); 3) межклассовая изомерия с простыми эфирами (например, этиловый спирт CH3CH2OH и диметиловый эфир CH3—О—CH3). Следствием полярности связи О—Н и наличия неподеленных пар электронов на атоме кислорода является способность спиртов к образованию водородных связей.
1. CH2=CH2 + Н2O/Н+ → CH3—CH2OH (гидратация алкенов)
2. CH3—CHO + Н2 →t, Ni→ С2Н5OH (восстановление альдегидов и кетонов)
3. C2H5Br + NaOH (водн.) → С2Н5OH + NaBr (гидролиз галогенопроизводных)
ClCH2—CH2Cl + 2NaOH (водн.) → HOCH2—CH2OH + 2NaCl
4. CO + 2Н2 →ZnO, CuO, 250 °C, 7 МПа→ CH3OH (получение метанола, промышленность)
5. С6Н12O6 →дрожжи→ 2С2Н5OH + 2CO2 (брожение моноз)
6. 3CH2=CH2 + 2KMnO4 + 4Н2O → 3CH2OH—CH2OH - этиленгиликоль + 2KOH + 2MnO2 (окисление в мягких условиях)
7. а) CH2=CH—CH3 + O2 → CH2=CH—CHO + Н2O
б) CH2=CH—CHO + Н2 → CH2=CH—CH2OH
в) CH2=CH—CH2OH + Н2O2 → HOCH2—CH(OH)—CH2OH (получение глицерина)
Химические свойства спиртов связаны с наличием в их молекулу группы —OH. Для спиртов характерны два типа реакций: разрыв связи С—О и связи О—Н.
1. 2С2Н5OH + 2Na → Н2 + 2C2H5ONa (образование алкоголятов металлов Na, К, Mg, Al)
2. а) С2Н5OH + NaOH ≠ (в водном растворе не идет)
б) CH2OH—CH2OH + 2NaOH → NaOCH2—CH2ONa + 2Н2O
в) (качественная реакция на многоатомные спирты – образование ярко-синего раствора с гидроксидом меди)
3. а) (образование сложных эфиров)
б) С2Н5OH + H2SO4 → С2Н5—О—SO3H + Н2O (на холоду)
в)
4. а) С2Н5OH + HBr → С2Н5Br + Н2O
б) С2Н5OH + РCl5 → С2Н5Cl + POCl3 + HCl
в) С2Н5OH + SOCl2 → С2Н5Cl + SO2 + HCl (замещение гидроксильной группы на галоген)
5. С2Н5OH + HOC2H5 →H2SO4, <140 °C→ C2H5—O—C2H5 + H2O (межмолекулярная гидротация)
6. С2Н5OH →H2SO4, 170 °C→ CH2=CH2 + H2O (внутримолекулярная гидротация)
7. а) (дегидрирование, окисление первичных спиртов)
б) (дегидрирование, окисление вторичных спиртов)
9. Фенолы
Фенолами называются производные аренов, в которых один или несколько атомов водорода ароматического кольца замещены на гидроксильные группы. По числу гидроксильных групп в ароматическом кольце различают одно– и многоатомные (двух– и трехатомные) фенолы. Для большинства фенолов используются тривиальные названия. Структурная изомерия фенолов связана с различным положением гидроксильных групп.
1. С6Н5Cl + NaOH(p, 340°C) → С6Н5OH + NaCl (щелочной гидролиз галогеноуглеводородов)
2. (кумольный способ получения)
3. C6H5SO3Na + NaOH (300–350°C) → С6Н5OH + Na2SO3 (щелочное плавление солей ароматических сульфоновых кислот)
Фенолы в большинстве реакций по связи О—Н активнее спиртов, поскольку эта связь более полярна за счет смещения электронной плотности от атома кислорода в сторону бензольного кольца (участие непо-деленной электронной пары атома кислорода в системе л-сопряжения). Кислотность фенолов значительно выше, чем спиртов.
Для фенолов реакции разрыва связи С—О не характерны. Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра.
Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно в орто– и пара-положениях (+М-эффект OH-группы). Для обнаружения фенолов используется качественная реакция с хлоридом железа(III). Одноатомные фенолы дают устойчивое сине-фиолетовое окрашивание, что связано с образованием комплексных соединений железа.
1. 2С6Н5OH + 2Na → 2C6H5ONa + Н2 (так же, как и этанол)
2. С6Н5OH + NaOH → C6H5ONa + H2O (в отличие от этанола)
C6H5ONa + Н2O + CO2 → С6Н5OH + NaHCO3 (фенол более слабая кислота, чем угольная)
3.
Фенолы не образуют сложные эфиры в реакциях с кислотами. Для этого используются более реакционноспособные производные кислот (ангидриды, хлорангидриды).
4. С6Н5OH + CH3CH2OH →NaOH→ С6Н5OCH2CH3 + NaBr (О-алкилирование)
5.
(взаимодействие с бромной водой, качественная реакция)
6.(нитрование разб. HNO3, при нитрировании конц. HNO3 образуется 2,4,6-тринитрофенол)
7. nC6H5OH + nCH2O → nH2O + (—C6H3OH—CH2—)n (поликонденсация, получение фенолформальдегидных смол)
10. Альдегиды и кетоны
Альдегидами называются соединения, в которых карбонильная группа
соединена с углеводородным радикалом и атомом водорода, а кетонами – карбонильные соединения с двумя углеводородными радикалами.
Систематические названия альдегидов строят по названию соответствующего углеводорода с добавлением суффикса –аль. Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении: Н2С=O – метаналь (муравьиный альдегид, формальдегид); CH3CH=O – этаналь (уксусный альдегид). Систематические названия кетонов несложного строения производят от названий радикалов с добавлением слова «кетон». В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса –он; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе. Примеры: CH3—CO—CH3 – диметилкетон (пропанон, ацетон). Для альдегидов и кетонов характерна структурная изомерия. Изомерия альдегидов: а) изомерия углеродного скелета, начиная с С4; б) межклассовая изомерия. Изомерия кетонов: а) углеродного скелета (с С5); б) положения карбонильной группы (с С5); в) межклассовая изомерия.
Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp2-гибридизации. Связь С=O сильно полярна. Электроны кратной связи С=O смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда, а карбонильный атом углерода приобретает частичный положительный заряд.
1. а) (дегидрирование, окисление первичных спиртов)
б) (дегидрирование, окисление вторичных спиртов)
2. а) CH3CH2CHCl2 + 2NaOH →в воде→ CH3CH2CHO + 2NaCl + H2O (гидролиз дигалогенопроизводных)
б) CH3СCl2CH3 + 2NaOH →в воде→ CH3COCH3 + 2NaCl + H2O
3. (гидратация алкинов, реакция Кучерова)
4. (окисление этилена до этаналя)
(окисление метана до формальдегида)
CH4 + O2 →400–600 °C, NO→ H2C=O + H2O
Для карбонильных соединений характерны реакции различных типов: а) присоединение по карбонильной группе; б) восстановление и окисление; в) конденсация; д) полимеризация.
1. (присоединение циановодородной кислоты, образование гидроксинитрилов)
2. (присоединение гидросулбфита натрия)
3. (восстановление)
4. (образование полуацеталец и ацеталей)
5. (взаимодействие с гидроксоламином, образование оксима ацетальдегида)
6. (образование дигалогенопроизводных)
7. (α-галогенирование в присутствии OH¯)
8. (албдольная конденсация)
9. R—CH=O + Ag2O →NH3→ R—COOH + 2Ag↓ (окисление, реакция «серебряного зеркала»)
R—CH=O + 2Cu(OH)2 → R—COOH + Cu2O↓, + 2H2O (красный осадок, окисление)
10. (окисление кетонов, жесткие условия)
11. nCH2=O → (—CH2—O—)n параформ n = 8—12 (полимеризация)
11. Карбоновые кислоты и их производные
Карбоновыми кислотами называются органические соединения, содержащие одну или несколько карбоксильных групп —COOH, связанных с углеводородным радикалом. По числу карбоксильных групп кислоты подразделяются на: одноосновные (монокарбоновые) CH