Шриниваса Рамануджан родился в 1887 году в южном индийском штате Тамил-Наду. В возрасте двух лет он заболел оспой, но выжил, в отличие от троих младших братьев и сестер, которые умерли в младенческом возрасте. Бедные родители посвятили всю свою жизнь единственному ребенку и записали его в местную школу. Со временем школьные учителя начали замечать, что Рамануджан демонстрирует поразительные способности к математике и порой даже ставит их в тупик. Интерес Рамануджана к математике в значительной мере связан с тем, что однажды в библиотеке он наткнулся на книгу Джорджа Шубриджа Карра A Synopsis of Elementary Results in Pure Mathematics («Сборник элементарных результатов чистой математики»), в которой были собраны доказательства тысяч теорем. Мальчик анализировал эти теоремы и методы их доказательства, но ему приходилось выполнять громоздкие вычисления с помощью мела и грифельной доски, используя загрубевшие локти в качестве ластика, поскольку он не мог позволить себе бумагу.
Единственный недостаток такой одержимости математикой состоял в том, что Рамануджан пренебрегал другими предметами. В итоге, когда пришло время сдавать экзамены, Рамануджан получил плохие оценки, из-за чего индийские колледжи отказали ему в предоставлении стипендии, необходимой для продолжения учебы. В итоге Рамануджан нашел работу клерка и пополнял свой скудный доход за счет преподавания математики студентам. Парень отчаянно нуждался в дополнительном доходе, после того как в 1909 году женился (ему исполнился тогда двадцать один год, а его невесте Джанакиаммал – всего десять).
В тот период Рамануджан в свободное от работы время начал развивать новые математические идеи. Он чувствовал, что они важные, но ему не к кому было обратиться за советом и поддержкой. В отчаянном стремлении глубже изучить математику и получить признание Рамануджан стал писать английским математикам в надежде на то, что кто-то из них согласится быть его наставником или хотя бы выскажет свое мнение по поводу открытых им теорем.
Одна партия писем дошла в конце концов до Микая Джона Мюллера Хилла из Университетского колледжа Лондона. Содержание писем произвело на Хилла определенное впечатление, но он сделал молодому индийцу замечание по поводу применения устаревших методов и элементарных ошибок. Хилл в менторском тоне написал, что работы Рамануджана должны быть на понятном языке и без ошибок, а также что он не должен использовать символы, которых не может объяснить. Хотя это была безжалостная оценка, но по крайней мере Хилл ответил, в отличие от Генри Фредерика Бейкера и Эрнеста Уильяма Хобсона, вернувших работы Рамануджана без каких-либо комментариев.
В 1913 году Рамануджан написал письмо Годфри Харди, в котором объяснял: «У меня нет университетского образования, но я прошел обычный школьный курс. После окончания школы я использовал свободное от работы время для занятий математикой. Я не изучал традиционный официальный курс, предшествующий университетскому курсу, но я прокладываю для себя новый путь».
Когда пришло второе письмо, Харди обнаружил, что Рамануджан прислал ему в общей сложности 120 теорем для анализа. Молодой индийский гений впоследствии рассказывал, что многие из этих теорем ему нашептывала во сне Намагири, воплощение индийской богини Лакшми: «Во сне со мной произошло нечто необычное. Там был экран, как будто сделанный из текущей крови. Я смотрел на него. Вдруг какая-то рука начала на нем писать. Я внимательно следил за происходящим. Эта рука написала несколько эллиптических интегралов. Я их запомнил и записал сразу же после того, как проснулся».
Когда Харди углубился в работы Рамануджана, его оценка менялась от «мошенничества» до «гениальности настолько редкой, что в это трудно поверить». В итоге он пришел к выводу, что эти теоремы «должны соответствовать истине, поскольку если бы это было не так, ни у кого не хватило бы воображения их придумать». Харди называл Рамануджана «математиком высочайшего качества, человеком исключительной оригинальности и силы». В конечном счете он начал готовить почву для того, чтобы 26-летний Рамануджан приехал в Кембридж. Харди очень гордился тем, что стал человеком, который спас столь редкостный талант, и впоследствии называл это одним из самых романтических происшествий в своей жизни.
В апреле 1914 года два великих математика наконец встретились и совместно сделали ряд открытий в нескольких областях математики. В частности, они внесли большой вклад в изучение такой математической операции, как разбиение. Как следует из названия, операция разбиения сводится к разделению совокупности объектов на отдельные группы. Ключевой вопрос: сколько способов разбиения существует для заданного количества объектов? На представленном ниже рисунке показано, что есть только один способ разбиения одного объекта, но для группы из четырех объектов таких способов уже пять.
В случае небольшого количества объектов найти способы их разбиения не составляет труда, но по мере увеличения числа объектов уровень сложности задачи повышается. Это объясняется тем, что количество возможных вариантов разбиения стремительно увеличивается без какой-либо закономерности. Десять объектов можно разделить всего 41 способами, для 100 объектов существует уже 190 569 292 способов, а в случае 1000 объектов получается поразительное количество способов разбиения – 24 061 467 864 032 622 473 692 149 727 991.
Настоящим прорывом стало создание Харди и Рамануджаном формулы для определения количества способов разбиения очень большого числа объектов. Так как эта формула требует трудоемких вычислений, Харди и Рамануджан придумали также приближенную формулу, позволяющую получить хорошую оценку количества способов разбиения любого заданного числа объектов. Кроме того, Рамануджан сделал очень интересное наблюдение, которое до сих пор будоражит умы ученых: если число объектов заканчивается цифрой 4 или 9, то количество способов разбиения всегда делится на 5. В качестве иллюстрации этого утверждения можно привести такой пример: 4, 9, 14, 19, 24 и 29 объектов дают 5, 30, 135, 490, 1575 и 4565 способов разбиения соответственно.
Рамануджан добился многочисленных, сложных и блестящих достижений, а его гениальность получила признание в 1918 году, когда он был избран самым молодым членом Королевского общества. Переезд в Кембридж позволил разуму Рамануджана пережить невероятный расцвет, а вот суровая английская зима и изменение рациона питания негативно сказались на его здоровье. В конце 1918 года Рамануджан покинул Кембридж и лег в частную лечебницу Colinette House в пригороде Лондона Патни. Именно в этих условиях и состоялась та самая беседа, которая связывает Рамануджана с «Футурамой».
Вот что говорил об этом Харди: «Помню, как я однажды отправился проведать его в Патни. Я приехал на такси с номером 1729 и заметил, что это число кажется мне довольно скучным и что я надеюсь, в нем нет никакого плохого предзнаменования. “Нет, – ответил он, – это очень интересное число; это наименьшее число, которое можно представить в виде суммы кубов двумя разными способами”».
Эти двое явно не относились к любителям светской болтовни и сплетен. Как всегда, их разговор был посвящен числам, а его суть можно выразить так:
1729 = 1³ + 12³ = 9³ + 10³
Другими словами, если бы у нас было 1729 маленьких кубиков, мы могли бы сложить их в виде двух кубов со сторонами 1 × 1 × 1 и 12 × 12 × 12 или 9 × 9 × 9 и 10 × 10 × 10. Только немногие числа можно разделить на два куба, и еще меньше чисел, которые можно разделить на два куба двумя разными способами…, а число 1729 – минимальное число с таким свойством. В честь комментария Рамануджана по поводу номера такси, в котором ехал Харди, в математических кругах это число принято называть «числом такси».
Импровизированное замечание Рамануджана пробудило у математиков такой интерес, что они поставили вопрос несколько иначе: чему равно минимальное число, которое можно представить в виде суммы двух кубов тремя разными способами? Ответ – 87 539 319, поскольку:
Это число, которое тоже называют числом такси, присутствует в полнометражном мультфильме «Большой куш Бендера» (Bender’s Big Score, 2007 год). Когда Фрай вызывает такси, на его крыше красуется номер 87 539 319. Безусловно, это вполне естественно, когда в качестве номера такси (в обычном смысле) выступает число такси (в математическом смысле).
Таким образом, неоднократно упоминая число 1729 в эпизодах «Футурамы», а также включив в один из эпизодов число 87 539 319, сценаристы мультсериала отдают дань уважения Рамануджану, история которого мало кому известна за пределами мира математики. Эта вдохновляющая история о гениальном человеке, который стал знаменитым благодаря преподавателю Кембриджского университета, увы, имеет трагический конец. В 1919 году Рамануджан, страдавший от различных болезней, в том числе от авитаминоза и туберкулеза, вернулся в Индию в надежде, что более теплый климат и привычная вегетарианская диета помогут ему восстановить здоровье. Однако, прожив в Индии около года, 26 апреля 1920 года он умер в возрасте тридцати двух лет.
Тем не менее идеи Рамануджана до сих пор остаются и навсегда останутся в самом сердце современной математики. Отчасти это объясняется универсальностью языка математики, а отчасти абсолютным характером математических доказательств. В отличие от идей в области искусства и гуманитарных наук, математические теоремы никогда не выходят из моды. Сам Харди сказал об этом следующее: «Архимеда будут помнить даже тогда, когда Эсхила забудут, потому что языки умирают, а математические идеи бессмертны. Возможно, “бессмертие” – глупое слово, но, по всей вероятности, математик имеет на него наибольшие шансы, что бы оно ни означало».
Присутствующие в «Футураме» ссылки на числа такси можно связать с Кеном Килером, которого считают одним из самых математически одаренных сценаристов как «Симпсонов», так и «Футурамы». По словами самого Килера, его увлеченность математикой сформировалась под влиянием отца, Мартина Килера – врача, любившего играть с числами. Каждый раз, когда они всей семьей ходили в ресторан и получали счет в конце ужина, отец искал в этом чеке простые числа и предлагал детям присоединиться к поискам. Кен Килер помнит, как когда-то он спросил отца, существует ли быстрый способ сложения квадратов целых чисел. Например, чему равна сумма квадратов первых пяти чисел, или первых десяти