Человек должен верить,
что непостижимое постижимо:
иначе он не стал бы исследовать.
1. Крыло и мотор
Узнавание насекомых шло медленно. Во всяком случае гораздо медленнее, чем узнавание других животных. И не только потому, что насекомые по величине меньше, чем другие, а самих их гораздо больше, чем всех живых существ на Земле, взятых вместе. И не только потому, что их значение было не сразу понято людьми, и не только потому, что люди, страдая от насекомых, уделяли изучению их меньше внимания, чем изучению других животных. Даже изучая насекомых, люди долгое время не могли определить какие-то принципиально характерные их признаки, и поэтому насекомыми долгое время считали пауков, и ракообразных, и червей, и многоножек, и моллюсков. Все это, конечно, вносило путаницу и мешало узнаванию наших шестиногих соседей по планете. Но, думается, была еще одна причина, по которой узнавание насекомых шло так медленно, — это их удивительное многообразие и несхожесть.
Как бы ни были разнообразны птицы, никто не скажет, что ласточка и орел относятся к разным классам, так же, как, допустим, мышь или тигр. И наоборот: никто не объединит в один класс воробья и собаку. А пауков с насекомыми очень часто путают даже сейчас и даже грамотные люди. И червей и многоножек тоже. Или наоборот: увидев «волосатую» медведку, люди сомневаются — насекомое ли это?
Конечно, в какой-то степени в такой путанице «виноваты» сами насекомые. Да, и среди зверей и среди птиц есть свои легковесы и тяжеловесы — есть, например, колибри, весящая граммы, и кондор, весящий десятки килограммов, есть землеройка, тоже весящая 5–6 граммов, и кит, вес которого составляет полтораста тонн.
Но среди зверей и птиц все-таки не бывает такой огромной разницы в величине, как среди насекомых. Например, самое маленькое млекопитающее на земле — землеройка-бурозубка (4 сантиметра в длину) — меньше самого большого животного этого класса — кита-полосатика (30 метров в длину) — в 750 раз. А один из видов моли (0,3 миллиметра в размахе крыльев) меньше бабочки Морфо или Агриппины в 1000 раз. (У этих бабочек размах крыльев достигает 30 сантиметров.)
Наездник Мимарида, величиною в 0,2 миллиметра, в 1500 раз меньше тридцатисантиметрового гигантского индонезийского палочника.
Можно вспомнить и жучка трихопетрикса, которого невозможно разглядеть без увеличительного стекла, и 10-сантиметрового жука-голиафа, который едва умещается на ладони, можно вспомнить еще множество великанов и карликов из мира насекомых, чтоб понять, как велика разница в их размерах.
Однако дело не только в размерах, но и во внешности. Есть насекомые круглые, как шары, и длинные, как палки, есть «голые» и «волосатые», гладкие и покрытые многочисленными бугорками, выростами, крючками, шипами. К тому же они часто такой причудливой и необычной окраски, что невольно задаешь себе вопрос: да насекомое ли это? И вообще, живые ли это существа?
Ну, если такой вопрос (чаще всего риторический, потому что ответ будет определенным: да, это насекомое) позволяем иногда задавать себе мы, почему такие вопросы не могли задать себе ученые прошлого? И они, конечно, задавали себе подобные вопросы. Но в отличие от наших их вопросы были не риторическими, и ответ на них далеко не всегда звучал так, как сейчас.
Сейчас мы знаем, что насекомые очень разнообразны, что это разнообразие, величина и форма их за многие тысячелетия определились местом обитания, образом жизни, многими другими внешними и внутренними факторами. Знаем мы теперь и то, что скелет насекомых позволяет им иметь такие необычные и часто причудливые формы.
Ученые прошлого, наблюдая за насекомыми и анатомируя их, рассматривая их под микроскопом и открывая у насекомых нервную, дыхательную и кровеносную системы, не могли обнаружить у них даже признака скелета. Еще бы! Ведь скелет — известно было всегда — это костяк, находящийся внутри живого организма. У насекомых такого костяка нет. Нет именно такого. Но все-таки скелет есть.
В отличие от скелета рыб, например, или млекопитающих скелет насекомого находится не внутри, а снаружи. Это плотный хитиновый покров, состоящий из отдельных, подвижно соединенных между собой частей. Скелет человека состоит из 220 костей. Скелет насекомого может состоять из… 240–250 частей! Правда, они часто срастаются между собой, и тогда этих подвижных, отдельных частей скелета бывает 60–70. Есть, конечно, у такого скелета неудобства: он не эластичен и, как правило, не позволяет насекомым расти, увеличиваться в течение жизни в размерах. Зато именно такое строение скелета помогло насекомым приобрести столь разнообразные и необычные формы.
Внутренний скелет прочно и непосредственно связан с внутренними органами. Любое изменение, любая перестройка такого скелета повлечет за собой коренную перестройку всего организма. Это процесс очень сложный и длительный. У насекомых же внутренние органы не связаны так прочно и так непосредственно со скелетом, они заключены как бы в футляр. И если футляр как-то меняется, на внутренних органах это не отражается.
Однако не только в этом значение скелета насекомых. Многим твердый хитиновый покров служит защитой от нападения непосредственных врагов, а всем вместе — защитой от неблагоприятного воздействия окружающей среды.
Известно: чем меньше животное, тем больше поверхность его тела. Известно и другое: организм способен испарять влагу. Не будь у насекомых защитного панциря (внешнего скелета), они очень быстро теряли бы всю влагу и погибали. Если же насекомое или его личинка вынуждены на короткое время сбрасывать защитный покров (на период линьки), то на это время они стараются забраться в какое-нибудь укрытое, влажное место, чтоб уменьшить потери жидкости в организме.
Внешний скелет насекомых помогает им издавать различные, необходимые для жизни звуки — отпугивающие, призывные и так далее. Но тут может возникнуть вот какой вопрос: известно, что у всех животных, имеющих костный скелет, он, помимо всего прочего, служит опорой для мышц, благодаря которым живое существо может двигаться. А как же насекомые? Ведь они подвижны, и даже очень. К чему же прикрепляются их мышцы? Оказывается, тоже к скелету. И то, что этот скелет наружный, вовсе не мешает мышцам прекрасно служить шестиногим, делать насекомых буквально геркулесами животного мира.
Сила насекомых была известна людям давно, — кто не видел и не удивлялся, наблюдая, как муравьишка тянет ношу в несколько раз больше, чем он сам? Однако лишь недавно люди по-настоящему попытались выяснить силу насекомых.
Особенно тщательно занимался этим английский энтомолог Р. Хатчинс. По его подсчетам, стрекоза способна поднять вес в 10 раз больше собственного, богомол — в 16 раз, пчела — в 20, а майский жук — в 24 раза больше, чем весит сам. Муравей способен тащить ношу, которая весит в 52 раза больше его собственного веса, а жук-носорог — в 100. Уховертка, как показал эксперимент Хатчинса, тащила груз, превышающий ее собственный вес в 590 раз.
Советские энтомологи исследовали силу жуков. Они выяснили, что бронзовка, например, может тянуть груз, в 495 раз превышающий собственный вес, а жуки-навозники — в зависимости от вида — тянули груз в 1460 и даже в 4210 раз больше, чем весили сами.
Чтобы представить себе наглядно мощь насекомых, давай вспомним: человек может поднять тяжесть, равную 50–80 процентам его собственного веса, лошадь — тоже примерно столько же (если не считать чемпионов-тяжеловозов), слон — тяжесть, равную 30–50 процентам собственного веса. Таким образом, если бы человек, весящий примерно 70 килограммов, обладал силой, скажем, жука-носорога, то свободно поднял бы несколько железнодорожных вагонов весом в семь тонн, а пятитонный слон таскал бы тяжести в 500 тонн! И это, если сравнивать слона или человека с жуком-носорогом. А если сравнить с уховерткой или бронзовкой?
Когда-то существовали блошиные цирки. Помимо прочих фокусов, которые проделывали дрессированные блохи, они катали крошечные кареты и даже маленькие серебряные пушечки. И блохи прекрасно справлялись со своей работой. Блохи — силами! Они могут прыгать на 20 сантиметров в высоту и на 30–35 в длину. Обладай такой силой человек, он перепрыгнул бы Большой театр в Москве или в 2000 прыжков добрался бы от Москвы до Ленинграда.
А жужелица? Километр-полтора пробегает она за ночь в поисках пищи, а для жука длиной 2–3 сантиметра это не шуточное расстояние!
Конечно, не все насекомые быстро передвигаются, есть и медлительные. Есть и совершенно неподвижные. Но, как правило, насекомые живут на больших скоростях: в поисках пищи им часто нужно передвигаться на значительное расстояние, им нужно разыскивать друг друга, надо спасаться от многочисленных врагов. И если сравнить территорию, на которой активно живет насекомое, с территорией других животных, то насекомое, оказывается, «владеет» пространством во много раз большим, чем кто-либо.
А ведь научились передвигаться так хорошо, быстро и таким совершенным способом насекомые далеко не сразу.
Люди, не имеющие прямого отношения к энтомологии, наверное, редко задумываются: каких же насекомых больше на земле — прыгающих, бегающих или летающих? Многие бабочки летают, знакомый нам кузнечик прыгает, жук… Стоп! Жук и бегает и летает. А кузнечик? Он тоже ведь способен пролететь какое-то расстояние. Правда, небольшое, но крылья-то у него есть! Уховертка как будто взлететь не может, крылья у нее есть, но какие-то маленькие, недоразвитые. Ну, а что бы сказали непосвященные люди, если бы узнали, что уховертки прекрасно летают? И муравьи, у которых нет никаких намеков на крылья, в определенное время становятся летунами. Правда, только самки; самцы и рабочие не летают никогда. В общем, летают почти все насекомые. Если не летает самка, то летает самец, или наоборот. Совсем нелетающих насекомых сейчас на земле не более полутора процентов. Все остальные так или иначе связаны с воздухом, с полетами.
Как же насекомые поднялись в воздух?
Неизвестно.
Что заставило их это сделать?
Тоже неизвестно.
Вот так. Кажется, о прошлом насекомых люди знают уже многое: и какими были древние насекомые, и что вылезли они из воды на сушу примерно 300 миллионов лет назад. А о полете ничего толком нам неизвестно. И не то чтоб люди не задумывались над этим вопросом. Наоборот, думали, и очень много. И даже выдвинули несколько гипотез, объясняющих, почему насекомые стали летать.
Некоторые исследователи считают, что насекомые поначалу не летали, а приспособились планировать, прыгая со скалистых обрывов в море. Другие утверждают, что летать насекомых «научил» ветер — он переносил насекомых с места на место, и со временем у них появились особые приспособления, помогавшие держаться дольше на ветру. Потом эти приспособления превратились в крылья.
Третьи ученые убеждены, что летать насекомые стали потому, что, покинув родную водную стихию, вынуждены были искать новые места для жизни. И тут крылья оказались необходимыми.
Все это — гипотезы, более или менее логичные, но не подкрепленные достаточными фактами и имеющие к тому же и слабые, уязвимые места. Безусловно одно: летать насекомые начали не ради удовольствия, а потому, что это стало для них необходимостью.
Однако — как? Ведь от одной, даже сильной необходимости не полетишь. Это когда-то Ж.-Б. Ламарк считал, что существуют некие флюиды, появляющиеся при очень сильном желании и образующие рога, крылья или что-нибудь другое, необходимое в данный момент животному. А мы знаем, что флюид не существует, потому и крылья по желанию, даже очень большому, появиться не могут. Но крылья все-таки появились. А вот как?
На этот счет тоже имеется не менее десятка различных теорий, но все они так и остаются теориями с большим или меньшим процентом достоверности. И вопрос о том, как у насекомых появились крылья, все-таки остается без ответа. Зато известно, что первые насекомые были плохими летунами и сами крылья, и система, приводящая их в действие, были очень несовершенными. Чтоб наглядно представить себе, как летали древние насекомые, понаблюдай за златоглазкой: это насекомое — представитель отряда сетчатокрылых, когда-то очень распространенных на земле. Златоглазка похожа на своих далеких предков, похож и полет ее — медленный, неровный, какой-то судорожный.
Да, так летали древние насекомые. Неважно летали.
Но ведь и первый автомобиль, сделанный людьми, и первый самолет, построенный ими, мало напоминал сегодняшний лимузин или лайнер. Человек совершенствовал свои творения, природа — свои создания. Человеку было нелегко, но он в корне изменил свои изобретения за несколько десятков лет. Природе для совершенствования летательных аппаратов насекомых потребовалось двести миллионов лет. У человека было больше возможностей, у природы — больше времени.
И время победило: создав удивительные машины, человек даже не приблизился к тому совершенству, которое создала природа. Но любопытно вот что: совершенствуя летательные аппараты, и природа и человек «пришли» к одному и тому же — к двукрылым системам. Человек начинал с трех- и четырехкрылых летательных аппаратов. Теперь не увидишь в воздухе старинных «этажерок»-бипланов, например, теперь все самолеты — монопланы, двукрылые.
А насекомые? Кое-кто еще летает по старинке — та же златоглазка или скорпионова муха, но летают они очень плохо. У них четыре крыла, и все работают одновременно. Природа, в основном, уже «отказалась» от такого способа полета и перешла на «двукрылую систему».
Правда, ты можешь возразить: у стрекозы тоже четыре крыла. А некоторые представители стрекоз — одни из лучших летунов. Но у этих стрекоз особое устройство мускулатуры, и главное, полет у них тоже двукрылый. Физиологически у стрекозы действительно четыре крыла, но каждая пара крыльев действует так слаженно, что фактически получается всего два крыла.
У других насекомых, имеющих по четыре крыла (например, бабочки, пчелы, осы), крылья просто сцеплены между собой различными крючками, шипами и при полете действуют слитно, каждая пара как одно крыло.
У других насекомых для полета служат только два крыла. Вторая пара либо отмерла, либо видоизменилась. У мух почти отмерли задние крылья — летают они с помощью передних. У жуков наоборот: для полета служат задние крылья. Передние у них превратились в жесткие надкрылья и в полете участия не принимают.
А теперь давай посмотрим, что из себя представляет само крыло.
Тебе может повезти, и ты станешь свидетелем маленького чуда: где-нибудь в лесу или на берегу озера увидишь рождение бабочки или стрекозы. Может быть, не увидишь сам процесс рождения — он довольно короткий, но заметишь новорожденную бабочку: появившись из куколки, она еще несколько часов будет сидеть неподвижно. Новорожденную бабочку узнать легко: она совсем не такая, как мы обычно представляем себе бабочек, — у этой крылышки сморщены и висят, как мокрые тряпочки. Но постепенно они начинают распрямляться: в тоненькие, полые внутри жилочки, которыми пронизано все крыло (а многие так тонки, что мы их и не видим), под сильным — в несколько десятков атмосфер — давлением поступает воздух и кровь — гемолимфа. И крыло распрямляется. Поначалу оно похоже на мешочек, затем воздух отходит, и обе стенки мешочка плотно слипаются. У многих насекомых отходит и гемолимфа. Крыло становится плоским, сухим и очень прочным.
Крылья бабочек в большинстве своем покрыты чешуйками, жилки (да и то не все) видны лишь с нижней стороны. Крылья стрекоз и мух прозрачны, и хорошо виден прочный каркас крыла. Он прочен, потому что, во-первых, жилки очень густо переплетены, во-вторых, многие жилки — полые трубочки, а это, как известно, придает особую надежность сооружению. Мембрана — тоненькая пленочка (точнее, две склеившихся или просто плотно прилегающих друг к другу пленочки) — сама по себе тоже достаточно прочна, но, натянутая на каркас, становится, естественно, во много раз прочнее.
О надежности крыльев свидетельствует хотя бы то, как насекомые их эксплуатируют. Мы уже говорили о том, сколько взмахов делает насекомое в секунду. А сколько это будет в течение всего дня? А в течение многих дней? Считают, что пчела за лето, перебираясь с цветка на цветок, летая из улья за взятком и обратно, покрывает расстояние в три раза больше длины экватора. Какова же нагрузка на крылья?
Однако дело не только в прекрасном, идеально усовершенствованном в течение многих тысячелетий крыле. У насекомых очень мощная мускулатура, позволяющая им летать с необыкновенной скоростью. Возможно, поначалу такое утверждение покажется довольно странным: о какой скорости может идти речь, если шмель, например, делает километров 18 в час, пчела — 10–12, а капустница вообще пролетает не больше 5–6 километров в час. Разве это скорость? Действительно, если сравнить абсолютную скорость шмеля и самолета «ТУ-104», легко выяснить, что скорость самолета в 50–60 раз больше шмелиной. Но если взять относительную скорость, то современный лайнер в минуту покроет расстояние примерно в 1,5–2 тысячи раз больше по сравнению с собственной длиной, шмель же пролетит в минуту расстояние в 10 тысяч раз больше собственного тела, муха — в 15 тысяч раз, а бабочка-бражник — в 23–25 тысяч раз.
Реактивный лайнер — сегодняшняя вершина самолетостроения — проигрывает насекомым не только в относительной скорости. Чтоб взлететь, ему нужен разбег; приземлиться и сразу стать неподвижным он тоже не может. А насекомые могут. Для этого у них есть множество приспособлений. У одних такими взлетными приспособлениями служат недоразвитые или редуцированные крылья — жужжальца. Насекомые быстро-быстро вибрируют этими маленькими палочками со вздутиями на концах, а затем «включают» крылья, которые начинают работать сразу на больших скоростях. Это дает возможность насекомому сразу взлететь. Кузнечик прыгает, «катапультируется», а один из видов жука «заводит мотор», быстро вращая средними ножками. Это создает первоначальную подъемную силу, помогающую жуку взлететь без разбега.
Но для того чтобы хорошо летать, мало уметь подниматься без разбега, мало иметь хорошие крылья — нужно иметь еще и прекрасный «двигатель». У насекомых такой есть. Вот два примера, свидетельствующие о том, какие отличные «моторы» у насекомых.
Для того чтобы продержаться час в воздухе, вертолету надо израсходовать горючее, вес которого равняется 4–5 процентам веса самого вертолета, а самолету — в 2,5 раза больше. (Примерно 12 процентов.) Саранча же за это время израсходует лишь 0,8 процента своего «горючего» — жирового запаса, пчела — 0,9 процента.
Еще труднее загадал загадку майский жук. Для того чтобы он мог летать, мощность его «мотора», то есть коэффициент подъемной силы, должен быть по крайней мере в три раза больше, чем он есть на самом деле. Почему же жук летает с таким маломощным «мотором»?
Когда-то, в середине прошлого века, во Франции был организован «Союз по уничтожению майского жука». Сейчас в США при Нью-Йоркском университете создана лаборатория по изучению полета майского жука. Говорят, там висит такой шутливый плакат: «Майский жук летает, нарушая все законы аэродинамики. Но он не знает об этом и продолжает летать». В этой шутке много правды. Ведь, казалось бы, все изучено, создана установка, которая позволяет с аптекарской точностью — до 0,000025 сантиметра — измерить смещение крыла. И все-таки пока тайна жука не раскрыта.
Но, очевидно, тут дело не в качестве и силе крыльев и «мотора» каждого в отдельности. Ведь это у самолета есть отдельно крылья и отдельно мотор, со своими особенностями, достоинствами и недостатками. У насекомых же крылья — это одновременно и мотор и собственно крылья, они выполняют роль подъемной силы и силы движущей.
Обычно мы говорим о количестве взмахов, говорим, что насекомые машут крыльями, и т. д. Но в прямом и общепринятом смысле так говорить о крыльях насекомых нельзя. Они и загребают воздух и толкают его, бьют по воздуху, причем то лицевой, то тыльной стороной, они служат и пропеллерами и веслами. Крыло насекомого постоянно меняет положение, а концы его при этом описывают восьмерки. Бабочки же, не способные делать своими крыльями такие «выкрутасы», умеют другое — создают воздушную волну и на ее гребне поднимаются вверх, передний край крыла, кроме того, все время делает волнистый изгиб, что тоже помогает в полете. Полет насекомых, и то очень относительно, изучен лишь теперь, когда на высокий уровень поднялись многие науки, объединившиеся в поисках. Однако до сих пор нет точной теории полета. Но гениальные прозорливцы чувствовали, что изучение полета насекомых станет необходимостью. Не случайно Леонардо да Винчи, мечтавший о создании летательного аппарата, считал, что наряду с крыльями птиц можно использовать и крылья насекомых. В своем дневнике он записал однажды: «Пойти во рвы Миланской крепости, чтобы увидеть летание стрекоз».
Не случайно К. Э. Циолковский считал, что развитие авиации невозможно «без тщательного изучения полета насекомых».
2. Ориентация и навигация
Говорят, известный немецкий ученый, занимавшийся вопросами зрения, Гельмгольц, был недоволен устройством человеческого глаза. «Если бы такой прибор мне принесли из мастерской, — будто бы заявил он однажды, — я бы немедленно вернул его на доработку». На что другой немецкий ученый, Геринг, тоже специалист в области зрения, заметил: «Если бы Гельмгольц знал, какие изумительные приспособления имеет человеческий глаз для регулировки и классификации проходящих через него изображений, то, безусловно, не вернул бы этот прибор в мастерскую, а оставил бы его у себя».
Конечно, Геринг был прав: глаз человека — это удивительный и очень совершенный аппарат.
Человеческий глаз видит многое, и для человека глаза — важнейший источник информации. Мы уже говорили, что по крайней мере 90 процентов сведений об окружающем нас мире мы получаем благодаря зрению. И тем не менее видим мы не так уж и много. Ощущение света для человека — это волна, световая волна длиной от четырех до восьми десятых микрона. За пределами этой длины мы слепы. А пчелы, например, или мухи видят ультрафиолетовые лучи, длина волны которых — три десятых микрона. Ультрафиолетовые лучи, как ты теперь знаешь, помогают насекомым находить дорогу к еде, но, может быть, они помогают им ориентироваться в пространстве или на местности?
В этой книге мы уже несколько раз обращались к одиночным осам. Они — знаменитые насекомые. И не только потому, что за ними наблюдал Фабр, описал их в своей замечательной книге и открыл не только широкой публике, но и ученому миру необыкновенные «способности» ос. Конечно, Фабр прославил ос. Но, очевидно, и занялся он ими потому, что осы стоили того.
И после Фабра ученые не раз обращались к осам, чтобы выведать у них разные тайны, проверить на них свои предположения и гипотезы.
Давай обратимся к осам и мы с тобой. Вспомним, что мы уже знаем: некоторые одиночные осы роют несколько гнезд, в которые в разное время откладывают яички. Личинки появляются на свет не одновременно. Очевидно, это «предусмотрено». Если бы они появились одновременно, оса не смогла бы всех сразу обеспечить пищей.
У ос бывает и шесть-семь гнезд с личинками. Осы стараются не только едой обеспечить детишек — они заботятся и об их безопасности. Поэтому каждую норку они тщательно закупоривают камешками, комочками земли, а потом засыпают песком да еще и утрамбовывают. В общем, маскируют так, что, даже внимательно осматривая место, где находится норка-гнездо, не увидишь его. А осы безошибочно находят.
Люди решили проверить, как это им удается. Была придумана и использована масса каверзных уловок, чтобы сбить ос с верного пути. Иногда это удавалось — где уж осам тягаться с людьми, да к тому же учеными, поставившими своей целью во что бы то ни стало обмануть насекомых! Но удавалось все-таки далеко не всегда. Люди меняли указатели — камешки и палочки, еловые шишки и сухие травинки, по которым, как считают, оса ориентируется и находит свое гнездо. Даже переносили само гнездо. И все-таки осы доказали: ориентироваться они умеют. 20 процентов ос не попались на удочку! Ну, допустим, они ориентируются по каким-то определенным приметам и люди это почти (подчеркиваю — почти!) доказали. Но как они добираются до того места, откуда эти приметы уже хорошо видны? Сама техника прилета ос сейчас хорошо изучена: одни летят прямо к цели — это осы более крупные, другие — помельче, для которых тащить гусеницу довольно трудно, — летят как бы скачками, поднимаясь невысоко и пролетая метра два. При этом, опускаясь на землю, осы время от времени забираются на какое-то возвышение и осматриваются, выбирая направление. Третьи вообще волокут свою добычу по земле и лишь изредка забираются на деревья, чтоб осмотреться. Все это так. Путем экспериментов стало известно даже, что многие осы улетают в определенном направлении от гнезда и возвращаются, соответственно, одним и тем же путем. Но если ос искусственно перенести в противоположную сторону, они сделают крюк, найдут ту точку, которая находится на их постоянном маршруте, и, круто свернув, полетят к гнезду. Да, это уже людям известно. Неизвестно лишь главное — как они определяют направление. Может быть, все-таки осы находят дорогу так же, как муравьи?
Давно замечено: муравьи, где бы ни были, стараются вернуться в муравейник до заката солнца. Сначала думали, что муравьи, как и большинство насекомых, — мерзляки и стремятся до вечерней прохлады попасть домой. Но потом ученые обратили внимание на другое обстоятельство: муравьи возвращаются всегда одной и той же дорогой. Не муравьиной тропкой, которая находится вблизи муравейника и помечена запахами соплеменников, по ней муравьи идут в муравейник и обратно лишь несколько метров. Нет, в какие бы дебри ни забрел муравьишка один, он найдет дорогу домой и придет тем же путем, по которому шел от дома. Если же отнести его в сторону, он все-таки пойдет по заданному маршруту и «промахнется» — пройдет мимо муравейника точно на таком расстоянии, на какое его отнесли в сторону. Люди заинтересовались способом ориентации муравьев и открыли одно удивительное их свойство. Оказывается, муравьи фиксируют угол солнечного луча.
Если муравей, удаляясь от муравейника, видит его слева под определенным углом, то на обратном пути он должен видеть его справа под тем же углом. Он фиксирует в памяти (при помощи зрительного восприятия угла наклона солнечного луча) положение муравейника не в пространстве, а по отношению к солнцу.
Решили более точно проверить способности муравьев ориентироваться по солнцу. Для этого муравьев сажали под светонепроницаемый колпак или в темную коробку. Через несколько часов муравьев выпускали, и они немедленно, без колебаний отправлялись в путь. Только шли они совсем не к муравейнику, а туда, где, по их расчетам, муравейник должен быть… А расчет у муравья простой и, если бы он умел рассуждать, то делал бы это, наверное, так: было темно, значит, солнца не было; а если его не было, значит, оно не двигалось: а если не двигалось, значит, угол под которым падали лучи до темноты, не изменился.
Муравей не может прикинуть, что за несколько часов солнце сдвинулось, что, ориентируясь на него, теперь к муравейнику не попадешь. Но муравью и не надо прикидывать — ведь в природе его никто не сажает под темный колпак, никто не проделывает с ним таких злых шуток, и у него не выработалась способность корректировать движение солнца. Это логично. И нелогично было бы, с нашей точки зрения, иметь такое корректирующее «приспособление». Но оно все-таки есть, хотя и не у всех видов муравьев. Как показали опыты, некоторые муравьи, освобожденные из-под светонепроницаемого колпака, умудряются учесть движение солнца, которого они не видели, и выбирают правильный путь к муравейнику.
Но так или иначе, большинство ученых считают, что муравьи ориентируются по солнцу. Другие утверждают, что не по солнцу, а по звездам. Во всяком случае, алжирский специалист по муравьям Санчи убежден: если не все виды, то некоторые пустынные муравьи ориентируются именно так. Глазные фасетки муравья — это длинные трубки, на самом дне которых расположено по одной-единственной на фасетку светочувствительной клетке. Известно, что если даже в солнечный день смотреть на небо из глубокого колодца, то можно увидеть звезды. Санчи и те, кто разделяют его точку зрения, считают, что глаз муравья «работает» по этому принципу. Что ж, возможно, в пустыне муравьям необходима именно такая ориентация.
А может быть, муравьям и осам помогает ориентироваться поляризованный свет? О муравьях, во всяком случае, некоторые ученые говорят в этом смысле вполне определенно.
Но прежде давай вспомним, что такое свет вообще. Мы говорим «скорость света» и часто употребляем это выражение как образное, когда хотим сказать о каком-то очень быстром передвижении или перемещении. Действительно, скорость света колоссальна — 300 тысяч километров в секунду. То есть с такой скоростью перемещаются в пространстве частицы. Но, с другой стороны, свет — это не просто полет частиц — это волны, кстати, очень похожие на морские. Морские волны видели, конечно, все — если не в жизни, то уж в кино обязательно. И вот, глядя на волны, без труда можно заметить что катятся они к берегу не под одним, а под самыми разными углами: то мчит волна, нацеливаясь на берег своим острым гребнем, и понятно сразу, что угол ее наклона по отношению к берегу небольшой, то вдруг «встанет на дыбы», идет как бы стеной. В общем, углы, под которыми движутся волны, самые разные. Примерно так идут и световые волны.
А теперь представь себе морские волны, идущие строго перпендикулярно к берегу, то есть идущие все в одной плоскости.
Так же идут и волны поляризованного света.
Или другой пример. Привяжи к чему-нибудь один конец веревки, а другой возьми в руки. Веревку можно качать как угодно, она будет волнообразно изгибаться в любом направлении. Так идут волны обычного света.
А теперь пропусти веревку в какую-нибудь узкую щель. И снова начни раскачивать веревку в разные стороны. По другую сторону щели она будет колебаться только в одном направлении — направлении щели: если щель вертикальная, то вертикально, горизонтальная — горизонтально. Так идут волны поляризованного света.
Значит, поляризованный свет — это не какой-то особый, типа ультрафиолетового, отличающегося от обычного длиной волны. Он отличается лишь тем, что колебания в нем совершаются в одной плоскости. Некоторое количество солнечных лучей, проходя через атмосферу, встречает на своем пути частицы различных веществ, находящихся в воздухе, и рассеивается их молекулами. Происходит поляризация света. Солнце не стоит на месте, и количество света в разных участках неба постоянно меняется. Меняется, естественно, и количество поляризованного света. Человек этого не замечает, да ему это, в общем-то, ни к чему, иначе его глаз, очевидно, приспособился бы к восприятию поляризованного света, как приспособился он у некоторых насекомых, возможно, у тех же муравьев, и уж совершенно точно — у пчел.
Казалось бы, все уже известно о языке пчел: и их танцы, и треск крыльев, и запахосигналы, и роль зрения в поисках пищи. И все-таки есть «белые пятна».
Известно, что, танцуя, пчела описывает круги и восьмерки или совершает так называемый прямолинейный пробег (одно из «па» танца, когда пчела действительно бежит прямо по вертикальным сотам). Если пчела бежит прямо вверх, значит, надо лететь в ту сторону, где находится солнце, если вниз — соответственно в противоположную сторону; бежит пчела вверх или вниз под определенным углом, значит, именно под этим углом надо при полете отклониться от условной вертикали. Солнце для пчелы — ориентир, указатель. Ну, а когда нет солнца? Допустим, оно зашло за облако или опустилось за гору. Но в том-то и преимущество глаз пчелы, что само солнце им не обязательно видеть, им достаточно видеть небо, «расчерченное» на различные участки в зависимости от поляризации. Мало того, если все небо покрыто тучами и виден лишь один небольшой клочок голубого неба, пчелам и этого достаточно, чтоб сориентироваться. Разведчица по этому клочку поймет положение солнца и укажет направление, а рабочая пчела самостоятельно полетит по этому направлению. (Ведь разведчица, как правило, с рабочими пчелами не летит.)
Люди уже немало потрудились над выяснением секрета пчелиного зрения, уже много узнали, но до окончательной победы еще далеко. Например, узнав, как пчела распознает направление с помощью поляризованного света, надо еще выяснить, как она определяет время; солнце-то движется, а раз солнце меняет положение, то меняется и поляризованный свет на разных участках неба.
Разобравшись с пчелами, придется вернуться к муравьям, осам и многим другим насекомым, способ ориентации которых пока неизвестен.
Но если в ориентации зрение играет большую роль, то, очевидно, не меньшую оно играет в навигации. Впрочем, зрение ли?
Прежде чем говорить о навигационных способностях насекомых, давай обсудим вопрос, о котором мы упоминали во 2-й главе: почему насекомые летят на свет? Явление это настолько привычно, что мы почти не обращаем внимания на множество насекомых, вьющихся вокруг фонарей в парках, прилетающих в комнаты на свет лампы и упорно стремящихся к ней, навстречу своей гибели.
Явление, безусловно, удивительное, и ученые не могли пройти мимо него. Но, заинтересовавшись таким, казалось бы, обычным явлением, они сразу же натолкнулись на множество неразрешенных вопросов.
Сначала, не найдя никаких видимых причин для такой страстной, связанной с самопожертвованием, любви насекомых к свету, ученые решили, что в их организме имеется какое-то светочувствительное (или антисветовое) вещество, какие-то особые клетки, которые либо заставляют насекомых лететь к свету (если этого вещества мало), либо прятаться (если его слишком много). Потом появилась теория американского ученого Ж. Леба, который утверждал, что стремление насекомых к свету — явление чисто механическое. В общих чертах эта теория выглядит так: если свет ярче с правой стороны насекомого, то мышцы противоположной стороны получают больший раздражитель, работают активнее, и насекомое поворачивается к свету левой стороной. Тогда свет попадает в левый глаз, и насекомое опять поворачивается. Прямо оно летит только в том случае, если свет падает с одинаковой силой в оба глаза. Леб даже сконструировал аппарат, имевший два «глаза», снабженных фотоэлементами и связанных с ними электромоторчиками. При освещении справа машина катилась налево, и наоборот.
Но прошло какое-то время, и ученые, тщательно исследовав насекомых, не нашли у них и признаков какого-то светочувствительного вещества, а теория Леба потерпела крушение после того, как бабочке замазали черным лаком глаза и она, растерявшись сначала, тем не менее вскоре и без зрения нашла путь к источнику света и полетела к лампе.
Были отвергнуты и другие теории, особенно после того, как ученые убедились, что, во-первых, насекомые реагируют и на не видимый нами свет, то есть на ультрасвет, во-вторых, что они реагируют не только на источник света, испускающий лучи, но и просто на освещенный экран или более светлый квадрат окна. Сейчас ученые подошли к такому объяснению: свет для насекомых — это признак какого-то свободного, вольного пространства, где можно летать, где нет препятствий. (Не важно, какой это свет — обыкновенный или ультрафиолетовый, ведь солнце или ночные светила посылают на землю и коротковолновые ультрафиолетовые лучи, воспринимаемые насекомыми.) А дальше, как считают некоторые современные ученые, насекомые оказываются вблизи яркого света и уже теряют ориентацию. Ослепленные лучами, они уже ничего вокруг не видят и упорно продолжают стремиться вперед, надеясь все-таки пробиться к свободному спасительному пространству, которое для них символизируется ярким светом. Поэтому они бьются до изнеможения об оконные стекла, гибнут от жары или огня.
Эта теория, выдвинутая профессором Мазохиным-Поршняковым, пока единственная убедительная, хотя еще требует подкрепления и дополнений. (А как быть с той бабочкой, которая не видела света, но летела к нему? Или видела, но не глазами, а чем-то еще?) Сейчас есть, например, предположение, что «видят» свет бабочки усиками.
Итак, свет для насекомых — это свободное пространство, необходимое для полета, для жизни. Вылетая утром из укрытия, насекомые стремятся к источнику света — к солнцу. И… Да, верно, летят прямо к солнцу. Но, к счастью для насекомых, реакция эта быстро затухает: ведь небесные светила слишком далеко и сколько ни лети к ним, свет все время будет одинаковый. Он не будет «вести» насекомых, усиливаясь или слабея, и насекомое скоро теряет к нему интерес. Теряют интерес к солнцу дневные насекомые, теряют интерес к луне и ночные. Но даже когда ночи безлунные, небо все равно остается самым светлым полем в их глазах.
Значит, все-таки солнце, луна, звезды — главные ориентиры для насекомых? Может быть. Но это пока гипотеза, хотя и достаточно обоснованная. Возможно, скоро гипотеза превратится в доказательную и обоснованную теорию, и люди подвинутся еще на несколько шагов к открытию, пожалуй, одной из самых загадочных тайн насекомых — тайны навигации.
Теперь уже нет сомнения, что насекомые совершают межконтинентальные перелеты. Впрочем, об этом знали давным-давно. Ну хотя бы та же саранча. Мы уже говорили о стае, перелетевшей Красное море. Известен случай, когда саранча перелетала из Южного Марокко в Португалию, преодолев за сутки почти тысячу километров. Огромную стаю саранчи видели над Атлантическим океаном в двух тысячах километров от ближайшего берега.
Известно очень много случаев перелета божьих коровок на большие расстояния, а на зимовки они летят каждый год, тоже совершая длительные путешествия.
Совершают перелеты и стрекозы.
Но, пожалуй, больше всего летописи и старинные книги упоминали о перелетах бабочек, которые буквально затмевали небо и приводили в ужас людей, естественно, ждавших каких-то бед от такого страшного «предзнаменования».
Первое дошедшее до нас упоминание о перелетах бабочек в Европе относится к 1100 году. Первое сообщение о миграции бабочек в Западном полушарии принадлежит Колумбу — приближаясь к Кубе, он увидел «такие несметные стаи бабочек, что небо потемнело».
Молодой Чарлз Дарвин, путешествуя на корабле «Бигль», был потрясен, когда в открытом море огромная туча вполне сухопутных бабочек-желтушек облепила весь корабль, а отдохнув, бабочки покинули его и отправились дальше — навстречу опасности и, очень возможно, гибели.
О перелетах бабочек писали многие. В 1913 году в нашей стране вышла прекрасная, до сих пор не потерявшая ценности книга Курта Ламперта «Бабочки и гусеницы Европы и отчасти Среднеазиатских владений», переведенная с немецкого языка известным русским ученым профессором Н. А. Холодковским. Вот что пишет в этой книге К. Ламперт: «Рудов наблюдал во время поездки в Берндгольм (Швеция) перелет капустниц, летевших густым облаком из Швеции через Балтийское море; пароход употребил более двадцати минут, чтобы миновать эту вереницу».
Русский писатель?. Ф. Золотницкий, большой знаток и любитель бабочек, писал о стае капустниц, летевших в течение многих часов, причем летели они «в несколько слоев».
Ученый-энтомолог Набоков оставил нам удивительно красочное описание миграции белянок и репейниц. Оно стоит того, чтобы привести его с небольшими сокращениями: «Движется по синеве длинное облако, состоящее из миллионов белянок, равнодушное к направлению ветра, всегда на одном и том же уровне над землей, мягко и плавно поднимаясь через холмы и опять погружаясь в долины, случайно встречаясь, может быть, с облаком других бабочек, желтых, просачиваясь через него без задержки, не замарав белизны, и дальше плывя, а к ночи садясь на деревья, которые до утра стоят как осыпанные снегом, — и снова снимаясь, чтобы продолжить путь. Куда? Зачем? Природой еще не доказано или уже забыто.
Наша репейница — „крашеная дама“ англичан, „красавица“ французов, в отличие от родственных ей видов, не зимует в Европе, а рождается в африканской степи; там на заре удачливый путник может услышать, как вся степь, блистая в первых лучах, трещит и хрустит от несчетного количества лопающихся хризалид. Оттуда без промедления она пускается в северный путь ранней весной, достигая берегов Европы, вдруг на день, на два оживляя крымские сады и террасы Ривьеры; не задерживаясь, но всюду оставляя особей на летний развод, поднимаясь дальше на север, и к концу мая, уже одиночками, достигает Шотландии, Гельголанда, наших мест, а там и Крайнего Севера земли: ее ловили в Исландии… Самое трогательное… это то, что в первые холодные дни наблюдается обратное явление, отлив: бабочка стремится на юг, на зимовку…»
Однако перелеты бабочек — дело не только далекого и не очень далекого прошлого. Прекратиться миграция бабочек не может, ведь это — не прихоть, не каприз, не «охота к перемене мест». Это — насущная необходимость для продолжения рода, для выживания того или иного вида. Да, миллионы бабочек гибнут по дороге, но какое-то количество выживает, добирается до места. Они пролетят три с половиной тысячи километров — из Западной Европы в Сахару, упадут на землю измученные, полумертвые. Но у них еще хватит сил сделать то, ради чего летели — отложить яички. Из яичек появятся гусеницы, затем отродятся из куколок бабочки. И в тот же день огромные стаи репейниц отправятся в путь на север. На пути — моря, горы, но бабочки не задерживаются. Даже там, где можно отдохнуть и покормиться. Нет, некогда. Гусеница успела накопить жировой запас, и им будет сыта бабочка, пока летит над самым трудным участком пути — над морем и горами. И снова долетят они, конечно не все, далеко не все. Но какое-то количество доберется до мест, где смогут отложить яички, где появятся гусеницы, потом бабочки и все повторится сначала.
Репейницы откладывают очень много яичек. Если бы часть бабочек не улетала, то появившиеся гусеницы очень скоро уничтожили бы все кормовые растения и репейницы погибли бы все до единой. (Если не сразу, то через некоторое время обязательно.) Но они улетают, предупреждают перенаселение и тем самым спасают вид от вымирания.
Вот почему нет ничего удивительного в том, что и в наше время наблюдаются массовые перелеты бабочек. Так, охотовед И. А. Совин летом 1964 года наблюдал массовый перелет репейниц. По очень приблизительным его подсчетам, стая бабочек состояла не менее чем из 2700 миллионов штук, а общий вес всей стаи оценивался приблизительно в 600 тонн.
В том же году польские энтомологи наблюдали огромное количество капустниц, репейниц и капустной моли, которыми на многие километры были покрыты берега Балтийского моря.
Сейчас ученым известно уже немало бабочек-путешественниц. Пожалуй, лучше других изучена в этом смысле красивая бабочка-монарх, живущая в Северной и Центральной Америке и ежегодно совершающая перелеты из Канады и северных районов США на юг. Там, в Калифорнии, Флориде, Мексике, они проводят зиму и почти все время сидят на деревьях неподвижно. (Кстати, эти бабочки охраняются законом, за нарушение их спокойствия берется большой штраф.)
Весной монархи отправляются обратно на север. Впрочем, не все. Некоторые не стремятся на родину. Наоборот, монархи стремятся захватить мир — Западное полушарие им уже кажется тесным. Океан для них — не препятствие, и бабочек этих не раз ловили в Европе. Правда, в Европе они пока, кажется, не акклиматизировались (видимо, не нашли подходящей растительности — их гусеницы выводятся на определенном виде молочая), но в Австралии и Новой Зеландии монархи уже Давно не редкость, появились и акклиматизировались они на Азорских и Канарских островах.
О перелетах монархов знали давно. А вот о путешествиях бабочки номофиллы ноктуэллы узнали сравнительно недавно, и при весьма любопытных обстоятельствах.
Номофилла ноктуэлла встречается лишь в Южной Африке и на Британских островах. Было высказано предположение, что она совершает перелеты из Европы в Африку. Чтоб установить, так это действительно или нет, английский ученый — профессор Кеттлвелл проделал опыт, взбудораживший однажды чуть ли не весь Лондон.
В ту ночь рев полицейской машины разбудил многих лондонцев. Но вряд ли проснувшиеся жители британской столицы могли себе представить, что полицейские мчатся не на место очередного преступления, а в мирный загородный особняк ученого, в котором не произошло ни убийства, ни ограбления. А всего-навсего в светоловушку попала бабочка. Еще больше удивились бы англичане, увидев, с какой предосторожностью вынесли из дома свинцовый контейнер с бабочкой, погрузили в специальную машину и эта машина, сопровождаемая ревом полицейской сирены, помчалась по улицам в обратном направлении.
Дело все было в том, что, решив выяснить, действительно ли номофилла ноктуэлла улетает в Африку и в определенное время возвращается обратно, профессор Кеттлвелл проделал эксперимент. Он вырастил из яичек гусениц и кормил их листьями, обрызганными радиоактивными изотопами. Изотопы не могли причинить вреда гусеницам, а тем более окружающим людям — количество их было слишком ничтожно. Но тем не менее вполне достаточным, чтобы «пометить» и будущую бабочку и будущее потомство этой бабочки. Ученый рассчитывал, что в следующем году хоть один из потомков «помеченной» бабочки вернется в Англию и его удастся поймать в светоловушку, рядом с которой был установлен счетчик Гейгера — прибор, регистрирующий малейшее присутствие радиоактивного вещества.
Бабочки в ловушку попадались, но счетчик долго молчал — помеченных изотопами не было. Но вот счетчик заработал, да еще как! С каждой минутой он стучал все быстрее, стрелка его стремилась вверх, к красной черте, за которой радиация становилась уже опасной. Вот тогда-то профессор и позвонил в специальное учреждение, занимающееся атомной энергией, вот тогда-то по ночным улицам и помчалась полицейская машина с включенной сиреной.
И выяснилось: бабочка действительно летела из Африки. Пролетая где-то в районе Сахары, она во время «песчаной бури» получила «подарок» — кусочек радиоактивного кобальта, который вонзился ей в голову, правда не повредив жизненно важных органов. Кусочек кобальта был осколком атомной бомбы, испытание которой проводилось в то время французами на территории Сахары.
Сейчас доказано, что немало бабочек совершают межконтинентальные перелеты. Для их изучения в некоторых странах созданы специальные станции, где путешественниц метят, нанося на нижнее крыло краской особый опознавательный знак. Причем у каждой станции свой знак, а у каждой страны свой цвет.
Перелетами бабочек люди занимаются не так давно — лет 30–40, но уже выяснено немало: например, выяснено, какие виды совершают перелеты чаще других. Оказалось, это репейницы, капустницы, адмиралы, желтушки и некоторые виды бражников.
Более или менее точно выяснены пути, по которым летят бабочки. Выяснилось, что по одним и тем же маршрутам они летят из года в год, не сворачивая с курса, даже если имеется более безопасный путь.
Часто бабочки летят вдоль русла рек. Но если река почему-либо исчезает, бабочки продолжают лететь вдоль бывшего русла.
Летят бабочки обычно невысоко над землей и, как правило, поднимаются вверх только в крайнем случае. Тем не менее почему-то не всегда пользуются более безопасной дорогой, а предпочитают лететь через горы, где массами гибнут на ледниках.
Узнали люди, что репейницы, капустницы, желтушки летят стаями, причем часто громадными, адмиралы же предпочитают путешествовать в одиночку и лишь перед перелетом через горы собираются в небольшие стаи (непонятно, поджидают они друг друга у подножия гор, что ли? И как они определяют, достаточное ли количество в стае, чтоб отправляться в дальнейший путь. И зачем им нужно собираться в стаи для преодоления гор — ведь не ради же безопасности! Вопросы, ох сколько вопросов задают бабочки! И сколько они еще зададут!)
Сейчас людям известно, что одни бабочки, например репейницы, совершают перелеты ежегодно, а совка-гамма — раз в несколько лет.
Выяснили люди и то, что командой для сбора в дорогу служит изменение длины светового дня, выяснили, что заставляет бабочек мигрировать.
Известны теперь даже такие факты, как освоение бабочками новых территорий: они постоянно залетают в страны или даже части света, где никогда не водились раньше, и, если эти места приходятся им по душе (а для «души» бабочки важен климат и наличие подходящей растительности), остаются в этих странах.
И все-таки выяснено еще очень немного. А главное, нет ответа на два основных вопроса: во-первых, как летят бабочки, во-вторых, как находят дорогу.
Мы с тобой уже обсуждали вопрос о крыльях и о полетах насекомых. По сравнению с другими дневные бабочки — тихоходы, а крылья их очень слабы. Правда, мы знаем, что крылья дневных бабочек способны создавать воздушные волны, благодаря чему бабочки легко взлетают и легко держатся в воздухе. Известно, что чешуйки, которыми покрыты крылья бабочек, на 15 процентов увеличивают их подъемную силу. Знаем, что благодаря своему немного странному, похожему на езду по ухабам, полету бабочки экономят энергию, имеют возможность часть пути планировать с «выключенным мотором». Но все это — мелочи по сравнению с той гигантской работой, которую приходится проделывать крыльям и «мотору» насекомых. Бабочка взмахивает крыльями 5–6, от силы — 9 раз в секунду. Летит она медленно — 7-14 километров в час против ветра и 30–35 километров в час по ветру. Сколько же раз надо взмахнуть крылышками, чтобы перелететь из Европы в Африку? Сотни тысяч раз? Миллионы раз? Десятки миллионов? Но какой же прочности должны быть сами крылья, какой прочности должны быть «шарниры», на которых эти крылья укреплены? Ни один, даже самый прочный материал не выдержит такой нагрузки. А крылья бабочек выдерживают. Вот она, еще одна загадка крыла насекомого! И еще одна загадка «мотора»: ведь бабочки, как мы знаем, не отличаются силой по сравнению, допустим, с муравьем или жуком-навозником. А вот поди ж ты — летят через моря и горы, не останавливаясь на отдых. Бабочки не пополняют запасов «горючего», а ведь оно сгорает. Пусть не так уж быстро, но, по самым минимальным расчетам, для такого путешествия его должно быть сожжено больше, чем весит вся бабочка.
Такова одна из загадок перелетов бабочек. Вторая загадка — ориентация. Как бабочки находят дорогу? По солнцу? Используя поляризованный свет? Ультрафиолетовые лучи? Какие-то неведомые еще людям ориентиры или сигналы? Трудно сказать, но допустить можно. Да и как не допустить, если факт налицо! Но тогда встает другой вопрос: как они определяют скорость, как соразмеряют свои силы по отношению к ветру? Ведь ветер — фактор очень важный. Хорошо, если ветер попутный. А если встречный или боковой, который может снести в сторону, заставить отклониться от курса? Птицам ветер часто мешает, а при сильном встречном или боковом ветре многие из них вообще не летят. Для бабочек любой ветер — сильный. Значит, у них есть какое-то приспособление, позволяющее регистрировать силу ветра и делать соответствующие поправки?
Лет двадцать назад два немецких ученых Г. Шнейдер и Д. Буркхард, занимаясь изучением мясной мухи, решили разобраться: зачем у нее, как, впрочем, и у многих других насекомых, в местах сочленения усиков с головой имеются небольшие группы чувствительных нервных клеток. Явно не для того, чтобы с их помощью осязать и обонять — для этого существуют другие клетки, они расположены на усиках, и их тысячи, а тут всего несколько.
Ученые ввели в эти непонятные клетки крохотные электроды, перехватывающие сигналы, которые эти клетки передают в мозг, затем надели на муху поясок и поместили ее в миниатюрную аэродинамическую трубу.
Пока в трубе воздух был неподвижен, бездействовали и клетки. Но вот заработал вентилятор, воздух стал двигаться, и в мозг мухи полетели сигналы-импульсы, которые передавались с одинаковой частотой. Воздух стал двигаться быстрее, и сигналы участились, медленнее — и сигналы стали реже. Значит, в основании усиков скрыт «спидометр» — указатель скорости ветра, причем спидометр очень надежный и совершенный. Принцип действия его прост и гениален: встречный ветер отгибает усики, величина этого отгибания воспринимается чувствительными клетками и немедленно передается в мозг в виде сигналов соответствующей частоты. Мозг немедленно реагирует и дает команду, что делать дальше. Повторные опыты с ветром в аэродинамической трубе подтвердили это. А когда ученые в безветрие стали искусственно отгибать усики у мухи и импульсы передавались так, будто муха преодолевает определенное сопротивление ветра, стало ясно, что это действительно спидометр. Но он не просто регистрировал скорость встречного ветра — он помогал мухе менять скорость полета, маневрировать, менять угол наклона крыльев — в общем, делать все то, что делает насекомое при полете против ветра.
У мух такой спидометр найден. Может быть, что-то похожее есть и у бабочек, и этот «прибор» или «аппарат» помогает им ориентироваться, хотя бы в отношении ветра. А может быть, дело совсем в другом. И у бабочек есть какое-то другое приспособление, помогающее им в полете, а ориентируются они не по солнцу, а по магнитным полям, например?
Известно, что вокруг нас море магнитных волн — Галактика, и Солнце, и сама Земля порождают огромное количество реально ощутимых, хоть невидимых волн. Могут ли они действовать на насекомых?
Сведений у нас еще немного, но то, чем мы располагаем, дает основания считать именно так. Давно заметили, что мухи, попав в сильное магнитное поле, сначала очень возбуждаются, а потом, успокоившись, устраиваются либо вдоль магнитного поля, либо строго перпендикулярно к нему. Так же ведут себя и некоторые другие насекомые, например майские жуки, но особенно показательны в этом отношении термиты. Отдыхая, некоторые виды термитов в своих термитниках располагаются либо строго по магнитному полю — одни группы, либо перпендикулярно к нему — другие группы. Когда их сажали в металлическую коробку, они располагались хаотично: если же под коробку подкладывали сильный магнит, способный образовать новые поля, термиты немедленно располагались вдоль новых силовых линий.
Непонятно не только почему термиты располагаются вдоль магнитных линий, но и как они обнаруживают магнитное поле. Пока у насекомых не найдено ничего похожего на какие-то органы или нервные клетки, способные реагировать на магнитное поле. Правда, есть предположение, что роль магнитной стрелки, указывающей направление, выполняет все тело насекомого. Подтвердил это такой опыт. Мертвую муху поместили в магнитное поле. Она тотчас же повернулась так, как магнитная стрелка компаса, одним концом указывая на юг, другим — на север. И сколько бы ни повторялся этот опыт, результат всегда был одинаков.
Однако это лишь первый опыт, первое предположение. «В конце концов мы обязательно узнаем, каким образом термиты ощущают магнитное поле Земли, — пишет известный английский исследователь Р. Бертон. — И почему они на него реагируют, но к этому времени уже наверняка будут открыты новые, не менее загадочные чувства».
Да, конечно, будут открыты. И уже открыты. Нам еще предстоит узнать о воздействии магнитных полей, но уже обнаружены новые явления, не менее загадочные. Например, у некоторых ночных бабочек на перистых усиках нет никаких признаков, которые хоть чем-то напоминали светочувствительные органы: ни сетчатки, ни хрусталика, ни роговицы. Конечно, на усиках они и не обязаны быть. Но тогда и видеть усики «не обязаны», не должны они быть чувствительны к свету. А у этих бабочек антенны улавливают свет. И довольно активно.
И как, говоря обо всем этом, опять не вспомнить Фабра и его знаменитых ос. Сколько они дают людям поводов для удивления, пищи для размышления и материала для исследования!
Однажды Фабру для опытов понадобились долгоносики-клеоны. В течение нескольких дней Фабр разыскивал этих жучков с утра до вечера и нашел всего двух, да и то покалеченных. Определенному виду ос тоже нужны эти жучки для своих личинок. Но они, в отличие от Фабра, находили этих жучков безо всякого труда. В этом Фабр убедился, наблюдая за осами у их гнезд: каждые несколько минут осы подлетали и приносили долгоносиков. Как находили осы жуков? По запаху? Может быть, хотя осы особым осязанием, кажется, не отличаются (впрочем, вопрос этот еще недостаточно прояснен). Но может быть, тут что-то другое, какие-то пеленги, какие-то особые волны, которые улавливают насекомые?
А может быть, помогают насекомым ориентироваться инфракрасные лучи? Если не в данном конкретном случае, то в каком-то другом.
Американский ученый Каллакан недавно высказал предположение, что некоторые насекомые посылают и воспринимают инфракрасные лучи. Эти лучи помогают им находить друг друга на расстоянии чуть ли не в километр. И ведь предположение это совсем не лишено оснований. В 1964 году стало известно, что некоторые бабочки во время полета повышают температуру своего тела от 0,5 до 15(!) градусов выше окружающей среды, излучая при этом инфраволны длиною 9 микрон!
А вот еще любопытный факт, о котором рассказал профессор П. И. Мариковский. Он наблюдал, как муравьи лихорадочно откапывали заваленных землей товарищей. Вообще-то тут нет ничего удивительного: у общественных насекомых высоко развито чувство товарищества, и если они услышат определенные звуки или почувствуют определенные запахи, то бросятся на помощь. Но в том-то и дело, что засыпанные муравьи не могли подать звуковых сигналов, так как подают такие сигналы трением частей тела друг о друга, а тут они были засыпаны землей и не могли пошевелиться. Запах тоже исключался, потому что спасательные работы начались сразу же после аварии и запах не мог так быстро пройти сквозь толщу земли, засыпавшей муравьев. Как же они сообщили о себе, о том, что попали в беду?
Может быть, это какие-то электромагнитные колебания или какие-то радиоволны, о которых мы еще не имеем представления?
Во всяком случае, когда с муравьями проделывали опыты (не с этими, конечно, о которых писал Мариковский), то выяснили любопытные вещи: если муравьев отделяли друг от друга каким-нибудь экраном — деревянным или стеклянным, — они легко подавали друг другу сигналы, если же их помещали в медные сосуды или просто изолировали свинцовым экраном, связь немедленно прекращалась.
Люди не знают, что это за сигналы, какие это волны и волны ли вообще. А может быть, это что-то такое, чему люди еще и название не придумали? Может быть. «Ведь из невидимых излучений нам известны пока немногие, — писал великий русский ученый академик Вернадский. — Мы едва начинаем сознавать их разнообразие, понимать отрывочность и неполноту наших представлений об окружающем и проникающем нас в биосфере мире излучений».
Это было написано много лет назад. За прошедшие годы мы немало узнали. Но по-прежнему таинствен и непонятен для нас мир насекомых, их необычные «способности», их удивительные органы осязания и обоняния, их глаза и уши и их реакции на «мир излучений», который, очень вероятно, играет огромную роль в жизни наших шестиногих соседей.
Нам еще предстоит узнать все это. И очень удивиться.
3. «Ошибка» эволюции?
Неверно было бы думать, что люди, занятые борьбой с насекомыми-вредителями или изучением их строения, не обращали внимания на чисто внешний вид шестиногих. На внешность шестиногих обращали внимание и ученые (правда, стали делать это сравнительно недавно), и люди, очень далекие от науки. Именно внешний вид насекомых породил в народе много разных примет и поверий.
Бражник «мертвая голова» (в некоторых странах эта бабочка называется адамовой головой) у многих народов Европы считалась предвестницей смерти. Крупная, сильная, влетев в комнату, она действительно может напугать уже одной своей величиной и стремительностью, не говоря уж о том, что крылья ее издают тихое, но внятное басовитое гудение. Сидящая бабочка тоже производит впечатление: на спинке ее, недалеко от головы, — белое пятно, явственно напоминающее череп. Напуганная бабочка издает довольно громкий писк, что, как известно, несвойственно насекомым (об этом мы еще поговорим подробнее).
За свою внешность и поведение имеет недобрую славу и жук-чернотелка. Даже официально, с легкой руки Линнея, он получил название «предвещающий смерть», хотя на самом деле жук этот — совершенно безобидное существо. Но мрачный черный цвет, медленная походка, длинные ноги породили поверье, которое гласит, что жук этот — предвестник несчастья. В России он так и зовется — вещатель.
Однако гораздо больше внимания люди обращали на яркую, красочную внешность насекомых, на их изящество и красоту. Восхищение насекомыми получило явное отражение в именах, которые давали шестиногим при «крещении». Мифологический красавец Аполлон «превратился» в красивую бабочку, а именем одного из титанов, держащих, по легенде, на плечах небесный свод, Атласа, названа бабочка-великан, живущая в Индии, Индонезии, Индокитае. Жук-великан именуется голиафом. Есть бабочка антиопа (траурница), названная по имени одной из мифологических героинь, и аглая — по имени одной из богинь красоты и радости у древних греков. Бабочка-гарпия названа по имени греческой богини вихря, и геба — в честь богини юности. Есть аврора — в честь богини утренней зари (в России эта бабочка зовется зорька) и артемида. В честь мифологических героев (конечно же, могучих и красивых!) носят бабочки имена ахилла и гектора. Есть бабочки — величественные монархи и адмиралы, яркие червонцы и ласковые лунки серебристые.
Многие насекомые — особенно бабочки и жуки — действительно очень красивы, и люди не могли пройти мимо их красоты. Увлечение красивыми насекомыми и стремление иметь их у себя в домашней коллекции привело к созданию целой отрасли промышленности и торговли — появилось большое количество ловцов насекомых, поставлявших их в специальные магазины.
Ле Мульт — французский коллекционер и торговец насекомыми — писал, что за некоторых тропических бабочек и жуков платили больше, чем за драгоценные камни. А известный миллионер Ротшильд, чтобы заполучить в свою коллекцию одну редкую бабочку, послал на Новую Гвинею специального энтомолога, который довольно долго охотился за этой бабочкой.
Потакая капризам модниц, ювелиры оправляют жуков в золото, из надкрылий южноамериканских златок делают броши, а из ярких жуков-листоедов изготовляют ожерелья.
Большим спросом у ювелиров и ремесленников пользовались бабочки, крыльями которых инкрустировались медальоны и подносы, чаши и шкатулки. Целые деревни в Южной Америке жили тем, что ловили и продавали насекомых скупщикам из Соединенных Штатов или Европы. Да, люди давно поняли и оценили внешность насекомых, яркие узоры и цвета их крыльев. Но не задумывались над тем, для чего насекомым эти краски и формы. А если задумывались, то ответы были готовы: «Так создал бог», «Такова прихоть природы», или: «Это явная случайность».
Но пока одни любовались насекомыми и легкомысленно объясняли их краски и формы прихотью всевышнего или волей случая, другие наблюдали, накапливали факты. И они, эти факты, рано или поздно должны были выстроиться в теорию, особенно после того, как появилось эволюционное учение Дарвина.
Нам теперь кажется странным, но только в XIX веке люди наконец поняли, что окраска и форма насекомых — не случайность. В течение многих тысячелетий совершенствовалась и отшлифовывалась эта окраска, помогая выживать нашим соседям по планете.
Замечательные английские ученые Альфред Уоллес и Генри Бейтс отдали много сил и времени, чтобы прояснить этот, казалось бы, простой и в то же время такой сложный вопрос.
И вот была разработана очень точная, строгая и доказательная, подкрепленная бесчисленными количествами опытов теория, объясняющая причину окраски насекомых.
Разновидностей окрасок много. Ученые объединили их в несколько групп.
Первая — покровительственная окраска. Зеленый кузнечик в зеленой траве не виден. Бурый кузнечик не виден на фоне бурой земли. Там эти кузнечики и живут. Зеленая гусеница живет в листве — она не видна на ее фоне. И так далее.
Это лишь примитивная форма покровительственной окраски, маскировки, которую ученые назвали криптизмом. Есть ведь и полосатые, и пятнистые, и в какую-то крапинку насекомые. Если говорить об их окраске в применении к маскировке, то это уже более высокая форма.
Ведь та же гусеница, если она находится на плоском листе, может быть хорошо заметна, даже несмотря на свой зеленый цвет. Благодаря различным полосам, точкам, пятнам или просто разнотонности одного и того же цвета насекомое становится совершенно незаметным, либо «растворяется», либо полностью сливается, как бы расчленяясь на общем фоне.
Еще более высокая форма маскировки — способность насекомых «превращаться» в какие-то несъедобные предметы вроде камешков, листочков, палочек. Тут им помогает все: и окраска точно под цвет предмета, и форма, соответствующая этому предмету, и способность оставаться неподвижным в течение довольно длительного времени. Такой способ маскировки называется мимезией.
И, наконец, мимикрия. Существует немало насекомых, которые хорошо заметны, но на которых птицы или другие насекомоядные животные не обращают внимания (об этом мы с тобой поговорим чуть ниже). А рядом с этими насекомыми летают вполне съедобные, но они окрашены под несъедобных, и их тоже не трогают насекомоядные животные. Это хорошо всем известные мухи, подражающие пчелам и осам. Это целый ряд экзотических бабочек, подражающих формой, окраской, поведением бабочкам с неприятным для других животных запахом или ядовитой для них кровью.
Сами же несъедобные насекомые своей яркой и хорошо запоминающейся окраской как бы предупреждают: не трогай нас, это к добру не приведет. Окраска так и называется — предупреждающая.
Есть отпугивающая окраска, или, как называет ее один из крупнейших современных биологов Н. Тинберген, «ложная предостерегающая окраска», когда насекомое, обычно сливающееся с фоном, в момент опасности прибегает к молниеносной демонстрации каких-либо ярких пятен или иных изображений и пугает хищника.
Такова общая схема «применения» окраски у насекомых, толчок к пониманию которой дали Уоллес и Бейтс и которая в течение нескольких десятилетий разрабатывалась и обосновывалась многими учеными. Конечно, схема эта не полная, в ней много нюансов. Нередки сочетания различных способов защиты у одного и того же насекомого. Кроме того, окраска служит не только для защиты. С помощью цвета или цветовых пятен, формы или отдельных деталей насекомые нередко узнают друг друга, отличают особей другого пола или вида.
Все это было доказано, обосновано, проверено, стало хрестоматийными истинами. И вдруг разразилась гроза: казалось бы, прочное и непоколебимое здание этой теории дало трещины и зашаталось.
Сорок лет готовился австрийский ученый Ф. Хайкентингер нанести этот удар, и вот он его нанес. В своей книге «Загадка мимикрии и ее решение» он во всеуслышание заявил: все, что знали и говорили до сих пор о роли окраски в жизни насекомых, не соответствует действительности и является лишь следствием субъективного подхода человека к природе, в данном случае — к миру шестиногих.
Заявление австрийского профессора вызвало бурю в научных кругах, но Хайкентингер был к этому готов: свое заявление он подкрепил, казалось бы, незыблемыми доказательствами.
Они были настолько убедительными, что Хайкентингер сразу же обрел много сторонников.
Зачем насекомым так старательно прятаться, если большинство хищников находят свои жертвы по запаху, спрашивают противники старой теории. Почему считается, будто некоторые насекомые отпугивают птиц своим запахом? В частности геликониды, о которых писал Уоллес. И потом, по мнению Уоллеса, этот запах напоминает запах ванили. Ему он показался неприятным. Но почему запах ванили обязательно должен быть неприятен для животных, которым захочется съесть эту бабочку?
Вопросы сыпались один за другим.
Сторонники Хайкентингера громили теорию, существовавшую многие десятилетия, по всем направлениям.
Насекомые маскируются под цвет фона и становятся невидимыми? Да, с точки зрения человека это так. Но ведь животные видят иначе. Как эта маскировка выглядит с их точки зрения? К тому же ведь не только насекомые, но и некоторые птицы воспринимают ультрафиолетовые лучи.
Когда сделали фотографию замаскированных насекомых в освещении этих лучей, они оказались совершенно демаскированными, хорошо заметными.
Существовало мнение, причем многократно проверенное на опытах, что пятна на крыльях бабочек спасают их от птиц: при приближении птицы бабочка неожиданно вскидывала верхние крылья и на птицу смотрели два больших «глаза», явно глаза совы или какого-то другого существа, которого птицам следует опасаться. А у некоторых между «глазами» хорошо виден могучий «клюв» (толстое брюшко бабочки). Но где же птица успела познакомиться с совой? Если она хоть раз окажется так близко от совы, то больше уже никогда ничего не увидит, потому что будет немедленно схвачена и съедена совой.
Наконец, почему существует множество насекомых, не имеющих никакой защитной окраски, вполне съедобных, но не поедаемых птицами? И наоборот: почему многие насекомые, казалось бы, очень хорошо защищенные, становятся добычей птиц?
Сторонники Уоллеса снова берутся за опыты. Снова проверяется и перепроверяется уже давно доказанное.
Логически сторонники австрийского ученого правы: действительно в ультракоротких лучах замаскированные насекомые хорошо видны. Действительно немало насекомых, лишенных каких-либо средств защиты, спокойно живут, а защищенные становятся нередко добычей птиц и других насекомоядных животных. Действительно, многие птицы не боятся «глазастых» бабочек. Мало того, для многих насекомых цвет или цветовые пятна не играют такой важной роли (или даже вообще не играют никакой роли!) в определении разнополых существ или особей своего вида. Эксперименты показали, что самцы некоторых бабочек могут гоняться за кусочками картона, ни по цвету, ни по форме не имеющих ничего общего с насекомыми, если эти картонки «танцуют», как танцуют самки. И наоборот: макет, в точности — и по форме и по цвету — воспроизводящий бабочку, не производит на самца впечатления, если «полет» его не похож на полет самки.
Да, все это так и логически и отчасти фактически. Но только отчасти. Потому что многочисленные, поставленные на самом высшем современном уровне эксперименты показали: птицы хоть и видят иначе, чем люди, но насекомых на маскирующем их фоне находили в восемь раз реже, чем на фоне немаскирующем.
Н. Тинберген провел серию опытов с голодными птицами и гусеницами пядениц. Гусеницы и птицы находились в одной клетке. Но, несмотря на остроту зрения, активные и заинтересованные поиски еды, птицы не видели гусениц, соответственно окрашенных и принимающих в момент опасности форму сухого сучка. Лишь случайно наступив на такую гусеницу, птица обнаружила обман, склюнула «живой сучок» и тут же принялась клевать все попадающиеся ей сухие веточки. Не обнаружив среди них больше съедобной, птица перестала обращать внимание на веточки, а заодно и на маскирующихся под эти веточки гусениц.
Птицы хоть и склевывают «глазастых» бабочек, но в большинстве случаев, увидев эти «глаза», улетают прочь, испугавшись или повинуясь каким-то иным побуждениям; и именно «глазастые», то есть бабочки, у которых пятна на крыльях напоминают глаз, пугают птиц. Бабочки с иными рисунками на крыльях (ученые украшали крылья подопытных бабочек крестиками и квадратами, ромбами, треугольниками, кругами) не производили на птиц впечатления, а рисунок, напоминающий глаз, пугал.
Ярко окрашенных насекомых птицы не трогают, и они спокойно ползают у них на виду, не пугаясь и не делая попытки скрыться. Если же неопытный птенец склюнет все-таки по незнанию божью коровку или бабочку-пестрянку, то долго будет трясти головой и чистить клюв лапкой.
Наконец, элементарные наблюдения и подсчеты показали: наибольшее число насекомых окрашено под тот фон, на котором они живут: в зелени — зеленые, на сером или буром фоне — соответственно серые или бурые.
Тоже ведь не случайность, не каприз, не прихоть и не воля творца! И так почти во всем: на один довод — контрдовод, на одно доказательство — контрдоказательство. И самое любопытное, что и у сторонников старой и у сторонников новой теории достаточно доказательств своей правоты. Но мало того, в процессе спора делались удивительные открытия, подтверждающие правоту одной из сторон или отрицающие ее.
Так, например, еще в 1938 году советский ученый Б. Н. Шванвич открыл очень любопытное явление и доказал, что рисунок на крыльях многих видов бабочек повторяет плоскостное изображение микроландшафта места обитания этих насекомых. Изученное впоследствии открытие Шванвича дало крупный козырь в руки сторонников старой теории.
Но вот другое открытие. Бабочка-каллима — классический пример маскировки. Пример этот вошел, наверное, во все учебники, и не зря: сидящую со сложенными крылышками каллиму даже самый внимательный человек не отличит от сухого листа. Сходство настолько большое, что специалисты определили даже вид плесени, который «покрывает» этот лист. Такое «сверхуподобление», как назвал подобное явление Реми Шовен, совершенно не нужно, чтобы спасаться от хищников, их обманывают и более грубыми подделками. «Подобные сверхуподобления бесполезны и абсурдны с точки зрения естественного отбора», — говорит Шовен и, можно добавить, с точки зрения защиты тоже.
Тогда для чего это все? Пока неясно ни сторонникам старой теории, ни ее противникам. И сегодня мы можем повторить слова Курта Ламперта, написанные в самом начале нашего века: «Вопрос о законах окраски бабочек принадлежит к числу самых спорных вопросов в энтомологии».
Однако если некоторые ученые пытаются свести на нет значение окраски в деле защиты или сигнализации, то другие пытаются поднять ее значение до основных физиологических функций, доказать ее влияние на жизнь всего организма насекомых.
Уже собрано немало фактов, уже существуют гипотезы, но теории еще нет, факты пока не выстраиваются в теорию, гипотезы еще не получили достаточного подтверждения. Пока еще не доказано ни теплозащитное значение окраски, ни действенность ее как защиты от ультрафиолетовых лучей, губительных для клеток. Но что же все-таки значит окраска насекомых, для чего она служит? Неужели так и закончить эту главку грустным вопросительным знаком? Нет, лучше все-таки восклицательным, который стоит в конце одной из прекрасных книг Реми Шовена.
«Наука идет вперед, пусть же ученый, не отставая, шагает с ней в ногу. В настоящий момент биологическая наука, и именно наука о насекомых, смотрит на природу глазами новичка. Но она ждет того, кто поможет ей подняться на следующую ступень… Не будем же закрывать глаза, не будем отказываться от нашей способности наблюдать только из-за того, что наблюдения приводят нас к сложнейшей проблеме… Итак, не колеблясь, вперед к новым экспериментам! Нужно уметь дерзать!»
4. Науке пока неизвестно…
Мы обсудили с тобой лишь три вопроса из огромного числа не познанных людьми свойств, способностей и умения насекомых. На самом деле таинственного и непознанного гораздо больше — несмотря на огромное количество фактов, множество теорий, колоссальную работу, которую ведут энтомологи, насекомые еще продолжают оставаться для нас таинственными существами. Мы уже знаем об их удивительном слухе и необыкновенной способности улавливать запахи, об их зрении, о непознанных тайнах ориентации и полете. Но, приоткрыв чуть-чуть завесу над тайной, мы за этой завесой видим множество других тайн; открыв какое-то явление, мы сталкиваемся с проблемой объяснения его. А эта проблема часто еще неразрешима. Конечно, на любой вопрос рано или поздно будет найден ответ, любая тайна рано или поздно перестанет ею быть. Но очень важно, когда это произойдет. Да, очень важно. И не только потому, что знание жизни насекомого во всех подробностях имеет громадное значение в стратегии отношений людей и насекомых. Но еще и потому, что человечество в своем развитии уже не может обойтись без секретов, которыми владеют животные и, в частности, насекомые.
Насекомые «старше» людей на много миллионов лет. Если существование разумного человека на Земле мы примем за одну минуту, то насекомые на нашей планете существуют уже 20 суток. Однако человечество, окрепнув и занявшись вплотную делами на нашей планете, с самоуверенностью, свойственной молодости, пренебрежительно относилось к своим шестиногим соседям по планете. Мы знаем, как дорого стоило это.
Человечество должно было очень «помудреть», чтобы изменить свою точку зрения. Но, даже изменив стратегию отношений к шестиногим, люди по-прежнему не обращали внимания на них самих. Прогресс шел своим путем, и животные на этом пути не были помощниками. Даже иногда мешали людям осуществлять их грандиозные замыслы, покорять планету. И вдруг произошло то, что рано или поздно должно было произойти: люди поняли — дальше идти самостоятельно они не могут. Не могут не только потому, что оскудел животный мир и, если так будет продолжаться, произойдет серьезная катастрофа, но и потому, что без животных невозможен прогресс, невозможно развитие науки и техники, невозможно дальнейшее совершенствование.
Уже мчались автомобили и поезда, обгоняли звук самолеты, волны пронизывали эфир, неся людям слова и изображение, когда ученые и конструкторы, объединившись, обратились к мудрой старушке-природе с вопросом: как быть, что делать дальше? Природа простила людям многое — и пренебрежительное отношение, и грубое насилие. Она открыла (вернее, пока приоткрыла) людям многие свои тайны, а главное, указала им путь к дальнейшему совершенствованию человеческих творений. Путь этот — внимательное отношение к тому, что создано эволюцией в живой природе за много миллионов лет.
Не все ученые и конструкторы согласились с этим сразу. Как это так — советоваться со слепой и неразумной природой, когда человеческая мысль способна на гораздо большее? И потом, подражать творениям природы просто невозможно — тут все иное: и другие требования, и другие задачи, и другой материал, наконец. Нет, человечество по-прежнему должно идти своим путем, не обращая внимания на природу.
Конечно, нельзя слепо подражать природе, потому что, как очень верно заметил М. М. Пришвин, «творчество природы и творчество человека различаются отношением во времени: природа создает настоящее, человек создает будущее», но и отмахиваться от нее нельзя именно во имя будущего. В конце концов подавляющее большинство ученых поняли это. И вот по моделям природы уже созданы и создаются удивительные аппараты и приборы, тончайшие механизмы и машины.
Пожалуй, позже, чем на других животных, ученые обратили внимание на насекомых. Может быть, люди были слишком заняты борьбой с шестиногими, может быть, считали, что эти небольшие и примитивные существа не способны подсказать людям что-либо толковое. Во всяком случае, насекомым, по сравнению с другими животными, уделялось гораздо меньше внимания. Но когда все-таки занялись шестиногими — поняли, сколько потеряли из-за своего зазнайства.
Вот лишь несколько примеров.
Не так давно люди изобрели удивительный инструмент, который назвали отбойным молотком. Сколько сил и времени потратили инженеры и конструкторы на создание этого инструмента, трудно подсчитать. Однако дело стоило того: отбойный молоток очень облегчил труд. Но возможно, гораздо быстрее и проще был бы создан этот инструмент, обрати ученые и конструкторы своевременно внимание на работу роющей осы.
Биологи знали: роющая оса довольно быстро может выдолбить глубокую норку даже в твердой почве. Но каким образом ей это удается? Да, челюсти у осы сильные, однако не такие уж могучие. Тут должен быть какой-то секрет. Верно, секрет есть, и недавно его удалось разгадать. Это особое приспособление, своего рода отбойный молоток.
Наблюдатели замечали, что, роя норку, оса усиленно машет крылышками. Казалось бы, какой непроизводительный расход энергии: ведь крылья не участвуют в землеройных работах. Но, оказывается, очень даже участвуют! На груди у осы, между мышцами, управляющими работой крыльев, имеются специальные воздушные мешки. Крылья работают, мышцы то и дело с огромной скоростью сокращаются и сжимают эти мешочки. Воздух из мешочков быстрыми сериями импульсов по специальным каналам идет к челюстям осы, заставляя их вибрировать. Вибрируют челюсти у осы с огромной скоростью, и одного их прикосновения достаточно, чтобы даже в твердой почве образовалось углубление. Не удивительно поэтому, что в короткий срок с помощью такого «отбойного молотка» она сооружает глубокую норку.
Биологам было известно об этом приспособлении, но они не представляли, что его можно «позаимствовать» у насекомого. Конструкторы, работая над отбойным молотком, понятия не имели о том, что он уже существует в природе и что природа могла бы подсказать им более короткий и точный путь к изобретению инструмента.
Конечно, ракета, созданная людьми, очень мало похожа на «ракету», которая имеется у живущей в воде личинки стрекозы. И сравнение этих двух ракет могло бы очень помочь тем, кто был противником сотрудничества техники с живой природой. В самом деле, что между ними общего? Ведь ракета работает на топливе, а личинка стрекозы движется, выбрасывая из особого мускульного мешка струю воды. Но ведь все дело в принципе действия. А принцип как раз у них общий.
Глупо говорить о слепом копировании живой природы, но также глупо и нелепо полностью отрицать эту необходимость. Истина в середине? Но еще Гёте сказал, что мнение, лежащее посреди двух крайних мнений, не истина, а проблема. Что ж, прекрасно! Именно проблема, которую и решают конструкторы, опираясь на принципы, подсказанные природой. Если бы люди не пренебрегали этими принципами, возможно, не было бы стольких трагедий и неприятностей, когда авиаконструкторы стали создавать скоростные самолеты.
Пока самолеты развивали не очень большую скорость, с крыльями все обстояло благополучно. Но когда скорость увеличилась, крылья начали сильно вибрировать, колебаться. Колебания эти, называемые флаттером, приводили к разрушению крыльев и, естественно, к аварии самолетов, а часто и к гибели лётчиков-испытателей.
В конце концов люди нашли способ бороться с флаттером. Но чего это стоило!
А если бы они в свое время обратили внимание на крылья насекомых, в частности на крылья стрекозы? Впрочем, наверное, многие конструкторы и изобретатели видели стрекоз, обращали внимание на черные точки — темные хитиновые утолщения, которые имеются на концах их крыльев, так называемую петростигму, или крыловый глазок, но не представляли себе, что именно в этих пятнышках все дело!
У стрекоз тоже появляется флаттер, однако стрекозы, как мы знаем, прекрасные летуны. Во всяком случае, крылья у них не ломаются. Не ломаются благодаря крыловым глазкам, «утяжелению», давно созданному природой. А люди так долго и мучительно шли к этому открытию.
А если бы у конструкторов и изобретателей была возможность в свое время подробно рассмотреть и изучить ротовой аппарат клопа? Ведь в ротовом аппарате клопа, как в крошечной камере, мышцы оттягивают маленький хитиновый поршень, в ней образуется пониженное давление, и слюна, скопившаяся около камеры, открывает клапан. Этот клапан открывается только внутрь и, пропустив слюну, захлопывается. А поршень под давлением упругой, пружинистой перепонки идет вниз, сжимает слюну и создает повышенное давление. В это время открывается другой клапан. Он открывается только наружу, и слюна поступает к нижней челюсти клопа.
Да, если бы у конструкторов и изобретателей в свое время имелась возможность все это увидеть, очень вероятно, что двигатель внутреннего сгорания был бы создан гораздо раньше и произошло бы это намного проще.
Примеров того, что могло бы произойти, будь люди более внимательны к насекомым, можно привести много. Но дело, конечно, еще и во времени. Очень может быть, что и изобретатели и конструкторы, даже что-то увидев и поняв, не смогли бы это увиденное позаимствовать и применить на практике.
Должно было наступить определенное время, должна была произойти встреча ученых. И такое время наступило, и встреча произошла: встретились биологи, математики и конструкторы, чтоб заключить союз, чтоб дальше, дополняя друг друга и помогая один другому, постигать тайны природы и обращать их на пользу человеку.
Такая встреча состоялась, и такой союз был заключен совсем недавно. По нашей с тобой схеме если человеку разумному от роду 1 минута, а насекомым — 20 суток, то союзу инженеров, математиков и биологов — 0,001 секунды. Конечно, это очень и очень мало не только для серьезных открытий, но и даже для правильной постановки вопроса. Однако не надо забывать, что союз заключен не на голом месте, к встрече ученые и конструкторы готовились давно, пришли на нее со множеством фактов и множеством теорий. И именно благодаря этому в очень короткий срок людям удалось уже многое узнать и многое сделать.
Мы здесь с тобой не будем говорить об открытиях, которые сделали люди, изучая всех животных, и о приборах, которые они создали благодаря этим открытиям.
Нас пока интересуют лишь насекомые…
Начнем со зрения. Мы знаем, что глаза у насекомых необычные, состоящие из многих отдельных глазков, каждый из которых фиксирует определенную часть изображения, а все вместе дают полностью это изображение, но мозаично. Таким способом можно было репродуцировать очень точные микросхемы электронно-вычислительных машин. И сейчас такие репродукции делаются — многократное изображение дает фотоаппарат, снабженный почти полутора тысячами линз. Он сделан по типу глаза насекомого и даже называется «мушиный глаз».
Это самый простой пример. Есть и посложнее. Летчики, летающие через Северный полюс или вблизи него, вынуждены отказываться от магнитного компаса: он на полюсе и вблизи него бесполезен. Но ведь как-то ориентироваться надо. Пчела бы, конечно, нашла выход, она же способна видеть поляризованный свет и по нему определять направление. В разное время солнце, естественно, находится в разных местах неба, и, стало быть, освещенность неба в поляризованном свете тоже разная. Это и дало возможность конструкторам, ориентируясь на строение глаза пчелы, создать прибор — «кисточку Гейдингера», указывающий направление по освещенности неба в поляризованном свете.
Не менее интересен для изучения и слух насекомых. Американский профессор Пирс занимался звуковыми и слуховыми аппаратами насекомых, живущих в воде. Ему удалось выяснить очень важную вещь: до сих пор люди считали, что установить связь между судами под водой, не выводя звуковые сигналы в атмосферу, нельзя. А вот водные насекомые могут общаться между собой, не выводя свои звуковые сигналы из водной среды.
Открытие Пирса помогло создать аппарат для связи подводных лодок между собой.
Еще большие перспективы может открыть изучение уха кузнечика, то самое ухо, которое расположено на ноге и которое способно воспринимать мельчайшие колебания.
Землетрясения — страшный бич человечества. По данным ЮНЕСКО, на Земле ежегодно от землетрясений гибнет не менее 14 тысяч человек. Предотвратить землетрясения люди пока не могут. Но когда стало известно, что накопление разрушительной энергии происходит постепенно в глубине земной коры, появилась, кажется, возможность узнать о землетрясении заранее. Ведь можно узнать о начале этого накопления, о скорости нарастания энергии. Во всяком случае, этими вопросами уже занимаются во многих странах физики и инженеры. А недавно к ним присоединились и биологи.
Давно замечено, что многие животные накануне землетрясения покидают опасную зону. Многократные проверки подтвердили: в местах землетрясений почти не остается животных. Еще неизвестны причины, заставляющие их уходить: может быть, они слышат какие-то звуки, может быть, чувствуют малейшие колебания почвы? Но еще не открыты «аппараты», регистрирующие эти колебания. Правда, в 1967 году советские ученые открыли «сейсмический слух» у рыб, и это дает надежду нечто подобное открыть и у других животных. Пока же люди обратили серьезное внимание на кузнечика. Его «ухо», находящееся на ноге, — примитивный орган. Но он способен зарегистрировать землетрясение за многие тысячи километров. Если же кузнечик находится вблизи будущей катастрофы, то, безусловно, ее приближение он услышит задолго.
И вот кузнечик уже на лабораторном столе. И вот уже склонились над ним не только биологи, но и конструкторы, инженеры, математики. И вот уже делаются первые попытки создания сверхчувствительного аппарата по типу «уха» кузнечика. И если это удастся — сколько человеческих жизней будет спасено!
Аппараты, предсказывающие землетрясение, только еще начали свой путь по конструкторским бюро, а многие «сверхчувствительные носы» уже покинули их. Уже создано немало электронных и всяких прочих «носов», которые, по замыслу, должны соперничать с «носами» насекомых, но которые практически еще очень далеки от них.
Обыкновенная муха — бич человечества, разносчик заразы. И медики совершенно справедливо объявили мухам беспощадную войну. Конструкторов она интересует с другой точки зрения: узнав от биологов об удивительном чутье мухи, они мечтают создать индикатор, который улавливал бы запахи так, как муха. Такие приборы очень нужны. И пока одни конструкторы ломают голову над тем, как бы вырвать у мухи ее секрет, другие используют саму муху. Американский ученый Роберт Кей создал аппарат, способный по запаху обнаруживать присутствие ядовитых газов и поднимать тревогу. Аппарат очень важен и на шахтах, и в подводных лодках; и ученый не жалел усилий, чтобы создать его. Все было сделано на высшем уровне современной науки и техники, не удалось сделать только одного — чувствительного элемента, то есть датчика газов. И тогда Кей использовал живую муху. В мозг мухи, находящейся в одном из узлов аппарата, ввели микроэлектроды, улавливающие биотоки. Как только муха начинала чувствовать газ, биотоки менялись, а записывающие устройства тут же сообщали об этих изменениях, и автоматически включался сигнал тревоги.
Мухи — не единственные живые анализаторы, используемые людьми. Уже несколько лет на некоторых шахтах в США используются аппараты, где датчиками являются тараканы. Они улавливают такую концентрацию ядовитых газов, какую не способен уловить самый чувствительный прибор. Таракан реагирует на опасность немедленно, и автоматически включается сигнал тревоги. Не только органы чувств насекомых все больше интересуют ученых, интересует людей и полет шестиногих соседей по планете.
О крыльях уже говорилось достаточно. Но у насекомых есть и другие приспособления, помогающие им в полете. Кое-что из этих приспособлений уже использовано. Например, прибор, помогающий ориентировать положение самолета в воздухе, — гироскоп. Построен он на том же принципе, что и волчок: если волчок крутится, то плоскость, на которой он находится в это время, можно наклонить в любую сторону (если волчок, конечно, не соскользнет), и ось волчка при этом будет сохраняться в пространстве неподвижной. Но гироскоп по многим показателям перестал удовлетворять авиацию. Нужен был новый прибор. И муха подсказала, как его сделать.
Как муха ориентируется в пространстве, что помогает ей ровно лететь или после головокружительных фигур высшего пилотажа молниеносно выравнивать полет?
Оказывается — жужжальца. Те самые остатки второй пары крыльев, которые помогают мухе «заводить мотор» и о которых мы уже говорили с тобой.
Поначалу люди считали, что эти жужжальца просто придают мухе устойчивость в воздухе, как придает устойчивость человеку, идущему по канату, шест, который он держит в руках. Жужжальца даже назвали балансирами. Но, оказывается, эти жужжальца — прибор более совершенный, чем гироскоп. Жужжальца в полете все время вибрируют, будто крутятся волчком. И если муха изменяет свое положение в пространстве, он еще какое-то время продолжают по инерции сохранять прежнее положение. При этом касаются крошечных волосков, имеющих нервные окончания, а те немедленно сигнализируют в мозг. И муха сразу же выправляет свое положение. О быстроте ее реакции можно судить хотя бы потому, что сигнал проходит по рефлекторной дуге (от места раздражения — в мозг и обратно, к органу, получающему «команду») со скоростью 5 метров в секунду!
И вот люди, по принципу жужжалец, создали прибор — гиротрон: две тонкие, постоянно вибрирующие пластинки, находящиеся в переменном магнитном поле. Этот прибор не только реагирует на малейший крен, но и, соединенный с соответствующими приборами, автоматически выравнивает самолет, если тот начинает крениться или входить в штопор.
Ну хорошо, у мухи есть жужжальца, и они помогают ей сохранять в воздухе определенное положение. А как же обходятся без жужжалец другие насекомые? Ведь они тоже не кувыркаются, а летают как следует. Видимо, и у них есть какие-то приспособления, какие-то «аппараты», помогающие летать. Только люди их еще не нашли. А когда найдут, попытаются сделать что-то подобное. И если удастся сделать, то даже трудно сказать, как много дадут такие приборы авиаторам. А может быть, и не только им!
Ведь та же муха не только прекрасно летает, но и удивительно ходит! Мы тысячу раз видим мух на стене и на потолке, видим, как они ходят и вверх и вниз головой, но совершенно не задумываемся о том, что при этом они нарушают элементарные законы физики, двигаются вопреки земному тяготению!
Впрочем, поначалу даже специалисты-энтомологи не обращали внимания на акробатические упражнения мух, они знали, что на конце лапок многих насекомых, и мух в частности, имеются крохотные коготки и очень мягкие подушечки. Ползая по стене, муха цепляется коготками за малейшие неровности, шероховатости и не падает. Если же она ползет, допустим, по стеклу, где коготкам не за что уцепиться, или по потолку, на котором одни коготки ее не удержат, в дело вступают подушечки. Мягкие, они плотно прижимаются к поверхности, между ними и поверхностью образуется безвоздушное пространство — вакуум, и нога насекомого присасывается.
Все, казалось бы, просто и ясно. По крайней мере, было до тех пор, пока люди не решили всерьез проверить способ хождения мух и им подобных насекомых. И тут выяснилось, что воздух ни при чем. Так же спокойно муха ходит по стеклу и в разреженной атмосфере. Тогда что? Какой-нибудь клей или липкое вещество? Это было бы объяснением, но, увы, даже самые тщательные исследования не обнаружили у мух никаких клейких выделений. А муха продолжает ходить по потолку, не обращая внимания на то, что нарушает закон земного тяготения, и вызывая недоумение у физиков и биологов.
Впрочем, муха интересует и химиков: надо же все-таки узнать, что за «химическая лаборатория» у этого насекомого. Ведь муха может различать более 30 тысяч разных веществ: достаточно ей дотронуться до какого-нибудь вещества или предмета, и она немедленно получает полную информацию о его составе, о свойствах, которыми он обладает. На лапках мухи — крошечные волоски. Это одновременно и приборы и химические реактивы, которые немедленно произведут анализ!
Химиков интересует и жук-бомбардир.
Перекись водорода обычно быстро разлагается, и химики еще не решили проблему длительного хранения этого препарата. А жук-бомбардир уже давно решил ее. Жук стреляет, за это и прозван так. Стреляет он потому, что в его теле имеется три камеры. В одной из них находится гидрохинон, в другой — перекись водорода. При опасности оба вещества поступают в третью камеру, смешиваются, и в результате бурной химической реакции происходит выделение кислорода. Кислород вспенивает жидкость и с силой выталкивает ее наружу. Происходит «выстрел». Все это уже известно, неизвестно только, как жук хранит у себя перекись водорода высокой концентрации, соединение очень неустойчивое, которое по всем химическим законам должно быстро разлагаться.
Есть предположение, что организм жука вырабатывает какие-то вещества, препятствующие разложению перекиси водорода. Но какие? Необходимо узнать. И может быть, проблема хранения перекиси водорода будет решена.
Есть еще один секрет у этих жуков. В Южной Америке живет бомбардир, который при «выстреле» «накаляется» до 100 градусов. Как он не сварит себя сам и что за жароустойчивые ткани в его организме?
Несколько лет назад насекомые преподнесли химикам и биологам еще один сюрприз, дающий пищу для размышлений.
Известно, что многие насекомые ядовиты. У одних насекомых ядовита кровь, и птица, попробовав однажды такое насекомое, больше не будет трогать ему подобных. Других насекомых защищает запах — он отпугивает от насекомого его врагов или заранее предупреждает, что насекомое несъедобно. Третьи кусают или жалят. Правда, сам по себе укус, допустим, не остановил бы врага, но насекомое вводит в ранку яд, который часто делает укус очень болезненным. Наконец, есть насекомые, которые «стреляют» в противника зловонной или ядовитой жидкостью.
Сейчас установлено, что у многих насекомых имеются специальные железы, вырабатывающие «химическое оружие»: в нужный момент железы молниеносно выдают необходимое количество ядовитой жидкости.
Но есть ядовитые насекомые, у которых отсутствуют такие железы. Яд не вырабатывается, а находится в организме насекомого постоянно, он как бы пропитывает все его тело. Например, гусеница капустницы при опасности выпускает зеленую кашицу — полупереваренную пищу, смешанную с ядом, находящимся в организме. Некоторые насекомые «запасаются» ядом, поедая ядовитые растения. Причем делают это они чаще всего на стадии гусениц или личинок.
Как будто бы ясно теперь и откуда яд и что он из себя представляет: у одних — выделение желез, у других — яд, извлеченный из растений. И тот и другой — органические вещества, существующие в природе. Кажется, иначе и быть не может. Но вот недавно группа американских исследователей под руководством Т. Эйснера обнаружила в организме кузнечика химические; соединения, которых нет у животных (во всяком случае, пока они не обнаружены). Не было их раньше и у кузнечиков. И вдруг стали вырабатываться. Оказалось, образцы этих ядов насекомые получили у людей! Кузнечики быстро усвоили яды, которые люди применяют для борьбы с вредными насекомыми, и через какое-то время стали вырабатывать подобные. И благо бы кузнечики вырабатывали эти яды и держали их при себе, так нет, они успешно пользуются ядами в борьбе с собственными врагами — отпугивают муравьев. Ну хорошо, кузнечики. А если таким же способом начнут защищаться от своих природных врагов другие насекомые? Причем как раз те, кого человек хочет уничтожить или свести их число до минимума. Получается, человек не только не уничтожает насекомых-вредителей, но еще и вооружает их естественных врагов?!
Да, есть над чем задуматься. Впрочем, люди слишком долго не обращали внимания на насекомых, на их способности и возможности. А обратив внимание, на первых порах наделали немало ошибок, стараясь все — и строение, и поведение, и деятельность шестиногих — втиснуть в свои логические и объяснимые рамки.
Сейчас люди многое поняли, узнали, открыли. И усвоили главное — то, что «живые тела не подчиняются одним только законам физики», как заметил знаменитый физик Резерфорд.
Сейчас люди уже не стесняются признать свое неумение объяснить многое в природе, не стесняются сказать: «Науке пока неизвестно». И это залог того, что наука не будет стоять на месте и с каждым днем ей будет известно все больше и больше.