комбинаторика.
Число e также появляется в процессе изучения кривой особого типа, известной под названием катенарная кривая[43], поскольку она имеет форму цепи, провисшей между двумя точками. Этот термин, придуманный Томасом Джефферсоном, происходит от латинского слова catena, что означает «цепь». Форма катенарной кривой описывается следующим уравнением, в котором присутствует два числа e:
Шелковая нить в паутине образует ряд катенарных кривых между лучами паутины, что подтолкнуло французского энтомолога Жана Анри Фабра написать в книге The Life of the Spider («Жизнь пауков») следующее: «Здесь снова появляется похожее на абракадабру число e, начертанное на нитях паутины. Давайте посмотрим туманным утром, какая сетчатая структура была создана за ночь. Липкие нити, имеющие гидрометрические свойства, провисают под тяжестью крохотных капель воды и образуют множество катенарных кривых – нитей прозрачных жемчужин, изящных бус, расположенных в изысканном порядке и повторяющих форму кривой качания. Когда солнечные лучи пронизывают пелену тумана, все это начинает светиться разноцветными огнями и напоминает сверкающие нити бриллиантов. Это и есть число e во всем своем великолепии».
Мы можем также обнаружить присутствие числа e в совершенно другой области математики. Представьте себе, что вы на калькуляторе (если он достаточно «продвинутый») генерируете случайные числа от 0 до 1, а затем непрерывно суммируете их до тех пор, пока сумма не превысит единицу. Иногда вам понадобится два случайных числа, в большинстве случаев – три, время от времени – четыре или более, для того чтобы общая сумма превысила 1. Однако в среднем количество необходимых случайных чисел составляет 2,71828, а это, разумеется, и есть число e.
Существует еще много примеров, демонстрирующих, что число e играет массу разноплановых и фундаментальных ролей в разных областях математики. Это объясняет, почему любители чисел испытывают особую эмоциональную привязанность к числу e.
Один из таких поклонников – Дональд Кнут, почетный профессор Стэнфордского университета и подобная Богу фигура в мире информационных технологий. После написания Metafont (программного обеспечения для создания шрифтов) Кнут решил выпускать обновленные версии этого ПО под номерами, связанными с числом e. Это означает, что первая версия называлась Metafont 2, затем Metafont 2.7, затем Metafont 2.71 и так далее, вплоть до текущей версии Metafont 2.718281. Номер каждой новой версии представляет собой более точное приближение истинного значения числа e. Это только один из способов, с помощью которых Кнут выражает свой необычный подход к работе. Еще один пример – предметный указатель его фундаментального труда The Art of Computer Programming (том 1)[44], в котором запись «круговое определение» отсылает читателя к записи «определение, круговое», и наоборот.
Руководители Google, которых можно назвать супергиками, также большие поклонники числа e. Когда в 2004 году они продавали акции компании, было объявлено, что Google планирует заработать на этом 2 718 281 828 долларов, что равно числу е, умноженному на 1 миллион долларов. В том же году компания разместила на рекламном щите следующее объявление:
{первое простое число из 10 цифр подряд, найденное в числе e}.com
Единственный способ определить название этого сайта – проанализировать все цифры числа e и отыскать среди них последовательность из 10 цифр, представляющую собой простое число. Каждый человек, обладающий достаточными математическими знаниями, обнаружил бы, что первое простое число из десяти цифр, которое начинается с девяносто девятой цифры числа e, – это 7427466391. Посетив сайт www.7427466391.com, можно было бы увидеть, что это своего рода виртуальный дорожный знак, указывающий путь к другому сайту, который представляет собой портал для тех, кто хочет подать заявление о приеме в Google Labs[45].
Еще один способ выразить свое восхищение числом e – запомнить его цифры. В 2004 году Андреас Литцов из Германии запомнил и назвал 316 цифр, жонглируя при этом пятью шариками. Однако 25 ноября 2007 года Бхаскар Кармакар из Индии превзошел Литцова и без всяких шариков поставил новый рекорд, перечислив 5002 цифры числа e за один час 29 минут 52 секунды. В тот же день он точно назвал 5002 цифры числа e в обратном порядке. Это невероятное достижение, но каждому из нас вполне по силам запомнить десять цифр числа e, выучив следующую мнемоническую фразу: I’m forming a mnemonic to remember a function in analysis («Я создаю эту мнемоническую фразу запоминания функции в анализе»). Количество букв в каждом слове представляет собой соответствующую цифру числа e.
И последнее: сценаристы «Симпсонов» тоже в восторге от числа e. Оно не только присутствует на корешке одной из книг в эпизоде «ДеньгоБАРТ», но и особо отмечается в эпизоде «Сражение перед Рождеством» (The Fight Before Christmas, сезон 22, эпизод 8; 2010 год). Последний фрагмент эпизода сделан в стиле образовательной программы для детей «Улица Сезам», поэтому заканчивается традиционной спонсорской рекламой. Однако вместо фразы «Спонсоры сегодняшней программы “Улица Сезам” – буква c и число 9» зрителям озвучили фразу «Спонсоры сегодняшнего показа “Симпсонов” – символ умляут[46] и число e (не путать с буквой “е”). Это число, экспоненциальная функция которого – производная от него самого».
Глава 12Еще один кусочек числа π
В эпизоде «Оковы Мардж» (Marge in Chains, сезон 4, эпизод 21; 1993 год) Мардж арестовывают после того, как она забывает заплатить за бутылку бурбона в магазине «На скорую руку». Мардж привлекают к суду, а ее интересы представляет адвокат Лайонел Хац, человек с сомнительной репутацией. Еще до начала суда Хац признает, что это, вероятно, будет трудная битва, потому что у него плохие отношения с судьей: «Он ненавидит меня с тех пор, как я вроде бы наехал на его собаку… Замените слово “вроде” на слово “неоднократно”, а слово “собака” на “сын”».
Стратегия защиты Мардж, которой решил придерживаться Хац, сводится к дискредитации владельца магазина «На скорую руку» Апу Нахасапимапетилона, который выступает в качестве свидетеля по обвинению Мардж в краже. Однако когда он вызывает Апу для дачи свидетельских показаний и спрашивает, забывал ли он когда-либо что-нибудь, Апу пытается показать, что у него идеальная память, и отвечает: «Нет, но я могу назвать число π до сорока тысяч десятичных знаков. Последняя цифра 1».
На Гомера это не производит особого впечатления, и он просто думает про себя: «Мм… Пи(рог)».
Поразительное заявление Апу о том, что он запомнил до сорока тысяч десятичных знаков числа π, имеет смысл только в случае, если математики уже рассчитали это число с такой точностью. Так какова же была ситуация с его вычислением в 1993 году, когда эпизод вышел на экраны?
В главе 2 мы видели, как математики, начиная с древних греков, использовали многогранники для определения все более точного значения числа π и получили в итоге результат с точностью до тридцать четвертого десятичного знака. В 1630 году австрийский астроном Кристоф Гринбергер рассчитал число π с помощью многогранников до тридцать восьмого десятичного знака. С научной точки зрения нет совершенно никакого смысла в определении следующих цифр, поскольку данного значения вполне достаточно для выполнения самых сложных астрономических расчетов с максимально высокой точностью. И это не преувеличение. Если бы астрономы установили точный диаметр известной нам части Вселенной, то значения числа π до тридцать восьмого десятичного знака вполне бы хватило для расчета окружности Вселенной с точностью до размера атома водорода.
Тем не менее борьба за установление все большего количества цифр числа π продолжилась. Эта задача стала напоминать восхождение на Эверест. Число π выступало на математическом ландшафте в роли далекой горной вершины, и математики стремились взобраться на нее. Однако стратегия математиков изменилась. Вместо использования медленного подхода с применением многогранников они открыли ряд формул для определения значения числа π более быстрым способом. Например, в XVIII столетии Леонард Эйлер вывел следующую элегантную формулу:
Интересно то, что число π можно вывести из такой простой последовательности чисел. Это равенство известно как бесконечный ряд, поскольку оно состоит из бесконечного количества членов, и чем больше членов включено в расчеты, тем точнее будет результат. Ниже представлены результаты вычисления числа π с использованием одного, двух, трех, четырех и пяти членов ряда Эйлера:
Метод аппроксимации позволяет все плотнее приблизиться к истинному значению числа π; при этом по мере включения дополнительного члена уравнения результат становится точнее. Вычисление числа π с помощью пяти членов уравнения дает значение 3,140, что обеспечивает точность до двух десятичных знаков. В случае использования ста членов уравнения число π можно рассчитать с точностью до шести десятичных знаков: 3,141592.
Бесконечный ряд Эйлера – достаточно эффективный метод расчета значения числа π, но следующие поколения математиков изобрели и другие бесконечные ряды, позволяющие ускорить вычисления. Джон Мэчин, который в начале XVIII столетия был профессором астрономии в Колледже Грешема в Лондоне, разработал один из самых быстро сходящихся, хотя и не такой элегантный бесконечный ряд[47]. Мэчин превзошел все предыдущие достижения, рассчитав значение числа π с точностью до ста десятичных знаков.