Шпионские штучки — страница 9 из 13

В малогабаритных транзисторных радиопередающих устройствах и радиомикрофонах для получения частотно-модулированного сигнала нередко применяются специальные полупроводниковые приборы, называемые варикапами. С их помощью можно модулировать по частоте сигналы, формируемые как LC-генераторами, так и генераторами с кварцевой стабилизацией частоты.

Принцип действия и основные параметры варикапа

Варикап представляет собой разновидность полупроводникового диода, одним из основных свойств которого является зависимость так называемой барьерной емкости от приложенного к нему обратного напряжения. При этом отрицательный полюс источника напряжения должен быть подключен к положительному выводу варикапа. В процессе подачи на варикап управляющего напряжения, например, НЧ-сигнала, мгновенное значение этого сигнала вызывает соответствующее изменение величины обратного напряжения на электродах варикапа. В результате происходит и изменение его барьерной емкости. Таким образом, в схемах модуляторов варикап используется в качестве аналога конденсатора переменной емкости, управляемого не механически, а электрически, посредством изменения величины обратного напряжения.

Необходимо отметить, что в модуляторах миниатюрных радиопередатчиков нередко в качестве варикапов используются кремниевые стабилитроны при обратном напряжении, величина которого меньше напряжения стабилизации, когда обратный ток еще очень мал, и, следовательно, обратное сопротивление стабилитрона весьма велико.

Основными параметрами варикапа являются его номинальная емкость, коэффициент перекрытия по емкости в рабочем интервале напряжений, максимальная рабочая частота, добротность конденсатора, роль которого выполняет варикап, а также температурный коэффициент варикапа.

Номинальная емкость варикапа представляет его барьерную емкость при заданном напряжении смещения. На основании зависимости барьерной емкости от приложенного к выводам варикапа обратного напряжения строится так называемая вольт-фарадная характеристика варикапа, имеющая участок, форма которого близка к линейной. Для того чтобы варикап работал именно на этом участке характеристики, на его электроды следует подать исходное напряжение смещения, величина которого определяет положение рабочей точки варикапа, то есть его номинальную барьерную емкость.

Под коэффициентом перекрытия по емкости в рабочем интервале напряжений понимается отношение общих емкостей варикапа при двух заданных значениях обратного напряжения. Обычно определение данного коэффициента производится для емкостей в рабочем интервале напряжений, то есть коэффициент перекрытия по емкости представляет собой отношение максимальной и минимальной емкостей варикапа.

Значение максимальной рабочей частоты определяет граничную частоту, при превышении которой основные параметры варикапа перестают соответствовать паспортным данным. Добротность конденсатора, роль которого выполняет варикап, рассчитывается как отношение реактивного сопротивления на заданной частоте к сопротивлению потерь при заданной емкости варикапа или обратном напряжении. Особого внимания заслуживает температурный коэффициент варикапа, который характеризует зависимость величины его емкости от температуры окружающей среды.

Помимо указанных параметров при выборе варикапа для каскада модуляции миниатюрного радиопередатчика следует обратить внимание на такие параметры, как максимальная рассеиваемая мощность, максимально допустимое обратное постоянное напряжение, а также постоянный обратный ток при этом напряжении.

Основные схемы включения варикапа

Одним из основных способов осуществления модуляции в транзисторных микропередатчиках является воздействие модулирующего НЧ-сигнала на параметры селективного элемента ВЧ-генератора. Селективный элемент обычно представляет собой резонансный контур, образованный параллельно включенными катушкой индуктивности и конденсатором. Изменение параметров входящей в состав контура катушки индуктивности в миниатюрных радиопередатчиках довольно затруднительно, поскольку соответствующие схемотехнические решения весьма сложны, а их реализация трудоемка. В то же время применение варикапа, доступного и дешевого полупроводникового элемента, емкость которого можно изменять, непосредственно подавая на его выводы модулирующее напряжение, значительно упрощает решение задачи. Поэтому схемотехнические решения модуляторов на варикапах, обеспечивающие частотную модуляцию ЧМ-сигнала с весьма приемлемыми параметрами, пользуются особой популярностью.

В транзисторных LC-генераторах варикап в качестве элемента с емкостным характером комплексного сопротивления может быть подключен к резонансному контуру как параллельно, так и последовательно.

Упрощенные принципиальные схемы включения варикапа параллельно резонансному контуру (без цепей формирования напряжения смещения варикапа) приведены на рис. 4.1. Отличительной особенностью схемотехнического решения, изображенного на рис. 4.1б, является включение варикапа вместо конденсатора параллельного резонансного контура.


Рис. 4.1. Принципиальные схемы включения варикапа параллельно резонансному контуру (а) и вместо конденсатора резонансного контура (б)


При разработке модулятора на варикапе не следует забывать о том, что для функционирования этого полупроводникового прибора в штатном режиме на его выводы следует подавать напряжение смещения определенной величины. Поэтому в состав модулирующего каскада необходимо включить соответствующую цепь формирования напряжения смещения варикапа. Такая цепь в миниатюрных транзисторных передатчиках обычно выполняется на резисторах. Принципиальная схема параллельного колебательного контура с цепью формирования напряжения смещения варикапа приведена на рис. 4.2.


Рис. 4.2. Принципиальная схема параллельного колебательного контура с цепью формирования напряжения смещения варикапа


Параллельный колебательный контур образован катушкой индуктивности L1 и емкостью варикапа VD1. Резонансная частота контура может изменяться при изменении величины обратного напряжения на варикапе, которое зависит от положения движка потенциометра R2. Для того чтобы уменьшить шунтирующее влияние потенциометра R2 на добротность контура, в цепь включен резистор R1, имеющий сравнительно большое сопротивление. Также в состав цепи включен разделительный конденсатор С1, без которого варикап VD1 оказался бы замкнут накоротко через катушку L1.

Упрощенные принципиальные схемы включения варикапа последовательно с элементами резонансного контура (без цепей формирования напряжения смещения варикапа) приведены на рис. 4.3. При этом варикап может быть включен как последовательно с конденсатором контура, так и последовательно с катушкой индуктивности.


Рис. 4.3. Принципиальные схемы включения варикапа последовательно с конденсатором (а) и последовательно с катушкой индуктивности (б) контура


Помимо этого известны схемотехнические решения, в которых варикап подключается комбинированно, с частичным включением. Упрощенная принципиальная схема такого контура приведена на рис. 4.4.


Рис. 4.4. Принципиальная схема комбинированного включения варикапа


Аналогичные схемы включения варикапа используются и в транзисторных трехточечных LC-генераторах. Широкое распространение получили схемотехнические решения, в которых варикап подключается параллельно катушке индуктивности (в индуктивных трехточках), а также параллельно одному из конденсаторов емкостного делителя ВЧ-генератора (в емкостных трехточках).

Весьма разнообразны схемотехнические решения модуляторов с применением варикапа, предназначенные для модуляции сигнала генераторов с кварцевой стабилизацией частоты. При создании таких конструкций приходится, с одной стороны, добиваться высокой стабильности частоты генератора с помощью кварцевого резонатора, а с другой – обеспечивать возможность изменения этой частоты по закону модулирующего сигнала. Обычно при разработке транзисторных микропередатчиков для ВЧ-генератора с кварцевой стабилизацией частоты выбираются осцилляторные схемы, в которых кварцевый резонатор используется в качестве элемента с индуктивным характером комплексного сопротивления в резонансном контуре. В этом случае варикап, как элемент с изменяемой по закону модуляции емкостью, может быть подключен как последовательно, так и параллельно кварцевому резонатору.

Более подробную информацию о способах включения варикапа в контурах LC-генераторов и генераторов с кварцевой стабилизацией частоты заинтересованный читатель может найти в специализированной литературе и в сети Интернет.

4.3. Модуляция сигнала LC-генераторов

В настоящее время в транзисторных микропередатчиках и радиомикрофонах широкое распространение получили схемотехнические решения модуляторов, в которых в процессе модуляции в соответствии с мгновенным значением уровня модулирующего сигнала изменяются параметры и режимы работы активного элемента ВЧ-генератора, то есть биполярного или полевого транзистора. Отдельную группу составляют схемы модуляторов с использованием варикапов, изменение емкости которых по закону модулирующего сигнала приводит к соответствующему изменению параметров селективного элемента, то есть резонансного контура. В связи с ограниченным объемом данной книги в следующих разделах будут рассмотрены лишь некоторые из наиболее популярных схемотехнических решений модуляторов ВЧ-сигнала LC-генераторов, применяемые при разработке миниатюрных транзисторных радиопередающих устройств.

Модуляция сигнала LC-генераторов с индуктивной и емкостной связью

В применяемых в миниатюрных радиопередатчиках LC-генераторах с индуктивной положительной обратной связью для модуляции ВЧ-сигнала обычно используется простое схемотехническое решение, основанное на подаче модулирующего НЧ-сигнала непосредственно в цепь базы транзистора активного элемента. Принципиальная схема одного из вариантов подачи модулирующего сигнала на LC-генератор с индуктивной положительной обратной связью приведена на рис. 4.5.


Рис. 4.5. Принципиальная схема модулятора для LC-генератора с индуктивной обратной связью


В рассматриваемой схеме транзистор VT1, на котором выполнен активный элемент ВЧ-генератора, по постоянному и переменному току включен по схеме с общим эмиттером. Положение рабочей точки транзистора определяется величиной сопротивления резистора R1. Модулирующий НЧ-сигнал через разделительный конденсатор С1 подается на базу транзистора VT1. При этом мгновенное значение модулирующего сигнала изменяет величину напряжения смещения, подаваемого на базу транзистора VT1, то есть влияет на положение рабочей точки транзистора. Усиленный НЧ-сигнал, формируемый на коллекторе транзистора VT1, инициирует изменение падения напряжения на резонансном контуре, что приводит к соответствующему изменению как амплитуды, так и частоты сигнала ВЧ-генератора.

Аналогичные схемотехнические решения, основанные на подаче модулирующего НЧ-сигнала на базу транзистора активного элемента ВЧ-генератора, широко применяются для модуляции сигнала LC-генераторов с емкостной положительной обратной связью. Принципиальная схема одного из вариантов такого схемотехнического решения приведена на рис. 4.6.


Рис. 4.6. Принципиальная схема модулятора для LC-генератора с емкостной обратной связью (вариант 1)


В данной конструкции транзистор VТ1 по постоянному току включен по схеме с общим эмиттером. Положение рабочей точки транзистора определяется величинами и соотношением сопротивлений резисторов R2 и R3. В состав мостовой схемы стабилизации положения рабочей точки помимо резисторов R2 и R3 входит резистор R4, включенный в цепь эмиттера транзистора VT1. По переменному току транзистор VТ1 включен по схеме с общей базой. При этом база транзистора заземлена по высокой частоте через конденсаторы С2 и С3. Как и в рассмотренной ранее схеме, модулирующий НЧ-сигнал через разделительный конденсатор С1 подается на базу транзистора VT1. Модулированный сигнал формируется на коллекторе транзистора VT1.

Принципиальная схема еще одного варианта подачи модулирующего сигнала на LC-генератор с емкостной ПОС приведена на рис. 4.7.


Рис. 4.7. Принципиальная схема модулятора для LC-генератора с емкостной обратной связью (вариант 2)


В отличие от рассмотренной ранее конструкции положение рабочей точки транзистора VТ1 определяется величиной сопротивления резистора R1, а модулированный сигнал снимается с точки подключения конденсатора С4 цепи ОС к эмиттеру транзистора.

Модуляция сигнала трехточечных LC-генераторов

Схемотехнические решения, основанные на подаче модулирующего НЧ-сигнала непосредственно в цепь базы транзистора активного элемента, широко применяются при разработке модуляторов для ВЧ-генераторов, выполненных по трехточечным схемам. Однако в миниатюрных транзисторных радиопередающих устройствах на биполярных транзисторах LC-генераторы, выполненные по индуктивной трехточечной схеме, применяются сравнительно редко. Поэтому в данном разделе рассмотрены лишь схемотехнические решения модуляторов для LC-генераторов с емкостным делителем, выполненных по схеме емкостной трехточки.

Принципиальная схема одного из вариантов подачи модулирующего сигнала на LC-генератор с емкостным делителем приведена на рис. 4.8.


Рис. 4.8. Принципиальная схема модулятора для LC-генератора с емкостным делителем (вариант 1)


В данном случае положение рабочей точки транзистора VТ1, по постоянному току включенного по схеме с общим эмиттером, определяется величиной сопротивления резистора R1. По переменному току транзистор включен по схеме с общей базой, поскольку по высокой частоте его база заземлена через конденсатор С2.

Модулирующий НЧ-сигнал подается на базу транзистора VT1 через разделительный конденсатор С1. В соответствии с мгновенным значением этого сигнала изменяется величина напряжения смещения, подаваемого на базу транзистора VT1, то есть изменяется положение рабочей точки транзистора. В результате НЧ-сигнал, формируемый на коллекторе транзистора VT1, инициирует изменение падения напряжения на резонансном контуре, при этом по закону модулирующего сигнала происходит изменение амплитуды и частоты сигнала ВЧ-генератора. Таким образом, на коллекторе транзистора VT1 формируется модулированный сигнал.

Принципиальная схема еще одного варианта подачи модулирующего сигнала на LC-генератор с емкостным делителем приведена на рис. 4.9.


Рис. 4.9. Принципиальная схема модулятора для LC-генератора с емкостным делителем (вариант 1)


В этой конструкции транзистор VТ1 по постоянному току включен также по схеме с общим эмиттером. Однако, в отличие от рассмотренной ранее схемы, положение рабочей точки транзистора определяется величинами и соотношением сопротивлений делителя, в состав которого входят резисторы R1 и R2. Эти же резисторы совместно с резистором R3 образуют схему стабилизации положения рабочей точки транзистора. Модулированный сигнал снимается с эмиттера транзистора VТ1.

Варикапы в модуляторах LC-генераторов

Основу рассмотренных в предыдущих разделах цепей, обеспечивающих модуляцию сигнала LC-генератора, составляют схемотехнические решения, в которых модулирующий НЧ-сигнал подается непосредственно в цепь базы транзистора активного элемента. В результате в процессе модуляции в соответствии с мгновенным значением уровня модулирующего сигнала изменяются параметры и режимы работы активного элемента ВЧ-генератора.

На практике при разработке миниатюрных радиопередатчиков и радиомикрофонов широко используются схемотехнические решения, основанные на модуляции высокочастотного сигнала посредством соответствующего изменения параметров селективного элемента. При этом предпочтение отдается схемам, в которых по закону модулирующего сигнала изменяется емкость варикапа, входящего в состав резонансного контура.

Принципиальная схема одного из вариантов модулятора на варикапе, обеспечивающего частотную модуляцию сигнала LC-генератора, выполненного по схеме емкостной трехточки на биполярном транзисторе p-n-p-проводимости, приведена на рис. 4.10.


Рис. 4.10. Принципиальная схема модулятора на варикапе для LC-генератора, выполненного по схеме емкостной трехточки на биполярном транзисторе p-n-p-проводимости


В рассматриваемой схеме активный элемент LC-генератора выполнен на транзисторе VT1. Этот транзистор по постоянному току включен по схеме с общим эмиттером, а по переменному току – по схеме с общей базой, поскольку электрод базы подключен к шине корпуса через конденсатор С2. Положение рабочей точки транзистора VT1 определяется величинами и соотношением сопротивлений делителя, в состав которого входят резисторы R3 и R4. Эти же резисторы совместно с резистором R5 образуют схему стабилизации положения рабочей точки.

Варикап VD1 подключен параллельно катушке индуктивности L1 и подстроечному конденсатору С5, которые входят в состав резонансного контура. Напряжение смещения подается на варикап через резисторы R1 и R2. Конденсатор С1 большой емкости обеспечивает развязку варикапа VD1 и коллектора транзистора VT1 по постоянному току. Модулирующий НЧ-сигнал подается на варикап через резистор R2. Модулированный сигнал снимается с эмиттера транзистора VТ1.

При использовании в качестве источника НЧ-сигнала электретного микрофона величина сопротивления резистора R1 выбирается такой, чтобы напряжение питания, подаваемое на микрофон, соответствовало его паспортным данным. После этого подбирается величина сопротивления резистора R2 таким образом, чтобы падение напряжения на варикапе VD1 было равно выбранному напряжению смещения, обеспечивающему работу в так называемом режиме молчания. При этом параллельно микрофону рекомендуется подключить шунтирующий конденсатор емкостью около 1000 пФ.

Если же на варикап VD1 предполагается подавать модулирующий сигнал, снимаемый с выхода микрофонного усилителя, то резистор R1 одновременно может использоваться в качестве коллекторной нагрузки транзистора усилительного каскада. При этом величина его сопротивления определяется выбранным режимом работы этого транзистора.

Принципиальная схема одного из вариантов модулятора на варикапе, обеспечивающего частотную модуляцию сигнала LC-генератора, выполненного по схеме индуктивной трехточки на полевом транзисторе, приведена на рис. 4.11.


Рис. 4.11. Принципиальная схема модулятора на варикапе для LC-генератора, выполненного по схеме индуктивной трехточки на полевом транзисторе


Особенностью данного схемотехнического решения является включение варикапа VD1 параллельно резонансному контуру, образованному подстроечным конденсатором С2 и катушкой индуктивности L1. Напряжение смещения подается на варикап через резисторы R1 и R2. Конденсатор С1 большой емкости обеспечивает развязку варикапа VD1 и затвора транзистора VT1 по постоянному току. Модулирующий НЧ-сигнал подается на варикап через резистор R2. Модулированный сигнал снимается с электрода истока транзистора VТ1. Выбор величин сопротивлений резисторов R1 и R2 определяется с учетом выполнения тех же требований, которые были изложены при описании предыдущей конструкции.

4.4. Модуляция сигнала ВЧ-генераторов с кварцевой стабилизацией частоты