Сборник задач по математике с решениями для поступающих в вузы — страница 7 из 76

QQ1 вдвое больше ребра куба, то сторона этого квадрата будет равна 2 а (докажите).

Если мы проведем в кубе линию центров оснований и построим отбрасываемую ею тень, то не составит труда вычертить тень, отбрасываемую всем верхним основанием, а затем и всем кубом (см. рис. 4.5).


4.1. Дан куб ABCDА1В1С1D1. Через вершину А, середину E ребра BC и центр O грани СС1D1D проходит секущая плоскость. Найдите отношение, в котором она делит объем куба.

4.2. Дан куб ABCDА1В1С1D1 с ребром, равным единице. Найдите площадь сечения куба плоскостью, проходящей через вершину А и середины F и G ребер В1С1 и С1D1.

4.3. В кубе ABCDА1В1С1D1 проведена плоскость через вершину А, центр O1 верхнего основания А1В1С1D1 и центр Q боковой грани ВВ1С1С. Пусть E — точка пересечения секущей плоскости с ребром В1С1. Найдите отношение В1E к ЕС1.

4.4. Дана правильная четырехугольная пирамида SABCD. Сторона CD продолжена на расстояние MD = 2CD (MC = 3CD). Через точку M, вершину В и середину ребра SC проведена плоскость. Найдите отношение объемов частей пирамиды, полученных при пересечении ее этой плоскостью.

4.5. Дана правильная четырехугольная пирамида SABCD с вершиной S. Через точки А, D и середину ребра SC проведена плоскость. В каком отношении эта плоскость делит объем пирамиды?

4.6. Дан куб ABCDА1В1С1D1. На продолжении ребер AB, АА1AD отложены соответственно отрезки ВР, А1QDR длины 1,5АВ. Через точки P, QR проведена плоскость. В каком отношении эта плоскость делит объем куба?

4.7. Площадь боковой грани правильной шестиугольной пирамиды равна Q. Вычислите площадь сечения, проходящего через середину высоты пирамиды параллельно боковой грани.

4.8. В треугольной призме ABCА1В1С1 боковое ребро равно l. В основании призмы лежит правильный треугольник со стороной b, а прямая, проходящая через вершину В1 и центр основания ABC, перпендикулярна к основаниям. Найдите площадь сечения, проходящего через ребро AB и середину ребра СС1.

4.9. В прямоугольном параллелепипеде ABCDА1В1С1D1 (ABCD и А1В1С1D1 — основания) даны длины ребер AB = а, АD = b, АА1 = с. Пусть точка O — центр основания ABCD, O1 — центр основания А1В1С1D1F — точка, делящая отрезок O1O в отношении 1 : 3. Найдите площадь сечения данного параллелепипеда плоскостью, проходящей через точку F параллельно его диагонали АС1 и диагонали ВD основания.

4.10. В точке E, находящейся на расстоянии 2h от плоскости основания куба с ребром h и на расстоянии R> 2h от прямой, соединяющей центры оснований куба, помещен источник света. Докажите, что тень, отбрасываемая кубом на плоскость основания, будет иметь наибольшую площадь, когда плоскость, проходящая через центр куба, точку E и одну из вершин, перпендикулярна к плоскости основания.

4.11. На плоскость Π под прямым углом к ней падает пучок параллельных лучей. Как расположить над плоскостью куб с ребром а, чтобы отбрасываемая им тень имела максимальную площадь? Найдите площадь максимальной тени.

Глава 5Геометрические места

5.1. Найдите геометрическое место оснований перпендикуляров, опущенных из центра O круга на хорды, проходящие через данную точку N внутри круга.

5.2. На плоскости зафиксированы две различные точки А и В. Найдите геометрическое место точек M, для каждой из которых AM · ВМ · cos ∠ AMB = ¾АВ².

5.3. На плоскости зафиксированы две различные точки А и В. Докажите, что геометрическое место точек M, удовлетворяющих условию 2АМ² + МВ² = АВ², есть окружность с диаметром AC, где точка С лежит на отрезке AB, причем AC/BC= 2.

5.4. Дан треугольник ABC. Найдите геометрическое место точек M, таких, что площади треугольников АМВ и NМС равны.

5.5. На плоскости даны два отрезка: AB и CD. Найдите геометрическое место точек M плоскости, для которых площади треугольников ABM и CDM равны.

5.6. Дан куб с ребром а. Найдите геометрическое место середин отрезков длины l, один из концов которых лежит на диагонали верхнего основания, а другой — на непараллельной ей диагонали нижнего основания.

Глава 6Свойства чисел. Делимость

6.1. Докажите, что р² − 1 делится на 24, если p — простое число, большее 3.

6.2. Докажите, что n³ + 2n при любом натуральном n делится на 3.

6.3. Докажите, что число 3105 + 4105 делится на 49 и 181.

6.4. Сколько в числе 500! содержится множителей 2?

6.5. Делится ли число  на 81?

6.6. Определите, при каких целых значениях n выражение n4 + 4 является простым числом.

6.7. Докажите, что является целым числом при любом четном n.

6.8. При каких целых значениях x дробь  сократима?

6.9. Найдите все пятизначные числа вида  (x — цифра сотен, y — цифра единиц), которые делятся на 36.

6.10. Найдите трехзначное число  (а, b, с — его цифры), если четырехзначное число  в три раза больше четырехзначного числа .

6.11. Найдите простое число p, если p + 2 и p + 4 — простые числа.

6.12. Докажите, что tg 5° — число иррациональное.

6.13. Найдите два последовательных натуральных числа, сумма цифр каждого из которых делится на 11.

6.14. Найдите все целочисленные решения уравнения

3x² − 16xy − 35y² + 17 = 0.

6.15. Сколько различных целочисленных пар (x, y) удовлетворяют уравнению

x² = 4y² + 20 025?

6.16. Найдите натуральные x и y, удовлетворяющие условию 113x − 69y = 11, сумма которых x + y принимает наименьшее значение.

Глава 7Алгебраические преобразования

Следующие ниже замечания относятся не только к этой главе, они имеют более общий характер.

Множества точек x числовой оси, удовлетворяющих неравенствам

1) а<x<b;

2) а ≤ x ≤ b;

3) а ≤ x<b;

4) а<x ≤ b;

5) x>а;

6) x<а;

7) x ≥ а;

8) x ≤ а,

где а<b, называются интервалами и обозначаются соответственно (а, b); [а, b]; [а, b), (а, b]; (а, +∞); (−∞, а); [а, +∞); (−∞, а].

Интервалы 1), 5) и 6) называются открытыми; интервал 2) называется замкнутым; интервалы 3), 4), 7) и 8) называются полуоткрытыми. Иногда вместо терминов: открытый интервал, замкнутый интервал, полуоткрытый интервал используют соответственно термины: промежуток (или интервал), отрезок (или сегмент), полуотрезок.

По определению

Для арифметического корня имеет место формула

а² = |а|.

Иногда приходится пользоваться формулами куба суммы и разности чисел в виде

(а + b)³ = а³ + b³ + 3аb(а + b);

(а − b)³ = а³ − b³ − 3аb(а − b).

Следующая формула называется формулой сложного радикала:

(все подкоренные выражения должны быть неотрицательными).

По определению

где а ≥ 0, m, n — натуральные числа и корень арифметический.

Из этого определения следует, что степени с отрицательным основанием и дробным показателем считаются не имеющими смысла. Например,  не имеет смысла, в то время как .

По определению


По определению

α0 = 1 при а ≠ 0.

Чтобы избежать недоразумений, удобно договориться, что знак корня используется либо для обозначения арифметического корня из неотрицательного числа, либо отрицательного корня нечетной степени из отрицательного числа.

Таким образом, .

Для арифметических корней и корней нечетной степени из отрицательных чисел справедливо правило умножения и деления корней:

Правило, в силу которого показатель корня и показатель подкоренного выражения можно умножить на одно и то же натуральное число, справедливо для арифметических корней и не справедливо для корней нечетной степени из отрицательных чисел.