й механики и был введен новый класс математических моделей – динамические системы с джокерами. Возможно, последние окажутся полезны в теории риска, описывающей и предсказывающей природные и техногенные катастрофы, в математической психологии и некоторых других областях. Важную роль в выработке обсуждаемой концепции сыграл наш коллега – А.Б. Потапов.
В третьей главе рассматривается круг задач, связанный с компьютерным моделированием и прогнозом развития высшей школы России. Рассуждения о том, что без образования и науки у нашей страны нет будущего, стали общим местом. Однако путь от такого взгляда к конкретным стратегическим и управленческим решениям оказывается долгим и непростым. По мнению известного психолога и заместителя министра образования России В.Д. Шадрикова, которое мы всецело разделяем, он должен проходить через математический анализ конкретной ситуации, построение и исследование компьютерных моделей, прогноз развития системы в случае различных вариантов управляющих воздействий.
Из этой большой работы, начатой в 1994 г., в книгу вошли несколько новых моделей. Они, с одной стороны, могут оказаться полезными при оценке будущих проектов в сфере образования, с другой – по-новому взглянуть на ряд процессов, развивающихся в высшей школе.
Обратим внимание читателя на два обстоятельства, связанные с моделированием такого сорта. Условно их можно назвать выделением части из целого и "презумпцией оптимизма". Сильной стороной точных и естественных наук, как стало ясно со времен Френсиса Бэкона, является возможность выделить из огромного множества явлений и процессов небольшой круг, точно поставить вопрос и, пользуясь рядом процедур, получить конкретный ответ. При моделировании социальных систем способ выделения части из целого сейчас является гораздо менее очевидным, чем в физике, химии и биологии. Однако описанный вариант выделения ведущих переменных (параметров порядка) и построения системы моделей может оказаться интересным и полезным не только читателям и исследователям, которые его примут, но и тем, кто будет искать убедительные альтернативы.
Выводы и оценки этой главы могут показаться читателю слишком оптимистичными. И это вполне объяснимо. Действительно, в течение последнего десятилетия в России произошла катастрофа мирового масштаба.
Анализ происшедшего с позиций мировой динамики, глобального развития не является целью этой работы. Такое исследование предпринято, к примеру, в книге Н.Н. Моисеева "Агония России", или в ряде публикаций журнала "Россия, XXI век". Задача, рассматриваемая в этой главе, гораздо скромнее. При анализе крупного технического или научно-технического проекта обычно рассматривается наилучший, наиболее благоприятный вариант. Если он и в этом случае оказывается неэффективным, то от него следует отказаться. Если приведенное исследование показывает, что он удовлетворителен, то может быть оправдан учет усложняющих факторов или переход к более детальному описанию. Поэтому на первом этапе большинства проектов, программ, реформ специалистам по моделированию разумно быть оптимистами. К сожалению, неприемлемость большинства реформ, предлагавшихся в последние годы российской высшей школе международными банками и другими организациями, становилась ясна уже на этой "оптимистичной" стадии анализа.
Исследования, результаты которых обсуждаются в этой главе, проводились совместно с С.А. Кащенко, А.Б. Потаповым, Н.А. Митиным, Т.С. Ахромеевой, М.С. Шакаевой, Т.А.Палеевой.
Одной из основных причин, сдерживающих содержательное использование компьютерного моделирования, является несоответствие или недостоверность данных, характеризующих изучаемый объект. В случае, когда такие данные имеются, их анализ с позиций нелинейной динамики может привести к парадоксальным выводам, меняющим привычные стереотипы. Одна из таких задач, связанная с законом роста народонаселения, рассмотрена в четвертой главе книги.
Из всех глобальных проблем рост народонаселения мира представляется ведущей. Рост численности населения выражает суммарный результат всей экономической, социальной и культурной деятельности, составляющей историю человечества. Данные демографии в количественной форме описывают этот процесс в прошлом и настоящем, и поэтому представляется существенным как понять и описать закономерности этого развития, так и дать прогноз на предвидимое будущее.
Для этого оказалось возможным на основе системного подхода и синергетики предложить математическую модель для феноменологического описания мирового демографического процесса. В предположении автомодельности это позволяет описать развитие человечества на протяжении практически всей длительности нашей истории, полагая на основном этапе скорость роста пропорциональной квадрату числа людей, дать оценки времени начала развития 4,4 млн. лет тому назад и числа людей, когда-либо живших, 100 млрд. В рамках модели описываются также крупные периоды, выделенные историей и антропологией циклы социально-экономических и технологических этапов роста.
Главной особенностью современного периода стала демографическая революция – переход от роста к стабилизации населения Земли в обозримом будущем на уровне 14 млрд. Такое глубокое изменение парадигмы роста сопровождается существенным изменением возрастного профиля населения, превращением, которого не было за всю историю человечества и которое определяет многие проблемы переживаемого времени.
Развитие количественной нелинейной теории роста населения Земли представляет интерес для антропологии и демографии, истории и социологии, для популяционной генетики и эпидемиологии, для анализа проблемы происхождения и эволюции человека, а также дает основание сделать некоторые качественные выводы о стабильности этого развития и значении глобального процесса для судеб России.
В развитии демографической части данной работы большое значение имели семинары и курсы лекций, которые читались в разное время в Кембриджском университете, Московском физико-техническом институте, Европейском центре ядерных исследований, Московском государственном университете и Массачусетском технологическом институте. В настоящее время в обсуждаемых в последней главе исследованиях принимают участие наш известный демограф профессор А.Г.Вишневский. Автор благодарен Д.Б. Омецинскому за помощь в работе и оформлении рукописи и Н.Г.Астринской за многие годы совместной работы.
В заключение авторы выражают свою благодарность Г.И.Баренблату, А.Г.Волкову, Н.Н.Воронцову, О.Г.Газенко, Д. М.Гвишиани, И.М.Гельфанду, А.В.Гапонову-Грехову, В.Л.Гинзбургу, В.Я.Гольдину, А.А.Гончару, Б.Б.Кадомцеву, Н.В.Карлову, Н.Кейфитцу, Г.И.Марчуку, Ф.Моррисону, И.В.Перевозщикову, Л.П.Питаевскому, И.Р.Пригожину, В.C.Степину и Г.Фридлендеру за внимание и интерес к этой работе. На разных этапах эти исследования поддерживались ЮНЕСКО, Римским Клубом, Лондонским Королевским Обществом, РАЕН и фондами Сороса и INTAS.
Огромную роль в издании этой книги сыграла В.Г.Комарова. Мы выражаем ей свою искреннюю признательность. Большую поддержку нам оказали А.Б.Потапов и С.А.Посашков. Прогнозы будущего порой так же парадоксальны, как улыбка Чеширского кота из Зазеркалья, которая и представлена на обложке. Эту очаровательную картинку, а также "плоскатиков" из второй главы, нам предложила К.В.Иванова.
Обсуждаемые работы на разных этапах поддерживались проектами Российского фонда фундаментальных исследований, Российского гуманитарного научного фонда и фонда ИНТАС.
Список литературы дает представление о контексте, в котором проводился этот анализ, и о предшествующих исследованиях. Фронт работ, ведущихся более 30 лет в этой области, настолько широк, что список не может претендовать на всю полноту. В списке, помещенном после введения, обращено внимание на работы научного направления, к которому относят себя авторы этой книги. Ряд книг и статей, связанных с системным анализом социальных и демографических проблем, приведен в конце. Для удобства читателей каждая глава имеет свою нумерацию формул и рисунков.
Мы будем рады обсудить с заинтересованными читателями проблемы, затронутые в этой книге. Наш электронный адрес: GMALIN.@ SPP.KELDYSH.RU.; и SERGEY.@ KAPITZA.RAS.RU. Почтовые адреса: 125047, Москва, Миусская площадь, д.4. Институт прикладной математики им.М.В.Келдыша РАН, С.П.Курдюмову и Г.Г.Малинецкому; 117334, Москва, ул.Косыгина, д.2, Институт физических проблем РАН, С.П.Капице.
1. Моисеев Н.Н. Современный рационализм. М.: МГВП КОКС, 1995.
2. Винер Н. Кибернетика или управление и связь в животном и машине. М., 1983.
3. Николис Г., Пригожин И. Познание сложного. Введение. М.: Мир, 1990.
4. Князева Е.Н., Курдюмов С.П. Законы эволюции и самоорганизации сложных систем. М.: Наука, 1994.
5. Пригожин И., Стенгерс Н. Порядок из хаоса: Новый диалог человека с природой. М.: Наука, 1986. 6. Хакен Г. Синергетика. М.: Мир, 1980.
7. Самарский А.А., Михайлов А.П. Вычислительный эксперимент. М.: Педагогика, 1987.
8. Малинецкий Г.Г., Кащенко С.А., Потапов А.Б., Ахромеева Т.С., Митин Н.А., Шакаева М.С. Математическое моделирование системы образования. Препринт ИПМ им.М.В.Келдыша РАН, 1995, N100.
9. Князева Е.Н., Курдюмов С.П. Диалог с И.Р.Пригожиным// Вопросы философии. 1992. N12, с.3-10. 10. Малинецкий Г.Г., Кащенко С.А., Потапов А.Б., Ахромеева Т.С., Митин Н.А., Палеева Т.А. Исследование развития высшей школы. Модели среднего уровня. Препринт ИПМ им.М.В.Келдыша РАН, 1996, N37.
11. Малинецкий Г.Г., Потапов А.Б. Сослагательное наклонение// Знание-сила. 1995. N9, с.58-66.
12. Малинецкий Г.Г., Потапов А.Б. Катастрофы и бедствия глазами нелинейной динамики// Знание-сила, 1995, N3, с.26-34.
13. Петров А.А., Поспелов И.Г., Шананин А.А. Опыт математического моделирования экономики. Л.: Энергоатомиздат, 1996.
14. Новое в синергетике. Загадки мира неравновесных структур. М.: Наука, 1996.
15. Компьютеры, модели, вычислительный эксперимент. М.: Наука, 1988.