Штурм абсолютного нуля — страница 2 из 29

Значит, — 273 °C является наименьшей температурой, к которой можно подойти сколь угодно близко, но никогда нельзя достичь. Следовательно, естественно выбрать за исходную точку температуры, то есть за абсолютный нуль температуры, именно —273 °C.

Так возникла идея шкалы абсолютной температуры.

Но следует заметить, что при достаточно низкой температуре газ начинает сжижаться и закон Гей-Люссака не применим. В этом смысле наш воображаемый опыт не вполне корректен.

Более строгое доказательство того, что ни одно тело не может быть охлаждено ниже абсолютного нуля, основанное на втором законе термодинамики, принадлежит английскому физику Уильяму Томсону (лорду Кельвину), который в 1848 году ввел в науку понятие об абсолютной температуре и абсолютную шкалу температур.

Поэтому шкалу абсолютной температуры принято называть шкалой Кельвина или термодинамической температурной шкалой, а температуру, определяемую по этой шкале, — термодинамической.

Последующие измерения позволили так лее уточнить значение абсолютного нуля температуры. Оно оказалось равным —273,15 °C.

В Международной системе единиц измерения физических величин, принятой международным форумом — XI Генеральной конференцией по мерам и весам в 1960 году, одной из шести основных единиц является единица термодинамической температуры — кельвин, обозначаемая буквой К (устаревшее название «градус Кельвина» или °К). Один кельвин равен одному градусу Цельсия.

Для того чтобы градусы Цельсия перевести в кельвины, достаточно к числу градусов Цельсия добавить 273,15. Следовательно, температура таяния льда составляет 273,15 К, а точка кипения воды 373,15 К.

Удобство термодинамической температурной шкалы заключается в первую очередь в отсутствии отрицательных температур. Эта шкала широко используется при научных исследованиях и в технике.

В повседневной жизни мы пока пользуемся шкалой Цельсия, так как к большим числам, в которых выражается температура в кельвинах, сразу привыкнуть трудно.

Вполне очевидно, недалеко время, когда шкала Кельвина станет единой, как это предусмотрено международными соглашениями.

Понятие абсолютной температуры было введено в науку в середине прошлого века. Однако прошло свыше ста лет, прежде чем шкала Кельвина получила официальное признание.

Почему так получилось?

В температурной шкале Цельсия нуль вполне ощутимая точка. Тело, охлажденное до такой температуры, вы можете потрогать рукой.

Абсолютный нуль температуры выведен на основании теоретических умозаключений, подобно тому как случается, что астроном «вычисляет» далекую планету еще до того, как ее удается обнаружить с помощью оптических приборов.

Чтобы приблизиться к абсолютному нулю, нужно было получить температуру гораздо ниже, чем в самой холодной точке нашей планеты.

Более двухсот семидесяти градусов отделяет область абсолютного нуля температуры от нуля градусов Цельсия.

Много это или мало?

Повышать температуру на сотни и даже тысячи градусов человек научился еще во времена глубокой древности, пожалуй начиная с того момента, когда он впервые добыл огонь.

Техникой получения низких температур человек овладел в результате долгого пути исторического развития. Спуститься «вниз» по температурной шкале оказалось значительно труднее, чем подняться «вверх».

…Если у вас в комнате все вещи находятся в определенном порядке, то легко можно найти нужный предмет.

Однако если вы, вернувшись из школы, бросите портфель куда попало, а переодевшись, не уложите аккуратно вашу одежду в шкафу, разбросаете в беспорядке по комнате, то вам придется затратить немало времени для поиска нужной вещи.

Устроить беспорядок проще всего. Гораздо труднее восстановить порядок.

Существует общий закон природы, согласно которому термодинамические процессы самопроизвольно идут в направлении от более упорядоченного состояния к менее упорядоченному.

Можно привести немало примеров в подтверждение этого закона.

Если бросить в стакан с водой кусок сахара, то сахар через некоторое время растворится в воде, его молекулы распределятся по всему объему стакана равномерно. Вы можете ждать практически сколь угодно долго, но раствор сам по себе не разделится на сахар и воду.

При повышении температуры кристаллы превращаются в жидкость, а затем в газ.

В твердом теле каждый атом (или молекула) занимает определенное положение в пространстве. Он может совершать колебания около положения равновесия, но далеко уйти от отведенного ему места атом, как правило, не в состоянии. В этом смысле в твердом теле существует почти идеальный порядок.

В жидкости молекулы (или атомы) «упакованы» почти так же плотно, как в твердом теле. Однако в отличие от твердого тела они не находятся здесь «на привязи»: они сравнительно легко меняют свое положение. Следовательно, в жидкости гораздо меньше порядка, чем в твердом теле.

В газах расстояние между молекулами (атомами) в среднем во много раз больше размера самих молекул. Атомы и молекулы перемещаются в пространстве с огромными скоростями. Сталкиваясь, они отскакивают друг от друга, словно бильярдные шары. Чем сильнее нагревается газ, тем беспорядочнее становится движение его молекул.

Итак, при нагревании вещества его атомы или молекулы переходят из более упорядоченного в менее упорядоченное состояние, что не противоречит естественному ходу событий. Получить высокие температуры (до десятков и сотен тысяч градусов) сравнительно легко.

Наоборот, искусственно охлаждая вещество, мы стремимся перейти от беспорядка к порядку. А природных резервуаров глубокого холода на Земле нет.

Для получения холода люди еще во времена глубокой древности использовали испарение. Так, в Древнем Египте напитки хранились в пористых сосудах. Поры увеличивали поверхность испаряющейся жидкости, а плохая теплопроводность материала сосуда уменьшала подвод тепла извне. Все это способствовало охлаждению жидкости.

При нормальных условиях жидкость испаряется медленно. Так, если вы оставите в блюдечке немного воды, то пройдет несколько суток, прежде чем она полностью испарится.

Для того чтобы охладить вещество, необходимо ускорить процесс испарения. Природа сама подсказывает нам такую возможность.

Представьте себе, что в жаркий летний день вы выходите на берег из воды и вас обдувает порыв ветра. Вы сразу чувствуете холод. Объясняется это тем, что ветер сдувает пары жидкости, испаряющейся с вашего мокрого тела, а поэтому скорость испарения увеличивается.

Интенсивность испарения увеличивается и по мере повышения температуры жидкости. Наконец, при определенной температуре жидкость начинает кипеть.

…Если я вам предложу охладить температуру вашего тела, обдав его …кипятком, вы, наверное, с ужасом откажетесь от такого эксперимента. Между тем, оказывается, существует и холодный… кипяток.

Когда мы говорим, что вода кипит при температуре 100 °C, то подразумеваем, что этот процесс происходит при нормальном атмосферном давлении (760 миллиметров ртутного столба). С понижением атмосферного давления точка кипения воды смещается вниз по температурной шкале.

При подъеме в горы атмосферное давление снижается.

На Памире есть пик Ленина, расположенный на высоте 7134 метра над уровнем моря, где давление составляет примерно 300 миллиметров ртутного столба.

Здесь температура кипения воды приблизительно равна 75 °C. В таком кипятке сварить, например, мясо невозможно.

Впрочем, для того чтобы понизить температуру кипения воды, вовсе нет необходимости штурмовать заоблачные высоты. Достаточно поставить сосуд с водой под колпак воздушного насоса.

Откачивая пары, вы можете заставить кипеть воду при температуре значительно ниже 100 °C. Так, при давлении в 20 миллиметров ртутного столба вода закипает при комнатной температуре, а при снижении давления до 4,6 миллиметра ртутного столба можно получить «кипяток», имеющий температуру замерзания воды! Между температурой кипения воды и давлением паров жидкости не существует линейной зависимости. Так, для того чтобы понизить температуру кипения со 100 °C до 80 °C, нужно снизить давление примерно в два раза. А для дальнейшего понижения точки кипения еще на 20 °C давление нужно снизить уже почти в два с половиной раза по сравнению с предыдущим… Наконец, для понижения температуры кипения до 0 °C давление нужно уменьшить почти в четыре раза по сравнению с его величиной при 20 °C.

Между тем по мере уменьшения давления откачивать пары становится все труднее. Охлаждаясь, жидкость в конце концов затвердевает.

Разумеется, вода, замерзающая около 0 °C, непригодна для получения более низких температур.

Ледяной кипяток. Откачивая пары из‑под колпака, вы можете получить кипяток, имеющий температуру замерзания воды.


Мало пригодны для этой цели и другие вещества, существующие в жидком виде при комнатной температуре.

Для получения низких температур нужны более «холодные жидкости».

Еще два столетия назад известный французский ученый Антуан Лавуазье писал:

«…Если бы мы смогли поместить Землю в некую весьма холодную область, например в атмосферу Юпитера или Сатурна, то все наши реки превратились бы в горы. Воздух (или, по крайней мере, некоторые его компоненты) перестал бы быть невидимым и превратился бы в жидкость. Превращение такого рода открыло бы возможность получения новых жидкостей, о которых мы до сих пор не имели никакого понятия».

Наиболее низкая температура воздуха, зарегистрированная в самых холодных областях земного шара, составляет —90 °C. Однако и при такой температуре не наблюдается сжижение воздуха или его компонентов.

Как практически осуществить сжижение атмосферных газов? Не посылать же на самом деле с этой целью экспедицию на Юпитер, Сатурн или в другой пункт Галактики!

Чтобы проникнуть в неведомую ранее область низких температур, надо было прежде всего решить проблему сжижения атмосферных газов в земных условиях.

2. Читатель узнает, что и пенсы могут служить науке. Что скрывалось за «грязью» в сосуде. Две тысячи метров под водой. Последствие одной аварии. Привидение, которое не возвращается.