В большинстве случаев, наилучшими свойствами среди простейших (базовых) схем термостабилизации обладает эмиттерная схема термостабилизациипоказанная на рисунке 2.20.
Рисунок 2.20. Каскад с эмиттерной термостабилизацией
Эффект термостабилизации в этой схеме достигается:
◆ фиксацией потенциала Uб выбором тока базового делителя Iд>>Iб0, Uб≈const.
◆ введением по постоянному току ООС путем включения резистора Rэ. На частотах сигнала эта ООС устраняется шунтированием резистора Rэ емкостью Cэ.
Напряжение Uбэ0 определяется как:
Uбэ0 = Uб – URэ.
Механизм действия ООС можно изобразить следующей диаграммой:
T⇑⇒I⇑к0⇒U⇓Rэ⇒U⇓бэ0⇒I⇓б0⇒I⇓к0,
↑←←←←петля ООС ←←←←↓
где символами ⇑ и ⇓ показано, соответственно, увеличение и уменьшение соответствующего параметра. Эскизный расчет эмиттерной схемы термостабилизации маломощного каскада можно проводить в следующей последовательности:
◆ Зададимся током делителя, образованного резисторами Rб1 и Rб2:
Iд = (3…10)Iб0;
◆ выбираем URэ = (0,1…0,2)Eк≈ (1…5) В, и определяем номинал Rэ:
◆ определяем потенциал Uб:
Uб = URэ + Uбэ0;
◆ рассчитываем номиналы резисторов базового делителя:
Rб1 = Uб/Iд,
где Eк=Uк0+URэ+Iк0Rк, Rк определяется при расчете сигнальных параметров каскада.
Коэффициенты термостабилизации для этой схемы:
ST1 ≈ 1/(1 + S0·Rэ),
Здесь R12 — параллельное соединение резисторов Rб1 и Rб1.
Для каскадов повышенной мощности следует учитывать требования экономичности при выборе Iд и URэ.
Анализ полученных выражений показывает, что для улучшения термостабильности каскада следует увеличивать номинал Rэ и уменьшать R12.
Для целей термостабилизации каскада иногда используют термокомпенсацию. Принципиальная схема каскада с термокомпенсацией приведена на рисунке 2.21.
Рисунок 2.21. Каскад с термокомпенсацией
Здесь в цепь базы транзистора включен прямосмещенный диод D, температурный коэффициент стабилизации напряжения (ТКН) которого равен ТКН эмиттерного перехода БТ. При изменении температуры окружающей среды напряжение Uбэ0 и напряжение на диоде Δφ0 будет меняться одинаково, в результате чего ток покоя базы Iб0 останется постоянным. Применение этого метода особенно эффективно в каскадах на кремниевых транзисторах, где основную нестабильность тока коллектора порождает ΔUбТ (из-за относительной малости ΔIкбо). Наилучшая реализация этого метода термокомпенсации достигается в ИМС, где оба перехода естественным образом локализуются в пределах одного кристалла и имеют совершенно одинаковые параметры. Возможно применение других термокомпенсирующих элементов и цепей, например, использующих сочетания БТ и ПТ. Большой класс цепей, питающих БТ, составляют схемы с двумя источниками питания, пример одной из них приведен на рисунке 2.22.
Рисунок 2.22. Каскад с двуполярным питанием
По сути, это схема эмиттерной термостабилизации, у которой "жестко" зафиксирован потенциал Uб, , а ST12≈1/H21э.
Следует отметить возможность применения данных схем термостабилизации при любой схеме использования БТ в любой комбинации.
2.7. Усилительный каскад на биполярном транзисторе с ОБ
Вариант схемы каскада с ОБ с эмиттерной схемой термостабилизации приведен на рисунке 2.23, схема каскада для частот сигнала — на рисунке 2.24.
Рисунок 2.23. Усилительный каскад с ОБ
Рисунок 2.24. Схема каскада с ОБ для частот сигнала
Каскад с ОБ называют еще "повторителем тока", т.к. коэффициент передачи по току этого каскада меньше единицы:
KI = Iвых/Iвх = Iк/Iэ = H21э/(1 + H21э) = H21б.
При подаче на эмиттер положительной полуволны синусоидального входного сигнала будет уменьшаться ток эмиттера, а, следовательно, и ток коллектора. В результате падение напряжение на Rк уменьшится, а напряжение на коллекторе увеличится, т.е. произойдет формирование положительной полуволны выходного синусоидального напряжения. Таким образом, каскад с ОБ не инвертирует входной сигнал.
Анализ работы усилительного каскада с ОБ по входным и выходным динамическим характеристикам можно провести аналогично разделу 2.5.
Для расчета параметров каскада с ОБ по переменному току используем методику раздела 2.3, а БТ представлять моделью предложенной в разделе 2.4.1.
Представим каскад с ОБ схемами для областей СЧ, ВЧ и НЧ (рисунок 2.25 а,б,в):
Рисунок 2.25. Схемы каскада с ОБ для СЧ, ВЧ и НЧ
Проведя анализ, получим для области СЧ:
K0 = S0Rэкв,
где Rэкв≈Rк∥Rн;
gвх = (S0 + g) + Gэ≈S0,
где Gэ = 1/Rэ, обычно S0>>g и Gэ.
gвых≈g = 1/Rк.
Эти соотношения получены в предположении, что низкочастотное значение внутренней проводимости транзистора g22э много меньше gк и gн. Это условие (если не будет оговорено особо) будет действовать и при дальнейшем анализе усилительных каскадов на БТ. Такое допущение справедливо потому, что БТ является токовым прибором и особенно эффективен при работе на низкоомную нагрузку.
В области ВЧполучим:
,
где τв— постоянная времени каскада в области ВЧ, определяемая аналогично ОЭ.
,
где Cвых — выходная емкость каскада, Cвых=CкS0rб.
т.е. модуль входной проводимости уменьшается с ростом частоты, что позволяет сделать вывод об индуктивном характере входной проводимости каскада с ОБ на ВЧ. Количественно индуктивную составляющую входного импеданса можно оценить следующим образом:
LвхОБ = rб/2πfTm
где m = (1,2…1,6).
Выражения для относительного коэффициента передачи Yв и коэффициента частотных искажений Mв и соотношения для построения АЧХ и ФЧХ каскада с ОБ аналогичны приведенным в разделе 2.5 для каскада с ОЭ.
В области НЧполучим:
Kн = K0/(1 + 1/jωτн),
где τн— постоянная времени разделительной цепи в области НЧ.
Далее все так же, как для каскада с ОЭ, за исключением расчета базовой блокировочной цепи, постоянная времени которой приближенно оценивается следующей формулой:
τнб≈Cб/g,
сопротивление БТ со стороны базы приблизительно равно 1/g, а влиянием R12 можно пренебречь, обычно R12>> 1/g.
2.8. Усилительный каскад на биполярном транзисторе с ОК
Схема каскада с ОК с эмиттерной схемой термостабилизацией приведена на рисунке 2.26.
Рисунок 2.26. Усилительный каскад с ОК
Схема для частот сигнала изображена на рисунке 2.27.
Рисунок 2.27. Схема каскада с ОК для частот сигнаа
Каскад с ОК называют еще "повторителем напряжения" или "эмиттерным повторителем", т.к. коэффициент передачи по напряжению этого каскада меньше единицы, что вытекает из его дальнейшего анализа.
При подаче на базу положительной полуволны входного синусоидального сигнала будет увеличиваться ток коллектора и, следовательно, ток эмиттера. В результате падение напряжения на Rэ увеличится, т.е. произойдет формирование положительной полуволны выходного напряжения. Таким образом, каскад с ОК не инвертирует входной сигнал.
Напряжение сигнала, приложенное к эмиттерному переходу, является разностью между Uвх и Uвых. Чем больше и Uвых (при заданном Uвх), тем меньше окажется напряжение, приложенное к эмиттерному переходу, что будет приводить к уменьшению тока эмиттера и, соответственно, к уменьшению Uвых, т.е. в каскаде с ОК проявляется действие ООС, причем 100%-ной.
Анализ работы усилительного каскада с ОК по входным и выходным динамическим характеристикам проводится как для ОЭ (см. раздел 2.5).
Для расчета параметров каскада с ОК по переменному току используем методику раздела 2.3, а БТ представлять моделью предложенной в разделе 2.4.1.
Представим каскад с ОК схемами для областей СЧ, ВЧ и НЧ (рисунок 2.28 а,б,в):