поэтому миссия интерпретировать результаты исследований Кантора была возложена на блестящего немецкого математика Давида Гильберта (1862–1943). Гильберт умел находить аналогии, которые делали идеи Кантора о бесконечности более удобоваримыми и доступными для понимания.
Одно из самых известных объяснений бесконечности включало в себя воображаемое здание, известное как отель Гильберта – достаточно большое, с бесконечным количеством номеров, обозначенных числами 1, 2, 3 и т. д. В один особенно оживленный вечер, когда все номера заняты, появляется новый гость, не забронировавший номер заранее. К счастью, владелец отеля доктор Гильберт знает, как решить проблему. Он просит всех постояльцев перебраться из текущего номера в следующий. То есть жилец номера 1 переходит в номер 2, жилец из номера 2 – в номер 3 и т. д. У всех гостей по-прежнему есть номера, но номер 1 теперь свободен и в нем может поселиться новый гость. Этот сценарий подразумевает (и тому есть более строгое доказательство), что бесконечность плюс один равна бесконечности – пожалуй, весьма парадоксальный, но все же неоспоримый вывод.
Это значит, что Нед Фландерс неправ, полагая, что он может взять верх над бесконечностью Гомера, прибавив к ней единицу. В действительности Фландерс оказался бы неправ, даже если бы попытался выиграть спор, прибавив бесконечность к бесконечности, что доказывает еще одна сцена из отеля Гильберта.
Отель снова переполнен, и тут прибывает бесконечно большой автобус. Его водитель спрашивает доктора Гильберта, может ли отель вместить всех пассажиров. Гильберт невозмутим. Он просит всех своих нынешних постояльцев перебраться в номер с числом в два раза больше. То есть гость из номера 1 переходит в номер 2, гость из номера 2 переходит в номер 4 и т. д. В результате имеющаяся бесконечность гостей занимает только четные номера, а бесконечное количество нечетных номеров освобождается. Теперь отель сможет предоставить номера для бесконечного количества пассажиров автобуса.
Пример опять кажется парадоксальным. Возможно, вы даже думаете, что это полная бессмыслица, не более чем оторванные от жизни философские рассуждения. Тем не менее выводы по поводу бесконечности представляют собой нечто большее, чем просто софистику. Математики делают их последовательно, шаг за шагом, выстраивая строгий, прочный фундамент.
Эту мысль хорошо иллюстрирует анекдот, в котором ректор университета жалуется на декана физического факультета: «Почему физикам всегда нужно столько денег на лаборатории и оборудование? Почему вы не можете быть как математический факультет? Математикам нужны только карандаши, бумага и корзина для бумаг. Или еще лучше: почему бы вам не быть как философский факультет? Они просят только карандаши и бумагу».
Этот анекдот высмеивает философов, которым не присуща научная строгость математиков. Математика – это кропотливый поиск истины, потому что каждая новая гипотеза подвергается безжалостной проверке, а затем либо вводится в общую схему знаний, либо выбрасывается в корзину для мусора. Некоторые математические концепции бывают абстрактными и загадочными, но даже они должны пройти процесс тщательного анализа.
Таким образом, отель Гильберта наглядно продемонстрировал, что:
бесконечность = бесконечность + 1
бесконечность = бесконечность + бесконечность
Хотя Гильберту удалось избежать в объяснениях специальных математических выкладок, Кантор, для того чтобы сделать свои парадоксальные выводы о бесконечности, был вынужден глубоко погрузиться в математическую организацию чисел, и такое интеллектуальное напряжение не прошло для него бесследно. Кантор страдал от тяжелых приступов депрессии, проводил много времени в больнице и начал верить в то, что находится в непосредственный связи с Богом. В действительности он считал, что это Бог помог ему сформулировать свои идеи, и верил, что бесконечность – это синоним Бога: «Она реализована в наиболее полной форме, в сверхъестественном существе, в Боге; я называю ее Абсолютной бесконечностью, или Абсолютом». Психическое состояние Кантора было отчасти результатом насмешек и критики в его адрес со стороны более консервативных математиков, которые не могли смириться с его радикальными выводами о бесконечности. К большому сожалению, в 1918 году Георг Кантор умер в полной нищете.
После смерти Кантора Гильберт так прокомментировал попытки своего коллеги постичь математику бесконечности: «Бесконечность! С давних пор ни один вопрос так не будоражил человеческую мысль, как этот; ни одна другая идея не действовала на разум столь побуждающе и плодотворно; но и ни одно другое понятие так сильно не нуждается в разъяснении, как бесконечность».
Гильберт ясно дал понять, что в борьбе за постижение бесконечности принимает сторону Кантора: «Никто не изгонит нас из рая, созданного для нас Кантором».
Помимо математиков, в команду сценаристов «Симпсонов» входили также другие ученые, интересующиеся математикой, например Джоэл Коэн (не имеющий никаких родственных связей с Дэвидом Коэном), изучавший точные науки в Альбертском университете в Канаде; Эрик Каплан, который изучал в Колумбийском университете и в Беркли философию науки; Дэвид Миркин, планировавший стать инженером-электротехником и, прежде чем присоединиться к команде «Симпсонов», окончивший Университет Дрекселя в Филадельфии и работавший в Национальном экспериментальном центре авиационного оборудования. Джордж Мейер получил диплом по биохимии, а затем сфокусировался на математике, безуспешно пытаясь разработать безопасную систему ставок в собачьих бегах. Для мира комедии было настоящим подарком судьбы то, что Мейер бросил эту затею и сделал карьеру в качестве одного из самых авторитетных комедийных сценаристов в Лос-Анджелесе.
Все это говорит о том, что в команде сценаристов «Симпсонов» никогда не было недостатка в людях, желающих вступить в математическую дискуссию в процессе работы над сценарием. Тем не менее, несмотря на явную любовь к отвлеченным темам, авторы сериала понимали, что семинар по поводу бесконечности, Кантора и отеля Гильберта может помешать работе, если проводить его в разгар работы над сценарием. К счастью, было найдено решение проблемы, которое позволяло поощрять математические дискуссии, не нарушая текущий процесс. Таким решением стал математический клуб.
Идея о создании клуба возникла во время разговора, который состоялся в одном из баров Лос-Анджелеса между Мэттом Уорбертоном и Рони Брунн. Уорбертон изучал когнитивную нейробиологию в Гарвардском университете, а затем пришел в команду сценаристов «Симпсонов» и оставался в ней вот уже больше десяти лет, практически с начала выхода сериала на экраны. Брунн имела отношение к миру комедии еще во время учебы в Гарварде и даже была редактором журнала Harvard Lampoon, но после окончания университета сделала карьеру в мире моды и музыки.
«Путь к созданию математического клуба начался с осознания того печального факта, что после окончания университета мой ум стал терять остроту, – объясняет Брунн. – Я завидовала любителям книг, у которых были свои клубы. На самом деле я не очень-то люблю читать романы, но мне требовалась социальная среда для интеллектуальных дискуссий. Однажды вечером в баре я пожаловась Мэтту Уорбертону на явную несправедливость, задавшись вопросом, почему есть клубы любителей книг и нет математического клуба. Он кивнул мне в знак поддержки и продолжил пить свое пиво. Мы поговорили о многочисленных сценаристах «Симпсонов», имеющих математическое образование, и этого оказалось достаточно для того, чтобы я начала действовать».
В противоположность тому, что, возможно, посоветовал бы Брэд Питт, первым правилом математического клуба было как можно больше говорить о математическом клубе. На самом деле его популяризация только приветствовалась. Ключевыми членами клуба стали сценаристы «Симпсонов», но его двери были также открыты для учителей, научных работников и просто жителей Лос-Анджелеса, интересующихся математикой.
Первое заседание клуба состоялось в квартире Брунн в сентябре 2002 года. Вступительную лекцию под названием «Сюрреальные числа» прочитал Дж. Стюарт Бернс, который начал работу над докторской диссертацией по математике перед тем, как стать членом команды «Симпсонов». Коллеги Бренса тоже выступали в математическом клубе с лекциями по таким темам, как «Введение в теорию графов», «Случайный выбор задач в теории вероятностей» и т. д.
Хотя математический клуб представлял собой неформальное объединение друзей и коллег с общими интересами, представленные на его заседаниях лекции зачастую имели безупречную научную репутацию. Кен Килер, лекция которого называлась «Подразбиение квадрата», – один из самых одаренных в математическом плане сценаристов «Симпсонов». Он окончил Гарвардский университет с отличием, что было признанием его блестящего математического таланта, и получил диплом бакалавра в 1983 году. Затем Килер поступил в Стэнфордский университет, чтобы получить диплом магистра по электротехнике, после чего снова вернулся в Гарвард, где защитил докторскую диссертацию по теме «Представление карт и оптимальное кодирование для сегментации изображений» в области прикладной математики. После этого Килера приняли в AT&T Bell Laboratories в Нью-Джерси, на счету сотрудников которых было семь Нобелевских премий. Именно в этот период и пересеклись пути Кена Килера и Джеффа Уэстбрука. Оба работали в одной и той же сфере исследований и совместно написали работу под названием «Укороченное кодирование планарных графов и карт»[36]. Кроме того, Килер и Уэстбрук также были соавторами сценария научно-фантастического телесериала Star Trek: Deep Space Nine («Звездный путь: Глубокий космос 9»), в котором два комика развязали войну, оскорбив своими шутками каждого присутствовавшего в зале инопланетянина.
Численность членов математического клуба неуклонно росла. Иногда, для того чтобы вместить всех желающих, приходилось проводить заседания на улице, используя простыню в качестве экрана проектора. Больше всего членов клуба, порой около ста человек, приходили послушать лекции знаменитых математиков, таких как, например, доктор Рональд Грэм – главный научный сотрудник Калифорнийского института телекоммуникаций и информационных технологий (Cal-(IT)²). Кстати, Грэм написал более двух десятков работ в соавторстве с Палом Эрдешем, а также является главным популяризатором концепции чисел Эрдеша. Кстати, у Грэма есть еще один предмет для гордости –