енно, по крайней мере в своих современных формулировках, поскольку они противоречат друг другу.
Студента университета, посещающего лекции по общей теории относительности по утрам, а по квантовой механике по вечерам и заключившего, что его профессора или дураки, или пренебрегали общением друг с другом по меньшей мере сто лет, следует простить. Утром мир – искривленное пространство, где все непрерывно, а вечером – плоское пространство, где скачут кванты энергии.
Парадокс в том, что обе теории работают удивительно хорошо. Природа ведет себя с нами, как тот пожилой раввин, к которому пришли двое мужчин разрешить свой спор. Выслушав первого, раввин говорит ему: «Ты прав». Второй настаивает на том, чтобы его тоже выслушали, раввин выслушивает и говорит: «И ты прав». Из соседней комнаты раввину кричит его жена: «Но не могут же они оба быть правы!» Он задумывается, а потом кивает: «И ты тоже права».
Группа физиков-теоретиков, рассеянная по пяти континентам, старательно пытается решить эту проблему. Область их исследований называется квантовой гравитацией. Их цель – найти теорию, то есть набор уравнений (но прежде всего – внутренне непротиворечивое видение мира), с помощью которой удалось бы разрешить сегодняшнюю шизофрению.
Физика не впервые сталкивается с двумя в высшей степени успешными, но очевидно противоречивыми теориями. Усилия по объединению, прикладывавшиеся в прошлом, были вознаграждены колоссальным шагом вперед в нашем понимании мира. Ньютон открыл всемирное тяготение, связав параболы Галилея с эллипсами Кеплера. Максвелл написал уравнения электромагнетизма, совместив электрическую и магнитную теории. Эйнштейн сформулировал теорию относительности, стремясь разрешить очевидное противоречие между электромагнетизмом и механикой. На самом деле физик счастлив, когда находит подобное противоречие между успешными теориями: это уникальный шанс. Сможем ли мы построить концептуальный каркас для размышлений о мире, который согласовывался бы с тем, что мы уже узнали благодаря обеим теориям?
Здесь, за границей знания, на переднем крае, наука становится еще красивее – раскаленная в горниле зарождающихся идей, прозрений, дерзаний. Путей выбранных и позже оставленных, увлеченности. В стремлении представить то, чего прежде еще никто не мог вообразить.
Двадцать лет назад туман был плотным. Сегодня сквозь него проступили очертания, внушившие воодушевление и оптимизм. Наметившихся направлений для поиска несколько, так что нельзя сказать, что проблема решена. Разнообразие рождает споры, но полемика приносит пользу: пока туман окончательно не рассеется, хорошо иметь критические замечания и противоположные точки зрения. Одна из главных попыток разрешить проблему – направление исследований под названием «петлевая квантовая гравитация», развиваемое большой командой ученых, которые работают во многих странах.
Петлевая квантовая гравитация – это дерзновение объединить общую теорию относительности с квантовой механикой. Однако это попытка осторожная, поскольку используются только гипотезы, уже содержащиеся в этих теориях, – переписанные соответственным образом, чтобы сделать их совместимыми. Но ее следствия радикальны: дальнейшее глубокое преобразование того, как мы смотрим на структуру реальности.
Идея проста. С одной стороны, общая теория относительности научила нас тому, что пространство – не статичная коробка, а скорее нечто динамичное: своего рода необъятная гибкая раковина улитки, в которую мы заключены и которая способна сжиматься и изгибаться. С другой стороны, квантовая механика научила нас тому, что каждое поле состоит из квантов и имеет мелкозернистую структуру. Отсюда немедленно следует, что физическое пространство также сделано из квантов.
И действительно, важнейший результат петлевой квантовой гравитации в том, что пространство не непрерывно, не бесконечно делимо, а составлено из песчинок – «атомов пространства». Они чрезвычайно мелки: в миллиард миллиардов раз меньше самого маленького атомного ядра. Теория описывает эти «атомы пространства» в математической форме и предлагает определяющие их эволюцию уравнения. Песчинки пространства назвали «петлями», или кольцами, поскольку они соединяются друг с другом, формируя сеть связей, из которых соткана текстура пространства, – словно кольца искусно сплетенной необозримой кольчуги.
Где эти кванты пространства? Нигде. Они не где-то в пространстве, поскольку они сами и есть пространство. Пространство создано сцеплением этих отдельных квантов гравитации. Опять-таки представляется, что мир – больше не об объектах, а о взаимодействиях.
Однако самое поразительное следствие теории – второе. Подобно тому как исчезает понятие непрерывного пространства, содержащего в себе объекты, пропадает также и понятие базового и первичного «времени», которое течет независимо от объектов. Уравнения, описывающие песчинки пространства и материи, больше не содержат временно́й переменной. Это не означает, что все стационарно и неизменно. Напротив, это значит, что изменение вездесуще – но элементарные процессы не могут упорядочиваться в привычную последовательность «моментов». На мельчайшем уровне песчинок пространства танец природы не происходит в ритме взмахов палочки единственного дирижера оркестра, в едином темпе: каждый процесс танцует независимо от своих соседей, в своем собственном ритме. Ход времени – «встроенное» свойство мира, оно зарождается в нем самом во взаимоотношениях между квантовыми событиями, составляющими мир, которые сами и есть источник времени.
Стало быть, мир, описываемый этой теорией, еще дальше отодвигается от привычного нам. Нет больше пространства, «заключающего в себе» мир, и нет больше времени, «в котором» происходят события. Есть лишь элементарные процессы, в которых кванты пространства и материи беспрестанно взаимодействуют друг с другом. Иллюзия пространства и времени, сохраняющаяся вокруг нас, – размытое восприятие этого мельтешения элементарных процессов, точно так же, как спокойное, чистое альпийское озеро на самом деле создается вихрем мириадов крохотных молекул воды.
Разглядывая при колоссальном увеличении с помощью ультрамощной лупы предпоследнюю нашу картинку, в свете этой главы мы увидели бы зернистость пространства:
Возможно ли проверить эту теорию экспериментально? Мы ломаем над этим головы и пробуем, но пока экспериментального подтверждения нет. Тем не менее придумано несколько разных подходов.
Один из них вытекает из исследования черных дыр. В небесах мы теперь можем наблюдать черные дыры, сформировавшиеся при схлопывании звезд. Сжатое под собственным весом, вещество таких звезд коллапсировало и исчезло с наших глаз. Но куда оно делось? Если теория петлевой квантовой гравитации верна, вещество не может действительно коллапсировать в бесконечно малую точку, поскольку бесконечно малых точек не существует – только конечные крупинки пространства. Коллапсируя под собственным весом, вещество должно было становиться все более и более плотным до тех пор, пока квантовая механика не создала бы встречный, уравновешивающий напор.
Эта предполагаемая конечная стадия жизни звезды, когда квантовые флуктуации пространства-времени уравновешивают вес вещества, известна как «планковская звезда». Если бы Солнце перестало гореть и превратилось в черную дыру, та была бы около полутора километров в диаметре. Внутри этой черной дыры вещество Солнца продолжило бы сжиматься – и в конце концов превратилось бы в такую планковскую звезду. Ее размеры были бы близки к размерам атома. Все вещество Солнца, спрессованное в объем атома: для планковской звезды характерно такое экстремальное состояние материи.
Планковская звезда нестабильна: чуть только она максимально сжимается, ее отбрасывает назад – она начинает снова расширяться. Это ведет к взрыву черной дыры. Воображаемому наблюдателю, сидящему внутри черной дыры на планковской звезде, этот процесс виделся бы отскоком назад, происходящим с огромной скоростью. Но для этого наблюдателя время течет не так же, как для всех снаружи черной дыры, – по той же причине, по которой в горах время течет быстрее, чем на уровне моря. За исключением того, что из-за экстремальных условий разница в ходе времени колоссальна: то, что наблюдателю на планковской звезде будет казаться неимоверно быстрым, снаружи будет выглядеть происходящим очень-очень долго. Вот почему мы наблюдаем черные дыры неизменными в течение долгого времени: черная дыра – это расширяющаяся звезда, видимая в крайне замедленном действии.
Возможно, в горниле первых мгновений Вселенной сформировались черные дыры – и теперь некоторые из них взрываются. Если это так, мы, вероятно, смогли бы обнаружить сигналы, испускаемые ими при расширении, – космические лучи высокой интенсивности, приходящие с неба, а значит, позволяющие нам наблюдать и измерять прямой эффект от явления, управляемого квантовой гравитацией. Идея смелая – она, может, и не сработает, если, например, в первозданной Вселенной сформировалось недостаточно черных дыр, чтобы мы сегодня сумели зарегистрировать их расширение. Однако поиск сигналов начался. Посмотрим.
Другое следствие теории, причем одно из самых впечатляющих, касается происхождения Вселенной. Мы знаем, как восстановить историю нашего мира до начального этапа, когда он был крошечных размеров. Но что было до того? Уравнения петлевой теории позволяют нам пойти еще дальше в воссоздании этой истории.
Мы обнаружили, что, когда вселенная предельно сжата, квантовая теория порождает отталкивающую силу, а значит, мощный взрыв – Большой взрыв – мог быть на самом деле Большим отскоком. Не исключено, что наш мир в действительности возник из предшествующей вселенной, которая сжималась под своим собственным весом, пока не втиснулась в крохотный объем, а затем «отскочила» назад и начала расширяться обратно, таким образом став расширяющейся вселенной, которую мы и наблюдаем вокруг себя.
Момент этого отскока, когда вселенная поместилась бы в ореховую скорлупу, – настоящее царство квантовой гравитации: время и пространство начисто исчезли, и мир растекся в мельтешащее облако вероятностей, которое уравнения тем не менее все еще способны описывать. Последняя картинка третьей главы преображается так: