масс эквивалентов окислителя и восстановителя их молярные массы следует разделить на пять и на один соответственно.

M3(Fe2+) = M(Fe2+) = 55,85 г/моль.

В реакции окисления сульфита натрия перманганатом калия в нейтральной среде:

2KMnO4 + 3Na2SO3 + Н2O → 2MnO2 + 3Na2SO4 + 2KOH

2 | MnO4¯ + 2Н2O + Зē → MnO2 + 4OH¯

3 | SO32- + 2OH¯ + 2ē → SO42- + Н2O

ион MnO4¯ принимает только три электрона, а ион восстановителя SO32- отдает два электрона, следовательно:

Молярные массы эквивалентов окислителей и восстановителей зависят от условий проведения реакций и определяются, исходя из соответствующих полуреакций.

4.6. Фотоколориметрия

Фотоколориметрия – оптический метод анализа, который рассматривает взаимодействие вещества с электромагнитным излучением в видимой области: длина волны (λ) 380–750 нм; волновое число (v) 2,5 104 – 1,5 • 104 см-1; энергия излучения (Е) 1—10 эВ.

Поглощенное световое излучение количественно описывается законом Бугера–Ламберта-Бера:

где А – поглощение вещества, или его оптическая плотность; Т – пропускание образца, т. е. отношение интенсивности света, прошедшего через образец, к интенсивности падающего света, I/I0; с – концентрация вещества (обычно моль/л); l – толщина кюветы (см); ε – молярная поглощательная способность вещества или молярный коэффициент поглощения [л/(моль см)].

Расчет молярного коэффициента поглощения проводят по формуле:

ε = А/(с Ь).

IV. Органическая химия