Часть I. Ученый и наука
Глава I. Выбор фактов
Граф Толстой где-то объясняет, почему «наука для науки» в его глазах представляется идеей, лишенной смысла. Мы не можем знать всех фактов, ибо число их в действительности безгранично. Необходимо, следовательно, делать между ними выбор. Можем ли мы руководствоваться при производстве этого выбора исключительно капризами нашего любопытства? Не лучше ли руководствоваться полезностью, нашими нуждами, практическими и в особенности моральными? Разве нет у нас лучшего дела, чем считать божьих коровок, живущих на нашей планете?
Ясно, что для него слово «польза» не имеет того значения, какое ему обычно приписывают деловые люди, а за ними и большая часть наших современников. Он мало озабочен применением науки к промышленности, чудесами электричества или автомобильного спорта, на которые он смотрит скорее как на препятствие к моральному прогрессу; полезным является исключительно то, что делает человека лучшим.
Что касается меня, то нужно ли мне говорить, что я не мог бы удовлетвориться ни тем, ни другим идеалом? Я не желал бы ни этой плутократии, жадной и ограниченной, ни этой демократии, добродетельной и посредственной, всегда готовой подставить левую щеку; демократии, среди которой жили бы мудрецы, лишенные любознательности, люди, которые, избегая всякого излишества, не умирали бы от болезни, но наверняка погибали бы от скуки. Впрочем, все это дело вкуса, и не об этом, собственно, я хотел говорить.
Вопрос, поставленный выше, тем не менее остается в силе, и на нем мы и должны сосредоточить свое внимание. Если наш выбор может определяться только капризом или непосредственной пользой, то не может существовать наука для науки, но не может, вследствие этого, существовать и наука вообще. Так ли это? Что выбор сделать необходимо, этого нельзя оспаривать; какова бы ни была наша деятельность, факты идут быстрее нас, и мы не можем за ними гнаться; в то время как ученый открывает один факт, в каждом кубическом миллиметре его тела их происходит миллиарды миллиардов. Желать, чтобы наука охватывала природу, значило бы заставить целое войти в состав своей части.
Но ученые все-таки полагают, что есть известная иерархия фактов и что между ними может быть сделан разумный выбор; и они правы, ибо иначе не было бы науки, а наука все-таки существует. Достаточно только открыть глаза, чтобы убедиться, что завоевания промышленности, обогатившие стольких практических людей, никогда не увидели бы света, если бы существовали только люди-практики, если бы последних не опережали безумные бессребреники, умирающие нищими, никогда не думающие о своей пользе и руководимые все же не своим капризом, а чем-то другим.
Эти именно безумцы, как выразился Мах, сэкономили своим последователям труд мысли. Те, которые работали бы исключительно в целях непосредственного приложения, не оставили бы ничего за собой; стоя перед новой нуждой, нужно было бы заново все начинать сначала. Но большая часть людей не любит думать, и, может быть, это и к лучшему, ибо ими руководит инстинкт, и руководит он ими обыкновенно лучше, чем интеллектуальные соображения, по крайней мере во всех тех случаях, когда люди имеют в виду одну и ту же непосредственную цель. Но инстинкт – это рутина, и если бы его не оплодотворяла мысль, то он и в человеке не прогрессировал бы больше, чем в пчеле или в муравье. Необходимо, следовательно, чтобы кто-нибудь думал за тех, кто не любит думать; а так как последних чрезвычайно много, то необходимо, чтобы каждая из наших мыслей приносила пользу столь часто, сколь это возможно, и именно поэтому всякий закон будет тем более ценным, чем более он будет общим.
Это нам показывает, как мы должны производить выбор. Наиболее интересными являются те факты, которые могут служить свою службу многократно, которые могут повторяться. Мы имели счастье родиться в таком мире, где такие факты существуют. Представьте себе, что существовало бы не 60 химических элементов, а 60 миллиардов и что между ними не было бы обыкновенных и редких, а что все были бы распространены равномерно. В таком случае всякий раз, как нам случилось бы подобрать на земле булыжник, была бы большая вероятность, что он состоит из новых, нам неизвестных, элементов. Все то, что мы знали бы о других камнях, могло бы быть совершенно неприменимо к нему. Перед каждым новым предметом мы стояли бы, как новорожденный младенец; как и последний, мы могли бы подчиняться только нашим капризам и нашим нуждам. В таком мире не было бы науки; быть может, мысль и сама жизнь в нем были бы невозможны, ибо эволюция не могла бы развивать инстинктов сохранения рода. Слава богу, дело обстоит не так! Как всякое счастье, к которому мы приспособились, мы не оцениваем и этого во всем его значении. Биолог был бы совершенно подавлен, если бы существовали только индивидуумы и не было бы видов, если бы наследственность не воспроизводила детей, похожих на их отцов.
Каковы же те факты, которые имеют шансы на возобновление? Таковыми являются, прежде всего, факты простые. Совершенно ясно, что в сложном факте тысячи обстоятельств соединены случаем, и лишь случай, еще гораздо менее вероятный, мог бы их объединить снова в той же комбинации. Но существуют ли простые факты? А если таковые существуют, то как их распознать? Кто удостоверит нам, что факт, который мы считаем простым, не окажется ужасно сложным? На это мы можем только ответить, что мы должны предпочитать те факты, которые нам представляются простыми, всем тем, в которых наш грубый глаз различает несходные составные части; и тогда одно из двух: либо эта простота действительная, либо же элементы так тесно между собою соединены, что мы не в состоянии их отличать один от другого. В первом случае мы имеем шансы встретить снова тот же самый простой факт либо непосредственно во всей его чистоте, либо как составную часть некоторого сложного комплекса. Во втором случае эта однородная смесь имеет больше шансов на новое воспроизведение, чем совершенно разнородный агрегат. Случай может образовать смесь, но он не может ее разделить, и чтобы из разнообразных элементов соорудить упорядоченное сооружение, в котором можно было бы нечто различать, нужно его строить сознательно. Поэтому есть очень мало шансов, чтобы агрегат, в котором мы нечто различаем, когда-либо повторился. Напротив, есть много шансов, чтобы смесь, представляющаяся на первый взгляд однородной, возобновлялась многократно. Факты, которые представляются простыми, даже в том случае, когда они не являются таковыми в действительности, все же легче возобновляются случаем.
Вот что оправдывает метод, инстинктивно усвоенный ученым, и, быть может, еще больше его оправдывает то обстоятельство, что факты, которые мы чаще всего встречаем, представляются нам простыми именно потому, что мы к ним привыкли.
Но где же они – эти простые факты? Ученые искали их в двух крайних областях: в области бесконечно большого и в области бесконечно малого. Их нашел астроном, ибо расстояния между светилами громадны, настолько громадны, что каждое из светил представляется только точкой; настолько громадны, что качественные различия сглаживаются, ибо точка проще, чем тело, которое имеет форму и качество. Напротив, физик искал элементарное явление, мысленно разделяя тело на бесконечно малые кубики, ибо условия задачи, которые испытывают медленные непрерывные изменения, когда мы переходим от одной точки тела к другой, могут рассматриваться как постоянные в пределах каждого из этих кубиков. Точно так же и биолог инстинктивно пришел к тому, что он смотрит на клетку как на нечто более интересное, чем целое животное, и этот взгляд в дальнейшем действительно подтвердился, ибо клетки, принадлежащие к самым различным организмам, оказываются гораздо более схожими для того, кто умеет это сходство усматривать, чем самые эти организмы. Социолог находится в более затруднительном положении: люди, которые для него служат элементами, слишком различны между собой, слишком изменчивы, слишком капризны, словом, слишком сложны; и история не повторяется. Как же здесь выбрать интересный факт, т. е. тот, который возобновляется? Метод – это, собственно, и есть выбор фактов; и прежде всего, следовательно, нужно озаботиться изобретением метода; и этих методов придумали много, ибо ни один из них не напрашивается сам собой. Каждая диссертация в социологии предлагает новый метод, который, впрочем, каждый новый доктор опасается применять, так что социология есть наука, наиболее богатая методами и наиболее бедная результатами.
Итак, начинать нужно с фактов, систематически повторяющихся; но коль скоро правило установлено и установлено настолько прочно, что никакого сомнения не вызывает, то те факты, которые вполне с ним согласуются, не представляют уже для нас никакого интереса, так как они уже не учат ничему новому. Таким образом, интерес представляет лишь исключение. Мы вынуждены прекратить изучение сходства, чтобы сосредоточить свое внимание прежде всего на возможных здесь различиях, а из числа последних нужно выбрать прежде всего наиболее резкие, и притом не только потому, что они более всего бросаются в глаза, но и потому, что они более поучительны. Простой пример лучше пояснит мою мысль. Положим, что мы желаем определить кривую по нескольким наблюдаемым ее точкам. Практик, который был бы заинтересован только непосредственными приложениями, наблюдал бы исключительно такие точки, которые были бы ему нужны для той или иной специальной цели; но такого рода точки были бы плохо распределены на кривой; они были бы скоплены в одних областях, были бы разрежены в других, так что соединить их непрерывной линией было бы невозможно, нельзя было бы воспользоваться ими для каких-либо иных приложений. Совершенно иначе поступил бы ученый. Так как он желает изучить кривую саму по себе, то он правильно распределит точки, подлежащие наблюдению, и, как только он их будет знать, он соединит их непрерывной линией и тогда будет иметь в своем распоряжении кривую целиком. Но что же он для этого сделает? Если он первоначально определил крайнюю точку кривой, то он не будет оставаться все время вблизи этой точки, а, напротив, он перейдет прежде всего к другой крайней точке. После двух конечных точек наиболее интересной будет середина между ними и т. д.
Итак, если установлено какое-нибудь правило, то прежде всего мы должны исследовать те случаи, в которых это правило имеет больше всего шансов оказаться неверным. Этим, между прочим, объясняется интерес, который вызывают факты астрономические, а также факты, которые относятся к прошлому геологических эпох. Уходя далеко в пространстве и во времени, мы можем ожидать, что наши обычные правила там совершенно рушатся. И именно это великое разрушение часто может помочь нам лучше усмотреть и лучше понять те небольшие изменения, которые могут происходить вблизи нас, в том небольшом уголке Вселенной, в котором мы призваны жить и действовать. Мы познаем лучше этот уголок, если побываем в отдаленных странах, в которых нам, собственно, нечего делать.
Однако мы должны сосредоточить свое внимание главным образом не столько на сходствах и различиях, сколько на тех аналогиях, которые часто скрываются в кажущихся различиях. Отдельные правила кажутся вначале совершенно расходящимися, но, присматриваясь к ним поближе, мы обыкновенно убеждаемся, что они имеют сходство. Различные по материалу, они имеют сходство в форме и в порядке частей. Таким образом, когда мы взглянем на них как бы со стороны, мы увидим, как они разрастаются на наших глазах, стремясь охватить все. Это именно и составляет ценность многих фактов, которые, заполняя собой одни комплексы, оказываются в то же время верными изображениями других известных нам комплексов.
Я не могу останавливаться на этом более, но, я полагаю, из сказанного достаточно ясно, что ученый не случайно выбирает факты, которые он должен наблюдать. Он не считает божьих коровок, как говорил граф Толстой, ибо число этих насекомых, как бы они ни были интересны, подвержено чрезвычайно капризным колебаниям. Он старается сконцентрировать много опытов, много мыслей в небольшом объеме, и поэтому-то небольшая книга по физике содержит так много опытов, уже произведенных, и в тысячу раз больше других возможных опытов, результаты которых мы знаем наперед.
Но мы рассмотрели пока только одну сторону дела. Ученый изучает природу не потому, что это полезно; он исследует ее потому, что это доставляет ему наслаждение, а это дает ему наслаждение потому, что природа прекрасна. Если бы природа не была прекрасной, она не стоила бы того, чтобы быть познанной; жизнь не стоила бы того, чтобы быть прожитой. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза, не о красоте качества и видимых свойств; и притом не потому, что я такой красоты не признаю, отнюдь нет, а потому, что она не имеет ничего общего с наукой. Я имею в виду ту более глубокую красоту, которая кроется в гармонии частей и которая постигается только чистым разумом. Это она создает почву, создает, так сказать, остов для игры видимых красот, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы весьма несовершенной, как все неотчетливое и преходящее. Напротив, красота интеллектуальная дает удовлетворение сама по себе, и, быть может, больше ради нее, чем ради будущего блага рода человеческого, ученый обрекает себя на долгие и тяжкие труды.
Так вот именно эта особая красота, чувство гармонии мира, руководит нами в выборе тех фактов, которые наиболее способны усиливать эту гармонию, подобно тому, как артист разыскивает в чертах своего героя наиболее важные, которые сообщают ему о его характере и жизни; и нечего опасаться, что это бессознательное, инстинктивно предвзятое отношение отвлечет ученого от поисков истины. Можно мечтать о мире, полном гармонии, но как далеко его все же оставит за собой действительный мир! Наиболее великие художники, которые когда-либо существовали, – греки – создавали свое небо; но как оно убого по сравнению с нашим действительным небом.
И это потому, что прекрасна простота, прекрасна грандиозность; потому, что мы предпочтительнее ищем простые и грандиозные факты, потому, что нам доставляет наслаждение то уноситься в гигантскую область движения светил, то проникать при помощи микроскопов в таинственную область неизмеримо малого, которое все же представляет собой нечто величественное, то углубляться в геологические эпохи, изыскивая следы прошлого, которое именно потому нас и привлекает, что оно очень отдалено.
Мы видим, таким образом, что поиски прекрасного приводят нас к тому же выбору, что и поиски полезного; и совершенно таким же образом экономия мысли и экономия труда, к которым, по мнению Маха, сводятся все стремления науки[24], являются источниками как красоты, так и практической пользы. Мы больше всего удивляемся тем зданиям, в которых архитектор сумел соразмерить средства с целью, в которых колонны как бы без усилия свободно несут возложенную на них тяжесть, как грациозные кариатиды Эрехтейона[25].
В чем же заключается причина этого совпадения? Обусловливается ли это просто тем, что именно те вещи, которые кажутся нам прекрасными, наиболее соответствуют нашему разуму и потому являются в то же самое время орудием, которым разум лучше всего владеет? Или, может быть, это игра эволюции или естественного отбора? Разве народы, идеалы которых наиболее соответствовали их правильно понятым интересам, вытеснили другие народы и заняли их место? Как одни, так и другие преследовали свои идеалы, не отдавая себе отчета о последствиях; но в то время как эти поиски приводили одних к гибели, они давали другим владычество. Можно думать и так: если греки восторжествовали над варварами и если Европа, наследница греческой мысли, властвует над миром, то это потому, что дикие любили яркие цвета и шумные звуки барабана, которые занимали только их чувства, между тем как греки любили красоту интеллектуальную, которая скрывается за красотой чувственной, которая именно и делает разум уверенным и твердым.
Несомненно, такого рода триумф вызвал бы ужас у Толстого, который ни за что не признал бы, что он может быть действительно полезным. Но это бескорыстное искание истины ради ее собственной красоты несет в себе здоровое семя и может сделать человека лучше. Я знаю, что здесь есть исключения, что мыслитель не всегда почерпнет в этих поисках чистоту души, которую он должен был бы найти, что есть ученые, имеющие весьма дурной характер.
Но следует ли из этого, что нужно отказаться от науки и изучать только мораль? И разве моралисты, когда они сходят со своей кафедры, остаются на недосягаемой высоте?
Глава II. Будущее математики
Лучший метод для предвидения будущего развития математических наук заключается в изучении истории и нынешнего состояния этих наук.
Но разве такой прием исследования не является для нас, математиков, некоторым образом профессиональным? Ведь мы привыкли экстраполировать, т. е. выводить будущее из прошедшего и настоящего; а так как ценность этого приема нам хорошо известна, то мы и не рискуем впасть в заблуждение относительно надежности тех результатов, которые мы получим с его помощью.
В свое время не было недостатка в прорицателях несчастья. Они охотно повторяли, что все проблемы, допускающие решение, уже были разрешены и что следующим поколениям придется довольствоваться кое-какими не замеченными ранее мелочами. К счастью, пример прошлого нас успокаивает. Уже не раз математики полагали, что все проблемы ими разрешены или, по крайней мере, что ими установлен перечень задач, которые допускают решение. Но вслед за тем смысл самого слова «решение» расширялся, проблемы, считавшиеся неразрешимыми, становились наиболее интересными; уму представлялись новые задачи, о которых раньше никто и не думал. Для греков хорошим решением было такое, которое выполняется только линейкой и циркулем; потом хорошим стали считать решение в том случае, если оно получается с помощью извлечения корней; наконец, ограничились требованием употреблять для решения исключительно алгебраические или логарифмические функции. Таким образом, предсказания пессимистов ни разу не сбылись, они вынуждены были делать уступку за уступкой, так что в настоящее время, я полагаю, их больше нет.
Но если их уже нет, то я не собираюсь с ними сражаться. Мы все уверены, что развитие математики будет продолжаться; весь вопрос в том, в каком именно направлении. Мне могут ответить: «во всех направлениях», – и это будет отчасти справедливо; но если бы это было верно вполне, то это нас несколько устрашило бы. Быстро возрастая, наши богатства вскоре образовали бы нечто столь громоздкое, что мы оказались бы перед этой непостижимой грудой не в лучшем положении, чем были раньше перед неизвестной нам истиной.
Историку и даже физику приходится делать выбор между фактами; мозг ученого – этот маленький уголок вселенной – никогда не сумеет вместить в себя весь мир целиком; поэтому среди бесчисленных фактов, которыми нас засыпает природа, необходимо будут такие, которые мы оставим в стороне, и будут другие, которые мы сохраним. То же самое, a fortiori, имеет место и в математике: математик тоже не в состоянии воспринять все факты, которые в беспорядке представляются его уму, тем более что здесь ведь он сам – я хочу сказать, его прихоть – создает эти факты. Ведь это он строит новую комбинацию из отдельных ее частей, сближая между собой их элементы; лишь в редких случаях природа приносит ему вполне готовые комбинации.
Бывают, конечно, и такие случаи, когда математик берется за ту или иную проблему, желая удовлетворить тем или иным требованиям физики; случается, что физик или инженер предлагают математику вычислить какое-нибудь число; которое им нужно знать для того или иного применения. Следует ли отсюда, что все мы, математики, должны ограничиться выжиданием таких требований и, вместо того чтобы свободно культивировать удовольствия, не иметь другой заботы, как применяться ко вкусам нашей клиентуры? Не должны ли математики, имея единственной целью приходить на помощь испытателям природы, только от последних ждать распоряжений? Можно ли оправдать такой взгляд? Конечно, нет! Если бы мы не культивировали точных наук ради них самих, то мы не создали бы математического орудия исследования, и в тот день, когда от физика пришел бы требовательный приказ, мы оказались бы безоружными.
Ведь физики приступают к изучению того или другого явления не потому, что какая-нибудь неотложная потребность материальной жизни сделала это изучение необходимым, и они правы. Если бы ученые XVIII столетия забросили электричество по той причине, что оно в их глазах было только курьезом, лишенным всякого практического интереса, то мы не имели бы в XX столетии ни телеграфа, ни электрохимии, ни электротехники. Будучи вынуждены сделать выбор, физики, таким образом, не руководствуются при этом единственно вопросом полезности. Как же именно поступают они, выбирая среди фактов природы? Нам нетрудно ответить на этот вопрос: их интересуют именно те факты, которые могут привести к открытию нового закона; другими словами, те факты, которые сходны с множеством других фактов, те, которые представляются нам не изолированными, а как бы тесно связанными в одно целое с другими фактами. Отдельный факт бросается в глаза всем – и невежде и ученому. Но только истинный физик способен подметить ту связь, которая объединяет вместе многие факты глубокой, но скрытой аналогией. Анекдот о яблоке Ньютона знаменателен, хотя он, вероятно, и не соответствует истине; будем поэтому говорить о нем как о действительном факте. Но ведь и до Ньютона, надо полагать, немало людей видели, как падают яблоки; а между тем никто не сумел сделать отсюда никакого вывода. Факты остались бы бесплодными, не будь умов, способных делать между ними выбор, отличать те из них, за которыми скрывается нечто, и распознавать это нечто, умов, которые под грубой оболочкой факта чувствуют, так сказать, его душу.
Буквально то же самое проделываем мы и в математике. Из различных элементов, которыми мы располагаем, мы можем создать миллионы разнообразных комбинаций; но какая-нибудь одна такая комбинация, сама по себе, абсолютно лишена значения; нам могло стоить большого труда создать ее, но это ничему не служит, разве что может быть предложено в качестве школьного упражнения. Другое будет дело, когда эта комбинация займет место в ряду аналогичных ей комбинаций, и когда мы подметим эту аналогию, перед нами будет уже не факт, а закон. И в этот день истинным творцом-изобретателем окажется не тот рядовой работник, который старательно построил некоторые из этих комбинаций, а тот, кто обнаружил между ними родственную связь. Первый видел один лишь голый факт, и только второй познал душу факта. Часто для обнаружения этого родства бывает достаточно изобрести одно новое слово, и это слово становится творцом; история науки может доставить нам множество знакомых вам примеров.
Знаменитый венский философ Мах сказал, что роль науки состоит в создании экономии мысли, подобно тому как машина создает экономию силы. И это весьма справедливо. Дикарь считает с помощью своих пальцев или собирая камешки. Обучая детей таблице умножения, мы избавляем их на будущее от бесчисленных манипуляций с камешками. Кто-то как-то узнал, с помощью ли камней или как-либо иначе, что 6 раз 7 составляет 42; ему пришла идея отметить этот результат, и вот благодаря этому мы не имеем больше надобности повторять вычисление сначала. Этот человек не потерял понапрасну своего времени даже в том случае, если он вычислял единственно ради собственного удовольствия; его манипуляция отняла у него не более двух минут, а между тем потребовалось бы целых два миллиарда минут, если бы миллиард людей должен был после него повторять ту же манипуляцию.
Итак, важность какого-нибудь факта измеряется его продуктивностью, т. е. тем количеством мысли, какое он позволяет нам сберечь.
В физике фактами большой продуктивности являются те, которые входят в очень общий закон, ибо благодаря этому они позволяют предвидеть весьма большое количество других фактов; то же мы видим и в математике. Я занялся сложным вычислением и, наконец, после большого труда пришел к некоторому результату; я не был бы вознагражден за свой труд, если бы благодаря полученному результату я не оказался в состоянии предвидеть результаты других подобных вычислений и уверенно направлять их, избегая тех блужданий ощупью, на которые я должен был обречь себя в первый раз. И наоборот, мое время не было бы потеряно, если бы эти самые блуждания привели меня к открытию глубокой аналогии изучаемой мною проблемы с гораздо более обширным классом других проблем; если бы благодаря этим блужданиям я узрел одновременно сходства и различия, словом, если бы они обнаружили передо мной возможность некоторого обобщения. Я приобрел бы тогда не новый факт, а новую силу. Простым примером, который раньше других приходит на ум, является алгебраическая формула, которая дает нам решение всех численных задач определенного типа, так что достаточно лишь заменить буквы числами. Благодаря такой формуле алгебраическое вычисление, однажды выполненное, избавляет нас от необходимости повторять без конца все новые и новые численные выкладки. Но это уже очень грубый пример; всем известно, что существуют такие аналогии, которые невозможно выразить какой-либо формулой, а между тем они-то и являются наиболее ценными.
Новый результат мы ценим в том случае, если, связывая воедино элементы давно известные, но до тех пор рассеянные и казавшиеся чуждыми друг другу, он внезапно вводит порядок там, где до тех пор царил, по-видимому, хаос. Такой результат позволяет нам видеть одновременно каждый из этих элементов и место, занимаемое им в общем комплексе. Этот новый факт имеет цену не только сам по себе, но он – и только он один – придает сверх того значение всем старым фактам, связанным им в одно целое. Наш ум так же немощен, как и наши чувства; он растерялся бы среди сложности мира, если бы эта сложность не имела своей гармонии: подобно близорукому человеку, он видел бы одни лишь детали и должен был бы забывать каждую из них, прежде чем перейти к изучению следующей, ибо он не был бы в состоянии охватить разом всю совокупность частностей. Только те факты достойны нашего внимания, которые вводят порядок в этот хаос и делают его, таким образом, доступным нашему восприятию.
Математики приписывают большое значение изяществу своих методов и результатов, и это не просто дилетантизм. Что, в самом деле, вызывает в нас чувство изящного в каком-нибудь решении или доказательстве? Гармония отдельных частей, их симметрия, их счастливое равновесие, – одним словом, все то, что вносит туда порядок, все то, что сообщает этим частям единство, то, что позволяет нам ясно их различать и понимать целое в одно время с деталями. Но ведь именно эти же свойства сообщают решению бо́льшую продуктивность; действительно, чем яснее мы будем видеть этот комплекс в его целом, чем лучше будем уметь обозревать его одним взглядом, тем лучше мы будем различать его аналогии с другими, смежными объектами, тем скорее мы сможем рассчитывать на открытие возможных обобщений. Впечатление изящного может быть вызвано неожиданностью сближения таких вещей, которые мы не привыкли сближать; и в этом случае изящность плодотворна, ибо благодаря ей обнажаются родственные отношения, которых мы не замечали до тех пор; она плодотворна и в том случае, если она обусловливается единственно контрастом между простотой средств и сложностью проблемы; она заставляет нас в этом случае задуматься о причине такого контраста и чаще всего позволяет нам увидеть, что причина не случайна, а таится в том или ином законе, которого мы не подозревали раньше. Одним словом, чувство изящного в математике есть чувство удовлетворения, не скажу, какое именно, но обязанное какому-то взаимному приспособлению между только что найденным решением и потребностями нашего ума; в силу такого именно приспособления найденное решение может служить орудием в наших руках. Следовательно, такое эстетическое удовлетворение находится в связи с экономией мышления. Подобно этому, например, кариатиды Эрехтейона кажутся нам изящными по той причине, что они ловко и, так сказать, весело поддерживают громадную тяжесть и вызывают в нас чувство экономии силы.
По той же причине, когда мы с помощью довольно длинных выкладок приходим к какому-нибудь поразительному по своей простоте результату, мы до тех пор не чувствуем себя удовлетворенными, пока не покажем, что мы могли бы предвидеть если не весь результат в целом, то по крайней мере его наиболее характерные черты. Чем же это объясняется? Что мешает нам удовольствоваться вычислением, раз оно, по-видимому, дало нам все, что мы хотели знать? Объясняется это тем, что в новом аналогичном случае прежнее длинное вычисление не могло бы помочь нам; иначе обстоит дело с рассуждением, наполовину интуитивным, которое позволило бы нам предвидеть результат наперед. Несложность такого рассуждения позволяет одним взглядом охватить все его части, благодаря чему непосредственно бросается в глаза то, что следует в нем изменить для приспособления его ко всем могущим представиться проблемам того же рода. Позволяя, кроме того, предвидеть, насколько просто будет решение этих проблем, такое рассуждение показывает по крайней мере, стоит ли браться за подробное вычисление.
Только что сказанного достаточно, чтобы показать, насколько было бы тщетно пытаться заменить свободную инициативу математика каким-нибудь механическим приемом.
Для получения действительно ценного результата недостаточно нагромоздить кучу выкладок или иметь машину для приведения всего в порядок; имеет значение не порядок вообще, а порядок неожиданный. Машина может сколько угодно кромсать сырой фактический материал, но то, что мы назвали душой факта, всегда будет ускользать от нее.
Начиная с середины истекшего столетия математики все больше и больше стремятся к достижению абсолютной строгости, и в этом они вполне правы. Это стремление выступает все ярче и ярче. В математике строгость еще не составляет всего, но где ее нет, там нет ничего; нестрогое доказательство – это ничто! Думаю, что с этим никто спорить не станет. Но если толковать эту истину слишком буквально, то окажется, что, например, до 1820 г. не было вовсе математики – утверждение, несомненно, преувеличенное; математики того времени охотно подразумевали то, что мы излагаем в пространных рассуждениях. Это не значит, что они вовсе не замечали этого, но они проходили мимо слишком поспешно; а чтобы хорошо разглядеть проблему, надо было бы взять на себя труд хотя бы высказать ее.
Но есть ли необходимость каждый раз подробно останавливаться на этой точности? Те, которые первые выдвинули требование строгой точности на первый план, дали нам образцы рассуждений, которым мы можем стараться подражать; но если будущие доказательства нужно будет всегда строить по этим образцам, то математические трактаты станут чересчур уж длинными; если я боюсь слишком длинных рассуждений, то не из одного только страха перед переполнением библиотек, а главным образом потому, что наши доказательства, все более удлиняясь, потеряют ту внешнюю видимую гармонию, о полезной роли которой я только что говорил.
Надо иметь в виду экономию мысли; недостаточно только дать образцы для подражания. Надобно, чтобы после нас смогли обойтись без этих образцов и вместо повторения однажды построенного рассуждения могли бы резюмировать его в нескольких строках. В этом отношении уже сделаны кое-какие успехи. Был, например, некоторый тип сходных между собой рассуждений; они встречались повсюду; они были абсолютно строги, но страдали растянутостью, и вот в один прекрасный день придуман был новый термин «равномерная сходимость», и уже одно это выражение сделало все прежние рассуждения бесполезными; не было больше необходимости повторять их, так как они подразумевались под этим термином. Творцы таких решительных и быстрых приемов преодоления трудностей могут оказать нам двоякую услугу: во-первых, мы учимся поступать в случае надобности подобно им, а во-вторых, – и это наиболее важно – их пример и результаты позволяют нам, и очень часто, не проделывать того, что пришлось делать им, ничем, однако, не жертвуя по отношению к строгости.
Только что мы видели пример того значения, какое в математике имеют слова и выражения; я мог бы привести еще много других примеров. Трудно поверить, какую огромную экономию мысли – как выражается Мах – может осуществить одно хорошо подобранное слово. Я, кажется, уже высказал как-то ту мысль, что математика – это искусство давать одно и то же название различным вещам. Объяснимся подробнее. Надо, чтобы эти вещи, различные по своему содержанию, были сходны по форме, надо, чтобы они, так сказать, могли войти в одну и ту же форму для отливки. Когда названия хорошо подобраны, вдруг с удивлением замечаешь, что все доказательства, проведенные для одного какого-нибудь предмета, непосредственно могут быть приложены к множеству новых предметов, причем не приходится даже ничего в них изменять, даже отдельных слов, ибо названия остались те же.
Очень часто бывает достаточно одного удачно подобранного слова, чтобы устранить те исключения, которые содержались в правилах, выраженных на старом языке. С этой именно целью придуманы были отрицательные и мнимые количества, точки в бесконечности и т. д. А ведь исключения вредны, ибо они заменяют законы.
Итак, одним из характерных признаков, отличающих факты большой продуктивности, является их свойство допускать эти счастливые нововведения в языке. Сам по себе голый факт часто бывает лишен особенного значения; его можно не раз отмечать, не оказывая этим наукам сколько-нибудь значительной услуги; свое значение он приобретает лишь с того дня, когда более проницательный мыслитель подметит сходство, которое он извлекает на свет и символически обозначает тем или другим термином.
У физиков мы встречаемся с совершенно таким же приемом. Они, например, придумали слово «энергия», и это слово оказалось удивительно плодотворным. Изгнав исключения, оно тоже создало закон; оно дало также одно название вещам, различным по содержанию, но сходным по форме.
Из слов, имевших наиболее счастливое влияние, я отмечу названия «группа» и «инвариант». Эти слова позволили нам проникнуть в сущность многих математических рассуждений. Они нам показали, как часто древние математики рассматривали группы, сами того не замечая, как они, считая себя отдаленными друг от друга целой пропастью, вдруг сходились вместе, не понимая, как это могло случиться. Теперь мы сказали бы, что они рассматривали так называемые «изоморфные группы». Мы теперь знаем, что в группе нас мало интересует содержание, материал, что одна только форма имеет значение и что когда одна группа хорошо изучена, тем самым становятся известными все группы, с нею изоморфные. Благодаря этим словам – группа, изоморфизм, – резюмирующим в нескольких слогах этот трудно уловимый закон и делающим его сразу для всех знакомым, переход от одной группы к другой, с нею изоморфной, оказывается непосредственным и совершается с большой экономией в работе мысли. С другой стороны, идея группы тесно примыкает к идее преобразования. Почему же приписывают такое громадное значение открытию нового преобразования? Да потому, что из одной какой-нибудь теоремы это преобразование позволяет вывести десятки других теорем; оно имеет такое же значение, как нуль, приставленный справа к целому числу.
Вот чем до сих пор обусловливалось направление, в котором развивалась математика; этим же оно, несомненно, будет определяться и в будущем. Но равным образом имеет значение и природа тех проблем, которые требуют своего разрешения. Мы не должны забывать, что должно быть нашей целью; мне она представляется двоякой. Ведь наша наука одновременно граничит и с физикой, и с философией; для этих двух наших соседок мы и работаем. Соответственно этому мы всегда видели и будем видеть, что математики движутся в двух прямо противоположных направлениях.
С одной стороны, математике приходится размышлять о себе самой, а это полезно, так как, размышляя о себе, она тем самым размышляет о человеческом уме, создавшем ее, тем более что среди всех своих творений он создал математику с наименьшими заимствованиями извне. Вот чем полезны некоторые математические исследования, каковы, например, исследования о постулатах, о воображаемых геометриях, о функциях со странным ходом. Чем более эти размышления уклоняются от наиболее общепринятых представлений, а следовательно, и от природы и прикладных вопросов, тем яснее они показывают нам, на что способен человеческий ум, когда он постепенно освобождается от тирании внешнего мира, тем лучше мы ум познаем в его внутренней сущности.
Но все же главные силы нашей армии приходится направлять в сторону противоположную, в сторону изучения природы.
Здесь мы встречаемся с физиком или инженером, которые говорят нам: «будьте любезны проинтегрировать такое-то дифференциальное уравнение; через неделю мне понадобится решение ввиду такого-то сооружения, которое должно быть закончено к такому-то сроку». – «Но это уравнение, – отвечаем мы, – не входит ни в один тип интегрируемых уравнений; последних, как вам известно, весьма немного». – «Да, это мне известно, но какой тогда в вас толк?» В большинстве случаев бывает достаточно понять друг друга; в самом деле, инженер не имеет нужды в интеграле конечной формы; ему надо лишь знать общий ход интегральной функции, или попросту ему нужно определенное числовое значение, которое без труда можно было бы найти, если бы интеграл уравнения был известен. Обыкновенно, хотя последний и неизвестен, но можно вычислить, и не зная его, требуемое числовое значение, если только точно известно, какое именно значение нужно инженеру и с какой степенью точности.
В былое время уравнение считалось решенным лишь в том случае, если решение выражалось с помощью конечного числа известных функций; но это едва ли возможно даже в одном случае из ста. Однако мы всегда можем или, вернее, должны стремиться узнать общий вид кривой, изображающей неизвестную функцию.
Затем остается найти количественное решение задачи; если неизвестное нельзя определить с помощью конечного вычисления, то его всегда можно представить при помощи бесконечного сходящегося ряда, который и позволит его вычислить. Но можно ли это считать настоящим решением? Рассказывают, что Ньютон сообщил Лейбницу приблизительно такую анаграмму: aaaaabbb eeeeii и т. д. Лейбниц, разумеется, ничего в ней не понял. Но нам теперь известен ключ, и мы знаем, что эта анаграмма в переводе на современный язык гласит: «я умею интегрировать все дифференциальные уравнения». Казалось бы, что либо Ньютону сильно повезло, либо он странным образом обманулся. Но в действительности он попросту хотел сказать, что он умеет образовывать (по способу неопределенных коэффициентов) степенной ряд, формально удовлетворяющий предложенному уравнению.
Но нас подобное решение не удовлетворило бы, и вот почему: во-первых, такой ряд сходится очень медленно; во-вторых, члены его следуют друг за другом без всякого закона. Напротив, ряд Θ, например, не оставляет желать ничего лучшего как потому, что он сходится очень быстро (это важно для практика, желающего получить нужное ему число как можно скорее), так и потому, что мы можем подметить с первого взгляда закон образования членов этого ряда (это служит для удовлетворения эстетических потребностей теоретика).
Но в таком случае нет более проблем решенных и проблем нерешенных; есть только проблемы более или менее решенные, смотря по быстроте сходимости ряда, являющегося их решением, или по большей или меньшей гармоничности закона, управляющего образованием членов этих рядов. Иногда случается, что одно несовершенное решение приводит нас к другому, более совершенному. Иногда же ряд сходится так медленно, что вычисление практически невыполнимо, и, таким образом, удается лишь доказать возможность проблемы. Но инженер считает такой ответ насмешкой над собой, и он прав, ибо действительно такой ответ ему нисколько не поможет окончить сооружение к назначенному сроку. Инженеру мало дела до того, окажет ли это решение услугу инженерам XXII столетия: но мы, математики, держимся другого мнения; часто мы бываем более счастливы, если нам удалось сберечь один день труда наших внуков, чем когда мы сберегаем один час для наших современников.
Иногда ощупью, так сказать, эмпирически, мы приходим к достаточно быстро сходящейся формуле. «Чего же вам больше?» – говорит инженер, но мы хотели предвидеть эту сходимость. Почему? Да потому, что если бы мы сумели предвидеть ее однажды, мы сумели бы сделать это и в другой раз. На этот раз мы удачно справились с вопросом; но это для нас не имеет большого значения, если мы не надеемся серьезно на повторение удачи и в другой раз.
По мере развития науки становится все более трудным охватить ее всю; тогда стараются разбить ее на части и довольствоваться одной такой частью, словом, специализироваться. Но если бы так продолжалось всегда, то это было бы значительным препятствием для прогресса науки. Как мы говорили уже, этот прогресс осуществляется именно благодаря неожиданным сближениям между различными частями науки. А между тем слишком отдаться специализации – значит закрыть себе дорогу к этим сближениям. Будем же надеяться, что конгрессы, подобные Гейдельбергскому и Римскому, создавая между нами общение, откроют перед каждым из нас картину деятельности его соседей, заставят его сравнить их деятельность с его собственной, выйти несколько за пределы своей деревушки и окажутся, таким образом, лучшим средством против отмеченной мною опасности.
Но я слишком долго останавливаюсь на общих идеях; пора перейти к деталям.
Сделаем обзор различных дисциплин, совокупность которых образует математику. Посмотрим, что сделала каждая из них, каковы ее стремления и чего можно от нее ожидать. Если взгляды, изложенные выше, соответствуют действительности, то мы должны будем увидеть, что в прошлом главные успехи достигались в тех случаях, когда две такие дисциплины сближались к сознанию сходства их форм, невзирая на различие материала, когда они отливались одна по образу другой, благодаря чему каждая из них могла использовать успехи другой. Вместе с тем в сближениях подобного рода мы должны предвидеть и прогресс будущего.
Прогресс в области арифметики совершался медленнее, чем в области алгебры и анализа, и легко понять почему. Арифметисты лишены драгоценного руководителя, каким является чувство непрерывности; каждое целое число стоит отдельно от других целых чисел, оно, так сказать, обладает своей собственной индивидуальностью; каждое из них представляет своего рода исключение; вот почему в области чисел так редки общие теоремы, а те, которые существуют, оказываются сравнительно более глубоко скрытыми и дольше ускользают от внимания исследователей.
Но если арифметика отстала от алгебры и анализа, то лучшее, что она может сделать, – это постараться уподобиться этим наукам, чтобы воспользоваться их успехами. Итак, арифметист должен взять в руководители аналогии с алгеброй. Эти аналогии многочисленны, и если во многих случаях они еще не изучены настолько, чтобы их можно было использовать, то, во всяком случае, их существование предчувствовалось с давних пор; самый язык обеих наук показывает, что эти аналогии были подмечены. Так, говорят о трансцендентных числах и при этом отдают себе отчет в том, что будущая классификация этих чисел имеет своим прообразом классификацию трансцендентных функций, и в то же время пока еще не видно, как можно будет перейти от одной классификации к другой, но ведь, будь это вполне ясным, этот переход был бы уже выполнен, а не был бы делом будущего.
Как пример, мне прежде всего приходит на ум теория сравнения, в которой мы видим совершенный параллелизм с теорией алгебраических уравнений. Несомненно, что этот параллелизм будет еще пополнен, например, параллелизмом между теорией алгебраических кривых и теорией сравнений с двумя переменными. А когда проблемы относительно сравнений с многими переменными будут разрешены, это будет первым шагом на пути к решению многих вопросов неопределенного анализа.
Область арифметики, совершенно лишенную всякого единства, представляет собой теория простых (первоначальных) чисел. Здесь найдены только асимптотические законы, да других и нельзя ожидать; но эти законы оказываются изолированными; к ним можно прийти лишь по различным путям, между которыми, по-видимому, невозможно никакое сообщение. Мне кажется, что я предвижу, откуда придет желанное единство, но, конечно, не вполне ясно; несомненно, что все сведется к изучению семейства трансцендентных функций, которые дадут возможность путем изучения их особых точек и с помощью метода Дарбу[26] вычислить асимптотически известные функции очень больших чисел.
Теория алгебраических уравнений еще долго будет привлекать к себе внимание математиков; к ней можно подойти со многих различных между собой сторон, самой важной является, несомненно, теория групп. Но остается еще вопрос о численном определении корней и об исследовании числа действительных корней. Лагерр показал, что Штурм не сказал последнего слова по этому вопросу.
Лет сорок назад казалось, что изучение инвариантов алгебраических форм поглотит всю алгебру; теперь оно почти заброшено, хотя предмет далеко еще не исчерпан; надо только его расширить, не ограничиваясь, например, инвариантами, относящимися к линейным преобразованиям, но захватывая все те, которые относятся к какой-либо группе. Таким образом, прежде добытые теоремы наведут нас на мысль о других более общих, которые будут группироваться вокруг них, подобно тому, как кристалл растет в растворе.
Не следует думать, что алгебра закончена, раз она дала нам правила образования всех возможных комбинаций; остается еще разыскание интересных комбинаций, удовлетворяющих тому или другому условию. Таким путем может образоваться своего рода неопределенный анализ, в котором неизвестными будут не целые числа, а многочлены. Но здесь уже алгебра будет брать пример с арифметики, руководствуясь аналогией целого числа либо с целым многочленом с произвольными коэффициентами, либо с целым многочленом с целыми же коэффициентами.
По-видимому, геометрия не может содержать ничего такого, чего не было бы уже в алгебре или в анализе: ведь геометрические факты – это те же факты алгебры или анализа, но только выраженные на другом языке. Казалось бы, поэтому, что после того обзора, который мы сделали, не остается больше ничего сказать, специально относящегося к геометрии. Но думать так – значило бы проглядеть важность самого языка, когда он удачно создан, значило бы не понимать того, что прибавляет к вещам способ обозначения этих вещей и, следовательно, способ их группирования.
И прежде всего геометрические рассуждения приводят нас к постановке новых проблем; конечно, это, если угодно, аналитические проблемы, но анализ никогда не привел бы нас к их постановке. Однако анализ извлекает для себя из этого выгоду, как и из того, что он вынужден разрешать проблемы для удовлетворения потребностей физики.
Большое преимущество геометрии состоит именно в том, что в ней чувства могут прийти на помощь рассудку и помогают отгадать нужный путь, так что многие предпочитают приводить проблемы анализа к их геометрической форме. К несчастью, наши чувства не могут вести нас особенно далеко, они покидают нас, лишь только мы обнаруживаем желание унестись за три классические измерения. Значит ли это, что, выйдя из той области, в которой они нас, по-видимому, хотят удержать, мы не вправе более рассчитывать на что-либо, кроме чистого анализа, и что всякая геометрия более чем трех измерений тщетна и бесцельна? Величайшие умы предшествующего нам поколения ответили бы: «да»; мы же теперь так освоились с этим понятием, что можем говорить о нем даже в университетском курсе, не вызывая особенного удивления.
Но к чему оно нам? Ответ очевиден: оно дает нам прежде всего весьма удобный способ выражения, язык, который в очень немногих словах выражает то, что при обыкновенном аналитическом языке потребовало бы пространных фраз. Мало того: этот язык побуждает нас называть одним и тем же именем сходные между собой вещи и закрепляет аналогии, делая невозможным забвение их. Он дает нам возможность ориентироваться в этом пространстве, слишком громадном для нас, которого мы не можем обнять иначе, как вызывая перед собой постоянно образ видимого пространства, хотя последнее есть лишь весьма несовершенное его изображение. И тут, как и в предыдущих примерах, аналогия с тем, что просто, помогает нам понять то, что сложно.
Эта геометрия пространств, имеющих более трех измерений, не является простой аналитической геометрией; она имеет характер не исключительно количественный, но также и качественный, и этим-то она особенно интересна. Есть дисциплина, которую называют «Analysis Situs» и предметом изучения которой являются соотношения расположений различных элементов фигуры независимо от их величины. Эта геометрия – чисто качественная: ее теоремы остались бы справедливыми, если бы точные фигуры были заменены грубыми изображениями, созданными ребенком. Можно построить также Analysis Situs более чем трех измерений. Важность Analysis Situs огромна, и я не думаю, чтобы его значение могло быть преувеличено; это достаточно подтверждается той пользой, которую из него извлек Риман, один из главных творцов этой дисциплины. Нужно дойти до ее полного построения в пространствах высшего порядка; тогда у нас будет в руках такое орудие, которое позволит действительно видеть в гиперпространстве и расширить область наших чувственных восприятий.
Быть может, проблемы Analysis Situs не были бы даже поставлены, если бы пользовались только языком анализа; впрочем, нет, я ошибаюсь: они были бы, несомненно, поставлены, ибо их разрешение необходимо для множества вопросов анализа, но наверное изолированно, так что нельзя было бы вовсе усмотреть их общей связи. Особенно содействовало недавнему успеху геометрии введение понятия о преобразованиях и группах. Благодаря этому понятию геометрия перестала быть агрегатом теорем, более или менее интересных, но следующих одна за другой без всякого сходства между ними, она приобрела единство. А с другой стороны, история не должна забывать того, что именно по поводу геометрии начали систематически исследовать непрерывные преобразования, так что чистые геометры со своей стороны также содействовали развитию идеи группы, идеи, столь полезной в других отраслях математики.
Выше я говорил о представляющейся нам необходимости постоянно восходить к основным принципам нашей науки и о той пользе, которую отсюда может извлечь наука о человеческом духе. Эта потребность породила два стремления, занявшие весьма обширное место на самых последних страницах истории математики. Первое из них – канторизм, заслуги которого перед наукой известны. Одна из характерных черт канторизма состоит в том, что вместо того, чтобы подниматься к общему, строя все более и более сложные конструкции, и вводить определения через построения, он исходит из genus supremum и дает определения только per genus proximum et differentiam specificam, как сказали бы схоластики. Этим объясняется тот ужас, который он некоторое время тому назад вызвал в иных умах, например у Эрмита, излюбленной идеей которого является сравнение математических наук с естественными. У большинства из нас эти предубеждения уже рассеялись, но случилось так, что натолкнулись на некоторые парадоксы, которые привели бы в восторг Зенона Элейского и мегарскую школу. И тогда все пустились в поиски за противоядием. Я держусь того мнения – и не я один, – что важно вводить в рассмотрение исключительно такие вещи, которые можно вполне определить при помощи конечного количества слов. Но какое бы противоядие ни было признано действительным, мы можем предвкушать наслаждение врача, имеющего возможность наблюдать интересный патологический случай.
С другой стороны, мы видим попытки перечислить те более или менее скрытые аксиомы и постулаты, которые служат основанием для различных математических теорий. Самые блестящие результаты получил Гильберт. На первый взгляд эта область кажется довольно ограниченной; кажется, что когда перечень будет закончен – а это не замедлит произойти, – нечего будет больше делать. Но когда все будет перечислено, тогда найдется множество приемов для классификации всего материала; хороший библиотекарь всегда находит себе занятие, а каждая новая классификация будет поучительна для философа.
Этим я кончаю мой обзор, которого я не мог и рассчитывать сделать полным по множеству причин, и прежде всего потому, что я и без того уже слишком злоупотребил вашим вниманием. Думаю, что приведенных примеров будет достаточно, для того чтобы показать вам, в чем состоял механизм прогресса математических наук в прошлом и в каком направлении они должны будут двигаться в будущем.
Глава III. Математическое творчество
Вопрос о процессе математического творчества должен возбуждать в психологе самый живой интерес. В этом акте человеческий ум, по-видимому, заимствует из внешнего мира меньше всего; как орудием, так и объектом воздействия здесь является только он сам, так по крайней мере кажется; поэтому, изучая процесс математической мысли, мы вправе рассчитывать на проникновение в самую сущность человеческого ума.
Это было понято давно; и вот несколько месяцев тому назад журнал «Математическое образование», редактируемый профессорами Лезаном и Фером, предпринял анкету по вопросу о привычках ума и приемах работы различных математиков. Но мое сообщение в главных чертах было уже готово, когда были опубликованы результаты этой анкеты, так что я совершенно не мог ими воспользоваться. Скажу только, что большинство свидетельств подтверждало мои заключения, я не говорю – все, так как нельзя рассчитывать на единогласие ответов, когда вопрос ставится на всеобщее голосование.
Начнем с одного факта, который должен нас изумлять или, вернее, должен был бы изумлять, если бы мы к нему не привыкли. Чем объяснить то обстоятельство, что некоторые люди не понимают математических рассуждений? Если эти рассуждения основаны на одних лишь правилах логики, правилах, признаваемых всеми нормальными умами, если и очевидность основывается на принципах, которые общи всем людям и которых никто в здравом уме не станет отрицать, то как возможно существований столь многих людей, совершенно к ним неспособных?
Что не всякий способен на творчество, в этом нет ничего удивительного. Что не всякий может запомнить доказательство, однажды им узнанное, с этим также можно примириться. Но что не всякий может понимать математическое рассуждение в тот момент, когда ему его излагают, вот что кажется в высшей степени поразительным, когда начинаешь в это вдумываться. А между тем тех, которые лишь с трудом могут следить за таким рассуждением, большинство; это неоспоримый факт, и опыт учителей средней школы наверное ему не противоречит.
Но мало того: как возможна ошибка в математическом рассуждении? Здравый ум не должен допускать логических ошибок, а между тем иные острые умы, безошибочные в тех кратких рассуждениях, которые приходится делать при обычных повседневных обстоятельствах, оказываются неспособными следить или повторить без ошибок математические доказательства, которые, хотя и более длинны, но, в сущности, представляют собой лишь нагромождение маленьких рассуждений, совершенно подобных тем, что даются им так легко. Нужно ли добавлять, что и хорошие математики далеко не непогрешимы?
Ответ представляется мне очевидным. Представив себе длинную цепь силлогизмов, в которой заключения предыдущих силлогизмов служат посылками для последующих, мы способны понять каждый силлогизм в отдельности, и при переходе от посылок к заключению мы не рискуем впасть в ошибку. Но между моментом, когда мы в первый раз встретили какое-нибудь предложение в виде заключения некоторого силлогизма, и тем моментом, когда мы вновь с ним встречаемся как с посылкой другого силлогизма, иногда проходит много времени, в течение которого были развернуты многочисленные звенья цепи; и вот может случиться, что за это время мы либо вовсе забыли это предложение, либо, что еще хуже, забыли его смысл. Таким образом, возможно, что мы его заменим другим, несколько отличным от него предложением или, сохраняя его словесное выражение, припишем ему несколько иной смысл; в том и в другом случае мы рискуем ошибиться.
Часто математику приходится пользоваться много раз одним и тем же правилом: в первый раз он, конечно, доказывает себе его справедливость; пока это доказательство остается в его памяти вполне ясным и свежим, пока он совершенно точно представляет себе смысл и широту охвата этого правила, до тех пор нет никакого риска в его употреблении. Но когда в дальнейшем наш математик, полагаясь на свою память, продолжает применять правило уже совершенно механически, тогда какой-нибудь изъян в памяти может привести к ложному применению правила. Так, если взять простой, почти избитый пример, мы иногда делаем ошибки в счете по той причине, что забыли нашу таблицу умножения.
С этой точки зрения специальная способность в математике должна обусловливаться очень верной памятью или скорее необычайной напряженностью внимания. Это качество можно было бы сравнить со способностью игрока в вист запоминать вышедшие карты, или, чтобы взять более сильную степень, со способностью шахматиста обозревать и предвидеть очень большое число комбинаций и удерживать их в памяти. С этой точки зрения всякий хороший математик должен был бы быть в то же время хорошим шахматистом, и наоборот; равным образом он должен быть силен в числовых выкладках. Конечно, иногда так и бывает; так, Гаусс одновременно был гениальным геометром и очень искусным и уверенным вычислителем.
Но бывают исключения; впрочем, я ошибаюсь, говоря «исключения», ибо тогда исключения окажутся многочисленнее случаев, подходящих под правило. Напротив, именно Гаусс и представляет собой исключение. Что же касается, например, меня лично, то я должен сознаться, что неспособен сделать без ошибки сложение. Равным образом из меня вышел бы плохой шахматист; я, быть может, хорошо рассчитал бы, что, играя таким-то образом, я подвергаюсь такой-то опасности; я бы разобрал много других ходов, которые отверг бы по тем или другим причинам; но в конце концов я, наверное, сделал бы ход, уже рассмотренный, забыв тем временем о той опасности, которую я раньше предусмотрел.
Одним словом, память у меня неплохая, но она была бы недостаточна для того, чтобы я мог стать хорошим игроком в шахматы.
Почему же она не изменяет мне в трудном математическом рассуждении, в котором растерялось бы большинство шахматистов? Очевидно, по той причине, что здесь моей памятью руководит общий ход рассуждения. Математическое доказательство представляет собой не просто какое-то нагромождение силлогизмов: это силлогизмы, расположенные в известном порядке, причем этот порядок расположения элементов оказывается гораздо более важным, чем сами элементы. Если я обладаю чувством, так сказать, интуицией этого порядка, так что могу обозреть одним взглядом все рассуждения в целом, то мне не приходится опасаться, что я забуду какой-нибудь один из элементов; каждый из них сам по себе займет назначенное ему место без всякого усилия памяти с моей стороны.
Далее, когда я повторяю усвоенное доказательство, мне часто кажется, что я мог бы и сам придумать его; быть может, часто это только иллюзия; но если даже у меня недостаточно сил, чтобы самостоятельно найти такое доказательство, то я по меньшей мере самостоятельно создаю его всякий раз, когда мне приходится его повторять.
Понятно, что это чувство, этот род математической интуиции, благодаря которой мы отгадываем скрытые гармонии и соотношения, не может быть принадлежностью всех людей. Одни не обладают ни этим тонким, трудно оценимым чувством, ни силой памяти и внимания выше среднего уровня, и тогда они оказываются совершенно неспособными понять сколько-нибудь сложные математические теории.
Другие, обладая этим чувством лишь в слабой степени, одарены в то же время редкой памятью и большой способностью внимания. Они запомнят наизусть частности, одну за другой; они смогут понять математическую теорию и даже иной раз сумеют ее применить, но они не в состоянии творить. Наконец, третьи, обладая в более или менее высокой степени той специальной интуицией, о которой я только что говорил, не только смогут понять математику, не обладая особенной памятью, но они смогут оказаться творцами, и их поиски новых открытий будут более или менее успешны, смотря по степени развития у них этой интуиции.
В чем, в самом деле, состоит математическое творчество? Оно заключается не в создании новых комбинаций с помощью уже известных математических объектов. Это может сделать мало ли кто; но число комбинаций, которые можно найти этим путем, было бы бесконечно, и даже самое большое их число не представляло бы ровно никакого интереса. Творчество состоит как раз в том, чтобы не создавать бесполезных комбинаций, а строить такие, которые оказываются полезными; а их ничтожное меньшинство. Творить – это отличать, выбирать.
Как следует производить этот выбор, я объяснил в другом месте; в математике фактами, заслуживающими изучения, являются те, которые ввиду их сходства с другими фактами способны привести нас к открытию какого-нибудь математического закона, совершенно подобно тому, как экспериментальные факты приводят к открытию физического закона. Это именно те факты, которые обнаруживают родство между другими фактами, известными с давних пор, но ошибочно считавшимися чуждыми друг другу.
Среди комбинаций, на которые падает выбор, часто наиболее плодотворными оказываются те, элементы которых взяты из наиболее удаленных друг от друга областей. Я не хочу сказать, что для нового открытия достаточно сблизить возможно глубже различающиеся предметы; большинство комбинаций, построенных таким образом, оказались бы совершенно бесплодными; но некоторые, правда, очень немногие из них, бывают наиболее плодотворными.
Творить, изобретать, сказал я, значит выбирать; но это слово, пожалуй, не вполне подходит. Оно вызывает представление о покупателе, которому предлагают громадное число образчиков и который их пересматривает один за другим, имея в виду сделать свой выбор. Здесь число образчиков было бы так велико, что всей жизни не хватило бы для пересмотра всех их. Но в действительности это обстоит иначе. Бесплодные комбинации даже и не представляются уму изобретателя. В поле его сознания появляются лишь действительно полезные комбинации, да еще некоторые другие, которые он, правда, отбросит в сторону, но которые не лишены характера полезных комбинаций. Все происходит подобно тому, как если бы изобретатель был экзаменатором второй ступени, имеющим дело лишь с кандидатами, успешно прошедшими через первое испытание.
К тому, что мною сказано до сих пор, можно прийти посредством наблюдения или вывода при чтении произведений математиков, если только вдумчиво это делать.
Теперь пора вникнуть глубже и посмотреть, что происходит в самой душе математика. Лучшее, что я могу сделать с этой целью, – это, я полагаю, обратиться к моим личным воспоминаниям. Впрочем, я ограничусь тем, что расскажу вам, как я написал мой первый мемуар о фуксовых функциях. Прошу у вас извинения, ибо мне придется употребить несколько технических выражений; но они не должны вас пугать: вам, собственно, незачем их понимать. Например, я скажу так: я нашел доказательство такой-то теоремы при таких-то обстоятельствах; эта теорема будет носить варварское название, которое для большинства из вас не будет понятно, но это совершенно неважно; все, что интересно здесь для психолога, – это условия, обстоятельства.
В течение двух недель я старался доказать, что невозможна никакая функция, которая была бы подобна тем, которым я впоследствии дал название фуксовых функций; в то время я был еще весьма далек от того, что мне было нужно. Каждый день я усаживался за свой рабочий стол, проводил за ним один-два часа, перебирал большое число комбинаций и не приходил ни к какому результату. Но однажды вечером я выпил, вопреки своему обыкновению, чашку черного кофе; я не мог заснуть; идеи возникали во множестве; мне казалось, что я чувствую, как они сталкиваются между собой, пока, наконец, две из них, как бы сцепившись друг с другом, не образовали устойчивого соединения. Наутро я установил существование класса функций Фукса, а именно тех, которые получаются из гипергеометрического ряда; мне оставалось лишь сформулировать результаты, что отняло у меня всего несколько часов.
Я захотел затем представить эти функции в виде частного двух рядов; это была вполне сознательная и обдуманная мысль; мною руководила аналогия с эллиптическими функциями. Я задал себе вопрос: каковы должны быть свойства этих рядов, если они существуют, и я пришел без труда к образованию рядов, названных мною тета-фуксовыми функциями.
В эту пору я покинул Кан, где я тогда жил, чтобы принять участие в геологической экскурсии, организованной Горным институтом. Среди дорожных перипетий я забыл о своих математических работах; по прибытии в Кутанс мы взяли омнибус для прогулки; и вот в тот момент, когда я заносил ногу на ступеньку омнибуса, мне пришла в голову идея – хотя мои предыдущие мысли не имели с нею ничего общего, – что те преобразования, которыми я воспользовался для определения фуксовых функций, тождественны с преобразованиями неевклидовой геометрии. Я не проверил этой идеи; для этого я не имел времени, так как, едва усевшись в омнибус, я возобновил начатый разговор, тем не менее я сразу почувствовал полную уверенность в правильности идеи. Возвратившись в Кан, я сделал проверку; идея оказалась правильной.
Вслед за тем я занялся некоторыми вопросами арифметики, по-видимому, без особенного успеха; мне и в голову не приходило, что эти вопросы могут иметь хотя бы самое отдаленное отношение к моим предыдущим исследованиям. Раздосадованный неудачей, я решил провести несколько дней на берегу моря и стал думать о совершенно других вещах. Однажды, когда я бродил по прибрежным скалам, мне пришла в голову мысль, опять-таки с теми же характерными признаками: краткостью, внезапностью и непосредственной уверенностью в ее истинности, что арифметические преобразования неопределенных квадратичных трехчленов тождественны с преобразованиями неевклидовой геометрии.
Возвратившись в Кан, я стал размышлять над этой мыслью и сделал из нее некоторые выводы; пример квадратичных форм показал мне, что, помимо фуксовых групп, которые соответствуют гипергеометрическому ряду, существуют еще и другие; я увидел, что к ним можно приложить теорию тета-фуксовых рядов и что, следовательно, существуют еще иные фуксовы функции, помимо тех, которые происходят из гипергеометрического ряда и которые только и были известны мне до тех пор. Понятно, я задался целью образовать все такие функции; я повел правильную осаду и овладел одним за другим всеми наружными фортами; но один все еще держался; его падение должно было повлечь за собой сдачу крепости. Однако все мои усилия приводили лишь к большему убеждению в трудности задачи; но и это уже имело некоторое значение. Вся эта работа происходила вполне сознательно.
Тут мне пришлось уехать в Мон-Валерьен, где я должен был отбывать воинскую повинность; конечно, я был поглощен разнообразнейшими делами. Однажды я шел по бульвару, как вдруг мне представилось решение занимавшей меня задачи. Я не стал тогда же вникать в этот вопрос; это я сделал лишь по окончании военной службы. В руках у меня были все необходимые данные, оставалось только собрать их вместе и расположить в надлежащем порядке. Теперь я уже в один присест без всякого усилия написал свой окончательный мемуар.
Я ограничусь одним только этим примером; было бы бесполезно увеличивать их число, о многих других исследованиях мне пришлось бы повторять почти то же самое; наблюдения, сообщаемые другими математиками в ответе на анкету журнала «Математическое образование», тоже лишь подтвердили бы сказанное.
Прежде всего, поражает этот характер внезапного прозрения, с несомненностью свидетельствующий о долгой предварительной бессознательной работе; роль этой бессознательной работы в процессе математического творчества кажется мне неоспоримой; следы ее можно было бы найти и в других случаях, где она является менее очевидной. Часто, когда думаешь над каким-нибудь трудным вопросом, за первый присест не удается сделать ничего путного; затем, отдохнув более или менее продолжительное время, садишься снова за стол. Проходит полчаса и все так же безрезультатно, как вдруг в голове появляется решающая мысль. Можно думать, что сознательная работа оказалась более плодотворной благодаря тому, что она была временно прервана, и отдых вернул уму его силу и свежесть. Но более вероятно, что это время отдыха было заполнено бессознательной работой, результат которой потом раскрывается перед математиком, подобно тому как это имело место в приведенных примерах; но только здесь это откровение приходит не во время прогулки или путешествия, а во время сознательной работы, хотя в действительности независимо от этой работы, разве только разматывающей уже готовые изгибы; эта работа играет как бы только роль стимула, который заставляет результаты, приобретенные за время покоя, но оставшиеся за порогом сознания, облечься в форму, доступную сознанию.
Можно сделать еще одно замечание по поводу условий такой бессознательной работы; а именно: эта работа возможна или по меньшей мере плодотворна лишь в том случае, если ей предшествует и за нею следует период сознательной работы. Никогда (и приведенные мною примеры достаточны для такого утверждения) эти внезапные внушения не происходят иначе, как после нескольких дней волевых усилий, казавшихся совершенно бесплодными, так что весь пройденный путь в конце концов представлялся ложным. Но эти усилия оказываются в действительности не такими уж бесплодными, как это казалось; это они пустили в ход машину бессознательного, которая без них не стала бы двигаться и ничего бы не произвела.
Необходимость второго периода сознательной работы представляется еще более понятной. Надо пустить в действие результаты этого вдохновения, сделать из них непосредственные выводы, привести их в порядок, провести доказательства; а прежде всего их надо проверить. Я говорил вам о чувстве абсолютной достоверности, сопровождающем вдохновение; в приведенных примерах это чувство меня не обмануло, и так оно бывает в большинстве случаев; но следует остерегаться мнения, что так бывает всегда; подчас это чувство нас обманывает, хотя оно и в этих случаях ощущается не менее живо; ошибка обнаруживается лишь тогда, когда хочешь провести строгое доказательство. Это, по моим наблюдениям, особенно часто имеет место с мыслями, которые приходят в голову утром или вечером, когда я лежу в постели в полусонном состоянии.
Таковы факты; они наводят нас на следующие размышления. Бессознательное или, как еще говорят, подсознательное «я» играет в математическом творчестве роль первостепенной важности; это явствует из всего предшествующего. Но это подсознательное «я» обычно считают совершенно автоматическим. Между тем мы видели, что математическая работа не есть простая механическая работа; ее нельзя доверить никакой машине, как бы совершенна она ни была. Дело не только в том, чтобы применять известные правила и сфабриковать как можно больше комбинаций по некоторым установленным законам. Полученные таким путем комбинации были бы невероятно многочисленны, но бесполезны и служили бы лишь помехой. Истинная творческая работа состоит в том, чтобы делать выбор среди этих комбинаций, исключая из рассмотрения те, которые являются бесполезными, или даже в том, чтобы освобождать себя от труда создавать эти бесполезные комбинации.
Но правила, руководящие этим выбором, – крайне тонкого, деликатного характера; почти невозможно точно выразить их словами; они явственно чувствуются, но плохо поддаются формулировке; возможно ли при таких обстоятельствах представить себе решето, способное просеивать их механически?
А в таком случае представляется правдоподобной такая гипотеза: «я» подсознательное нисколько не «ниже», чем «я» сознательное; оно отнюдь не имеет исключительно механического характера, но способно к распознаванию, обладает тактом, чувством изящного; оно умеет выбирать и отгадывать. Да что там! Оно лучше умеет отгадывать, чем «я» сознательное, ибо ему удается то, перед чем другое «я» оказывается бессильным. Одним словом, не является ли подсознательное «я» чем-то более высшим, чем «я» сознательное? Вам понятна вся важность этого вопроса. Бутру в лекции, прочитанной месяца два тому назад, показал, каким образом к тому же вопросу приводят совершенно другие обстоятельства и к каким следствиям привел бы положительный ответ на него.
Приводят ли нас к этому положительному ответу те факты, которые я только что изложил? Что касается меня, то я, признаюсь, отнесся бы к такому ответу далеко не сочувственно. Пересмотрим же вновь факты и поищем, не допускают ли они другого объяснения.
Несомненно, что те комбинации, которые представляются уму в момент какого-то внезапного просветления, наступающего после более или менее продолжительного периода бессознательной работы, в общем случае оказываются полезными и плодотворными, являясь, по-видимому, результатом первого отбора. Но следует ли отсюда, что подсознательное «я», отгадавшее с помощью тонкой интуиции, что эти комбинации могут быть полезны, только эти именно комбинации и построило, или, может быть, оно построило еще множество других, оказавшихся лишенными всякого интереса и потому не переступивших порога сознания?
С этой второй точки зрения все комбинации создаются благодаря автоматизму подсознательного «я», но только те из них, которые могут оказаться интересными, проникают в поле сознания. И это представляется еще более таинственным. В чем причина того, что среди тысяч продуктов нашей бессознательной деятельности одним удается переступить порог сознания, тогда как другие остаются за его порогом? Случайно ли даруется такая привилегия? Очевидно, нет; например, среди всех раздражений наших чувств только самые интенсивные остановят на себе наше внимание, если только оно не привлекается еще и другими причинами. Вообще, среди несознаваемых явлений привилегированными, т. е. способными стать сознаваемыми, оказываются те, которые прямо или косвенно оказывают наибольшее воздействие на нашу способность к восприятию.
Может показаться странным, что по поводу математических доказательств, имеющих, по-видимому, дело лишь с мышлением, я заговорил о восприятии. Но считать это странным значило бы забыть о чувстве прекрасного в математике, о гармонии чисел и форм, о геометрическом изяществе. Всем истинным математикам знакомо настоящее эстетическое чувство. Но ведь здесь мы уже в области чувственного восприятия.
Но какие же именно математические предметы мы называем прекрасными и изящными, какие именно предметы способны вызвать в нас своего рода эстетические эмоции? Это те, элементы которых расположены так гармонично, что ум без труда может охватить целое, проникая в то же время и в детали. Эта гармония одновременно удовлетворяет нашим эстетическим потребностям и служит подспорьем для ума, который она поддерживает и которым руководит. И в то же время, давая нам зрелище правильно расположенного целого, она вызывает в нас предчувствие математического закона. А ведь мы видели, что единственными математическими фактами, достойными нашего внимания и могущими оказаться полезными, являются как раз те, которые могут привести нас к открытию нового математического закона. Таким образом, мы приходим к следующему заключению: полезными комбинациями являются как раз наиболее изящные комбинации, т. е. те, которые в наибольшей степени способны удовлетворять тому специальному эстетическому чувству, которое знакомо всем математикам, но которое до того непонятно профанам, что упоминание о нем вызывает улыбку на их лицах.
Но что же тогда оказывается? Среди тех крайне многочисленных комбинаций, которые слепо создает мое подсознательное «я», почти все оказываются лишенными интереса и пользы, но именно поэтому они не оказывают никакого воздействия на эстетическое чувство, и сознание никогда о них не узнает; лишь некоторые среди них оказываются гармоничными, а следовательно, полезными и прекрасными в то же время; они сумеют разбудить ту специальную восприимчивость математика, о которой я только что говорил; последняя же, однажды возбужденная, со своей стороны, привлечет наше внимание к этим комбинациям и этим даст им возможность переступить через порог сознания.
Это не более как гипотеза; но вот наблюдение, решительно говорящее в ее пользу: когда ум математика испытывает внезапное просветление, то большей частью оно его не обманывает; но иногда все же случается, как я уже говорил, что пришедшие таким образом в голову идеи не выдерживают проверочных операций; и вот замечено, что почти всегда такая ложная идея, будь она верна, была бы приятна нашему естественному инстинкту математического изящества.
Таким образом, именно это специальное эстетическое чувство играет роль того тонкого критерия, о котором я говорил выше; благодаря этому становится понятным и то, почему человек, лишенный этого чувства, никогда не окажется истинным творцом.
Однако такое объяснение не устраняет всех затруднений; сознательное «я» в крайней степени ограничено; что же касается подсознательного «я», то нам неизвестны его границы, и потому нет ничего неестественного в предположении, что оно может за небольшой промежуток времени создать больше различных комбинаций, чем может охватить сознательное существо за целую жизнь. Но тем не менее эти пределы существуют; в таком случае правдоподобно ли, чтобы это подсознательное «я» могло образовать все возможные комбинации, число которых ужаснуло бы всякое воображение? И однако это представляется необходимым, ибо если оно создает лишь небольшую часть этих комбинаций, да и то делает на авось, то будет очень уж мало шансов на то, что среди них окажется удачная комбинация, т. е. та, которую надо найти.
Но, быть может, объяснения следует искать в том периоде сознательной работы, который всегда предшествует плодотворной бессознательной работе? Позвольте мне прибегнуть к грубому сравнению. Представим себе будущие элементы наших комбинаций чем-то вроде крючкообразных атомов Эпикура. Во время полного бездействия ума эти атомы неподвижны, как если бы они были повешены на стену; таким образом, этот полный покой ума может продолжаться неопределенно долго, и за все это время атомы не сблизятся ни разу и, следовательно, не осуществится ни одна комбинация.
В противоположность этому, в течение периода кажущегося покоя и бессознательной работы некоторые из атомов отделяются от стены и приходят в движение. Они бороздят по всем направлениям то пространство, в котором они заключены, подобно рою мошек или, если вы предпочитаете более ученое сравнение, подобно молекулам газа в кинетической теории газов. Тогда их взаимные столкновения могут привести к образованию новых комбинаций.
Какова же тогда роль предварительной сознательной работы? Очевидно, она заключается в том, чтобы привести некоторые атомы в движение, сорвав их со стены. Когда мы, пытаясь собрать воедино эти элементы, на тысячу ладов ворочаем их во все стороны, но не находим в конце концов удовлетворительного сопоставления, тогда мы бываем склонны отрицать всякое значение такой работы. А между тем атомы после того возбуждения, в которое их привела наша воля, отнюдь не возвращаются в свое первоначальное состояние покоя. Они продолжают, теперь уже свободно, свою пляску.
Но ведь наша воля взяла их не наугад, она при этом преследовала вполне определенную цель, так что пришли в движение не какие-нибудь атомы вообще, но такие, от которых можно с некоторым основанием ожидать искомого решения. Раз придя в движение, атомы начинают испытывать столкновения, которые приводят к образованию комбинаций этих атомов либо между собой, либо с другими, неподвижными атомами, с которыми они сталкиваются на своем пути. Я еще раз прошу у вас извинения; мое сравнение довольно грубо, но я не знаю иного способа сделать понятной мою мысль.
Как бы там ни было, но единственными комбинациями, образование которых представляется вероятным, являются те, хоть один элемент которых оказывается в числе атомов, свободно выбранных нашей волей. Но ведь очевидно, что именно среди них находится та комбинация, которую я только что назвал удачной. Быть может, здесь мы имеем средство смягчить то, что представлялось парадоксальным в первоначальной гипотезе.
Другое замечание. Никогда не случается, чтобы бессознательная работа доставила вполне готовым результат сколько-нибудь продолжительного вычисления, состоящего в одном только применении определенных правил. Казалось бы, что абсолютное «я» подсознания в особенности должно быть способно к такого рода работе, являющейся в некотором роде исключительно механической. Казалось бы, что, думая вечером о множителях какого-нибудь произведения, можно надеяться найти при пробуждении готовым самое произведение или, еще иначе, что алгебраическое вычисление, например проверка, может быть выполнено помимо сознания. Но в действительности ничего подобного не происходит, как то доказывают наблюдения.
От таких внушений, являющихся продуктами бессознательной работы, можно ожидать только исходных точек для подобных вычислений; самые же вычисления приходится выполнять во время второго периода сознательной работы, который следует за внушением и в течение которого проверяются результаты этого внушения и делаются из них выводы. Правила этих вычислений отличаются строгостью и сложностью; они требуют дисциплины, внимания, участия воли и, следовательно, сознания. В подсознательном же «я» господствует, в противоположность этому, то, что я назвал бы свободой, если бы только можно было дать это имя простому отсутствию дисциплины и беспорядку, обязанному своим происхождением случаю. Только этот самый беспорядок делает возможным возникновение неожиданных сближений.
Сделаю последнее замечание. Излагая выше некоторые мои личные наблюдения, я рассказал, между прочим, об одной бессонной ночи, когда я работал как будто помимо своей воли; подобные случаи бывают нередко, и для этого нет необходимости в том, чтобы нормальная мозговая деятельность была вызвана каким-нибудь физическим возбудителем, как то имело место в описанном мною случае. И вот в таких случаях кажется, будто сам присутствуешь при своей собственной бессознательной работе, которая, таким образом, оказалась отчасти доступной перевозбужденному сознанию, но нисколько вследствие этого не изменила своей природе. Тогда отдаешь себе в общих чертах отчет в том, что различает оба механизма или, если вам угодно, методы работы обоих «я». Психологические наблюдения, которые я, таким образом, имел возможность сделать, подтверждают те взгляды, которые я только что изложил.
А в подтверждении они, конечно, нуждаются, так как, вопреки всему, они остаются весьма гипотетическими; однако вопрос столь интересен, что я не раскаиваюсь в том, что изложил вам эти взгляды.
Глава IV. Случайность
«Как можно говорить о законах случайности? Разве случайность не представляет собой противоположности всякой закономерности?» Этим вопросом Бертран начинает свое «Исчисление вероятностей». Вероятность противоположна достоверности; вероятность – это то, чего мы не знаем и чего поэтому мы, казалось бы, не можем вычислять. В этом содержится противоречие, по крайней мере кажущееся, о котором уже много писали.
Прежде всего, что такое случайность? Древние различали явления, которые, как им казалось, повинуются гармоничным законам, установленным раз навсегда, и другие явления, которые приписывались случаю. К последним относили все то, чего нельзя было предвидеть, что было противно всякому закону. В каждой области точные законы регулировали отнюдь не все. Они намечали лишь границы, в пределах которых возможна игра случая. С этой точки зрения слово «случайность» приобрело объективный смысл. То, что было случайностью для одного, должно было быть случайностью и для других, даже для богов.
Однако в настоящее время мы уже не придерживаемся этого взгляда. Мы сделались абсолютными детерминистами, и даже те, которые склонны сохранить за человеком свободу воли, признают неограниченное господство детерминизма в области неорганического мира. Всякое явление, сколь бы оно ни было незначительно, имеет свою причину, и бесконечно мощный дух, беспредельно осведомленный в законах природы, мог бы его предвидеть с начала веков. С такого рода духом, если бы он существовал, нельзя было бы играть ни в какую азартную игру, не теряя всего состояния.
Для него слово «случайность» не имело бы смысла или, вернее, для него вовсе не существовало бы случайности. Лишь вследствие нашей слабости, вследствие нашего невежества случайность для нас существует. Можно даже оставить в стороне слабость человеческой природы; то, что представляется случайным для невежды, отнюдь не будет таковым для ученого. Случайность является, таким образом, как бы мерой нашего невежества. Случайными явлениями, согласно этому определению, будут те, законы которых нам неизвестны.
Но достаточно ли это определение? Когда первые халдейские пастухи следили за движением светил, они не знали еще законов астрономии; но приходило ли им в голову сказать, что движение светил предоставлено случаю?
Когда современный физик изучает новое явление, закон которого он открыл во вторник, то говорил ли он в понедельник, что это явление случайное? Но мало того. Не прибегают ли часто для предсказания явления к тому, что Бертран называет законом случайностей? Так, например, в кинетической теории газов мы приходим к известным законам Мариотта и Гей-Люссака именно благодаря той гипотезе, что скорости молекул газа меняются совершенно случайно. Наблюдаемые законы, скажут физики, были бы менее просты, если бы скорости регулировались простым элементарным законом, если бы молекулы были, как говорят, организованы, если бы они подчинялись какому-нибудь распорядку. Именно благодаря господству случая, т. е. именно благодаря нашему невежеству, мы имеем возможность делать заключения. И далее, если слово «случай» является простым синонимом нашего невежества, то что же это значит? Надо ли это толковать, примерно, следующим образом.
«Вы желаете, чтобы я предсказал вам явления, которые должны произойти? Если бы я имел несчастье знать законы этих явлений, то я мог бы этого достигнуть разве только путем непроходимого леса вычислений, и я должен был бы отказаться от ответа. Но так как, к счастью, я этих законов не знаю, то я вам сейчас отвечу, и, что наиболее странно, мой ответ будет верен».
Ясно, что случайность должна быть чем-то иным, не одним лишь названием, которое мы даем собственному невежеству. Ясно, что между явлениями, истинные причины которых нам неизвестны, мы должны были бы различать случайные явления, относительно которых вероятностные расчеты дадут нам некоторые предварительные сведения, и явления, которые не являются случайными и относительно которых мы не можем сказать ничего, пока не узнаем законов, которые ими управляют.
Что касается явлений случайных, то ясно, что сведения, которые нам дает о них теория вероятностей, не перестанут быть справедливыми в тот день, когда мы получим об этих явлениях больше сведений.
Директор общества страхования жизни не знает, когда умрет каждое из застрахованных у него лиц, но он вычисляет на основании теории вероятностей и по закону больших чисел и при этом не ошибается, поскольку он делит дивиденды между акционерами. Эти дивиденды не исчезли бы даже и в том случае, если бы какой-либо врач, столь же прозорливый, сколь и нескромный, после подписания полисов осведомлял бы директора о шансах на жизнь застрахованных лиц. Такой врач рассеял бы неосведомленность директора, но он не оказал бы влияния на дивиденды, которые, очевидно, вовсе не являются продуктами этой неосведомленности.
Первым примером, на котором мы остановимся, будет вопрос о неустойчивом равновесии. Если конус стоит на вершине, то мы знаем, что он опрокинется, но мы не знаем, в какую сторону. Нам представляется, что это полностью зависит от случая. Если бы конус был совершенно симметричен, если бы ось его была совершенно вертикальна, если бы он не был подвержен действию никакой силы, кроме тяжести, то он не упал бы вовсе. Но малейший изъян в симметрии заставил бы его слегка наклониться в ту или иную сторону; наклонившись же, хотя бы и весьма незначительно, он упадет в сторону наклона окончательно. Если бы даже симметрия была совершенна, то самого легкого дрожания, легчайшего дуновения ветерка было бы достаточно, чтобы наклонить его на несколько секунд дуги; и этим не только было бы решено его падение, было бы предопределено и направление этого падения, которое совпало бы с направлением первоначального наклона. Таким образом, совершенно ничтожная причина, ускользающая от нас по своей малости, вызывает значительное действие, которого мы не можем предусмотреть, и тогда мы говорим, что это явление есть результат случая.
Если бы мы знали точно законы природы и состояние Вселенной в начальный момент, то мы могли бы точно предсказать состояние Вселенной в любой последующий момент. Но даже и в том случае, если бы законы природы не представляли собой никакой тайны, мы могли бы знать первоначальное состояние только приближенно. Если это нам позволяет предвидеть дальнейшее ее состояние с тем же приближением, то это все, что нам нужно. Мы говорим, что явление было предвидено, что оно управляется законами. Но дело не всегда обстоит так; иногда небольшая разница в первоначальном состоянии вызывает большое различие в окончательном явлении. Небольшая погрешность в первом вызвала бы огромную ошибку в последнем. Предсказание становится невозможным, мы имеем перед собой явление случайное.
Второй пример, на котором мы остановимся, будет в большой мере аналогичен первому; мы заимствуем его из метеорологии. Почему метеорологам так трудно предсказать погоду сколько-нибудь достоверно? Почему выпадение дождя, наступление грозы всегда представляется нам делом случая, так что многие люди находят естественным молиться о ниспослании дождя или хорошей погоды, те самые люди, которые считали бы смешным испрашивать молитвой затмение. Мы видим, что большие пертурбации бывают обыкновенно в тех местах, где атмосфера находится в состоянии неустойчивого равновесия. Метеорологи часто хорошо видят, что равновесие неустойчиво, что образуется циклон, но где именно, они не в состоянии сказать. Лишняя десятая градуса в какой-либо точке – и циклон разражается здесь, а не там; он бушует над странами, которые были бы пощажены, если бы не эта десятая. Если бы мы могли знать эту десятую градуса, то мы могли бы это предсказать; но сеть наблюдений недостаточно густа и сами наблюдения недостаточно точны, а именно поэтому нам и кажется, что все обусловлено случаем. Здесь мы вновь находим то же несоответствие между мельчайшей, не ощутимой наблюдателем причиной и значительным эффектом, вызывающим иногда страшные последствия.
Перейдем к другому примеру – к распределению малых планет по зодиаку. Их начальные долготы могли быть какие угодно, но их средние движения были различны, и они двигались уже так долго, что в настоящее время можно спокойно сказать, что они распределены вдоль зодиака совершенно случайно. Незначительные разности в их начальных расстояниях от Солнца и, что сводится к тому же, в их среднем движении в конце концов дали огромное различие в долготах, которые они теперь имеют. В самом деле, разница в одну тысячную долю секунды их суточного пути дает уже секунду за три года, градус – приблизительно за 10 000 лет и целую окружность – за три-четыре миллиона лет; но что это составляет по сравнению со временем, которое протекло с тех пор, как малые планеты отделились от туманности Лапласа! Перед нами опять ничтожная причина и большой эффект или, иначе, небольшие разности в причине и большие – в действии.
Игра в рулетку отличается от этого примера меньше, чем это может казаться на первый взгляд. Представим себе иглу, которая вращается на шпиле в центре циферблата, разделенного на сто секторов, попеременно красных и черных. Если игла останавливается на красном секторе, то игра выиграна, в противном случае – проиграна. Все, очевидно, зависит от толчка, который мы первоначально сообщаем игле. Игла сделает, скажем, 10 или 20 оборотов, но остановится она раньше или позже, смотря по тому, толкнул ли я ее сильнее или слабее. Однако достаточно, чтобы толчок изменился на тысячную или на две тысячных доли, и игла остановится на черном или соответственно на следующем красном секторе. Это – различия, которые не могут быть восприняты мускульным чувством, которые ускользают даже и от более тонких инструментов. Я лишен, следовательно, возможности предвидеть, что произойдет с иглой, которую я только что толкнул, а потому мое сердце бьется, и я с нетерпением ожидаю, что мне даст случай. Разность в причине совершенно неощутима, разность в результате имеет для меня чрезвычайно большую важность, потому что речь идет о всей моей ставке.
Позвольте мне теперь сделать отступление, несколько странное для моей темы. Один философ несколько лет тому назад сказал, что будущее определено прошлым, но что прошлое не определено будущим. Иными словами: зная настоящее, мы могли бы сделать заключение относительно будущего, но не относительно прошлого, ибо, сказал бы он, определенная причина всегда должна привести к одному результату, но один и тот же результат может быть вызван множеством различных причин. Ясно, что ни один ученый не подпишется под этим выводом. Законы природы связывают предшествующее с последующим таким образом, что предшествующее определено последующим так же, как последующее предшествующим. Но в чем же может заключаться источник ошибки, допущенной этим философом? Как известно, в силу принципа Карно физические явления необратимы, и мир стремится к полному однообразию. Когда два тела различной температуры находятся в соприкосновении, то более теплое уступает тепло холодному; мы можем, таким образом, предвидеть, что температура сравняется. Но когда температура уже сравняется, и нас спросят о том, что было раньше, что сможем мы ответить? Мы скажем, конечно, что одно тело было более нагрето, а другое менее, но мы не сумеем угадать, какое из них было прежде более теплым.
Между тем в действительности температуры никогда не сделаются совершенно равными. Разность температур стремится к нулю лишь асимптотически, и наступает момент, когда наши термометры уже неспособны ее распознать. Но если бы мы имели термометры в тысячу раз, в сто тысяч раз более чувствительные, то мы убедились бы, что есть еще небольшая разница и что одно из двух тел осталось более теплым, чем другое, и тогда мы могли бы утверждать, что именно это тело было некогда более теплым.
Мы видим здесь, в противоположность предыдущим примерам, большие различия в причинах и ничтожные – в результатах. Фламмарион придумал как-то наблюдателя, который удаляется от Земли со скоростью большей, чем скорость света. Для него время изменило бы знак, история потекла бы вспять, и Ватерлоо предшествовало бы Аустерлицу. Ясно, что для такого рода наблюдателя результаты и причины заменили бы друг друга, неустойчивое равновесие не было бы исключением, вследствие общей необратимости явлений ему казалось бы, что все исходит из какого-то хаоса в неустойчивом равновесии. Вся природа казалась бы ему предоставленной случаю.
Мы обратимся теперь к другим примерам, в которых мы увидим совершенно другие свойства. Начнем с кинетической теории газов. Как должны мы представлять себе сосуд, наполненный газом? Бесчисленные молекулы, несущиеся с большими скоростями, бороздят сосуд во всех направлениях. В любой момент они ударяются о стенки и друг о друга, и эти столкновения происходят в самых разнообразных условиях. Здесь нас больше всего поражает не столько малость причин, сколько их сложность. И все-таки первоначальный элемент находится здесь и играет важную роль. Если бы молекула уклонилась налево или направо от своей траектории на очень малую величину, сравнимую с радиусом действия молекул газа, то она избежала бы толчка или таковой произошел бы при совершенно иных условиях, а это могло бы изменить на 90° или 180° направление скорости после толчка. И это еще не все. Как мы видели, достаточно отклонить молекулу до толчка на бесконечно малое расстояние, чтобы она после толчка отклонилась на конечное расстояние. Поэтому, если бы молекула подверглась двум последовательным столкновениям, то ей достаточно было бы сообщить до первого толчка бесконечно малое уклонение второго порядка, чтобы мы получили после первого столкновения бесконечно малое уклонение первого порядка, а после второго – конечное. Между тем молекула испытывает не только два столкновения, а весьма большое число их в секунду. Поэтому, если первый толчок умножает отклонение на весьма большое число А, то после n столкновений оно будет умножено на Аn. Оно сделается, следовательно, весьма большим не только потому, что А очень велико, т. е. потому, что малые причины производят большие следствия, но и потому, что показатель n велик, т. е. потому, что столкновения весьма многочисленны и причины очень сложны.
Обратимся теперь к другому примеру. Почему нам кажется во время ливня, что капли дождя распределены совершенно случайно? Это опять-таки происходит оттого, что причины, которыми обусловливается их образование, очень сложны. Ионы были распространены в атмосфере задолго до ливня, задолго до него они были подвержены постоянно меняющимся токам воздуха, они были увлечены в вихри весьма малых размеров, так что окончательное распределение их не находилось уже ни в каком соответствии с начальным. Затем температура внезапно понижается, туман сгущается, и каждый из этих ионов становится центром капли дождя. Чтобы установить, каково будет распределение капель и сколько их упадет на каждый камень мостовой, недостаточно было бы узнать начальное положение ионов.
Необходимо было бы учесть действие тысячи слабых и прихотливых воздушных течений.
Совершенно то же имеет место, когда пылинки взвешены в воде. Сосуд изборожден токами, законы которых нам неизвестны. Мы знаем только, что они очень сложны; по истечении некоторого времени пылинки будут распределены случайно, т. е. равномерно по всему сосуду: и это обусловливается именно сложностью потоков. Если бы они подчинялись простому закону, если бы, например, сосуд был круглый и токи описывали круги вокруг оси сосуда, то дело обстояло бы иначе, ибо каждая пылинка оставалась бы на той же высоте и на том же расстоянии от оси.
Мы пришли бы к тому же результату, если бы мы рассматривали смесь двух жидкостей или смесь двух мелко истолченных порошков. Чтобы привести еще грубый пример, скажем, что приблизительно то же самое происходит, когда мы тасуем игральные карты. При каждой перетасовке карты подвергаются перемещению (аналогичному тому, которое мы изучаем в теории перестановок). Какое же расположение карт получится в результате? Вероятность того, что получится некоторое определенное расположение (например, то, при котором на n-м месте оказывается карта, занимавшая до перетасовки φ(n) – е место), зависит от привычки игрока. Но если игрок тасует карты довольно долго, то образуется множество последовательных перестановок, и окончательный порядок уже зависит исключительно от случая. Я хочу сказать, что все возможные порядки будут равновероятны. Это обусловлено большим числом последовательных перестановок, т. е. сложностью всего явления.
Еще два слова о теории ошибок. Здесь причины особенно сложны и особенно многообразны. Сколько ловушек должен избежать наблюдатель, располагая даже лучшими инструментами. Он должен приучить себя замечать наиболее опасные и избегать их. Их называют систематическими ошибками. Но даже когда он их устранил, – допуская, что это ему удалось, – остается много мелких ошибок, которые, накапливаясь, могут оказаться опасными. Таким образом, возникают случайные ошибки; мы приписываем их случаю, потому что причины их слишком сложны и многочисленны; и здесь мы имеем только мелкие причины, каждая из которых производит незначительный эффект, но вследствие их взаимодействия и вследствие значительного их числа результаты становятся серьезными.
Можно стать еще на третью точку зрения, которая имеет меньшее значение, чем предыдущие, и на которой я буду менее настаивать. Когда хотят предсказать какой-либо факт и исследуют подготавливающие его обстоятельства, стараются получить сведения о предшествующем состоянии. Но этого ведь нельзя сделать по отношению ко всей Вселенной. Мы ограничиваемся поэтому местами, соседними с пунктом, где наше явление должно произойти, и тем, что, по-видимому, имеет связь с этим явлением. Выяснение обстоятельств не может быть полным, и нужно уметь сделать выбор. Но при таких условиях легко может случиться, что мы оставили в стороне такого рода факты, которые на первый взгляд казались совершенно чуждыми предусматриваемому явлению, которым нам даже в голову не приходило приписать какое-либо влияние на это явление и которые тем не менее, помимо нашего предвидения, играют здесь важную роль.
Человек проходит по улице, отправляясь по своим делам. Лицо, которое было бы в курсе этих дел, могло бы сказать, почему он прошел в таком-то часу по такой-то улице. На крыше работает кровельщик; подрядчик, который его нанял, вероятно, в известной мере мог бы предвидеть, что он там делает. Но прохожий, о котором была речь выше, не думает вовсе о кровельщике, как и кровельщик не думает о прохожем. Они принадлежат точно двум совершенно отдельным мирам; и тем не менее кровельщик уронил черепицу, которая убила прохожего. Мы, не колеблясь, скажем, что это дело случая.
Наши слабые силы не дают нам возможности охватить всей Вселенной, и это заставляет нас разрезать ее на слои. Мы стараемся выполнить это наименее искусственно, и тем не менее иногда оказывается, что два различных слоя влияют один на другой. Результаты такого взаимодействия мы склонны приписывать случаю.
Есть ли это особая третья точка зрения на случайность? Не всегда; в большей части случаев мы здесь возвращаемся к первой или ко второй точке зрения. Если два мира, вообще совершенно отличные один от другого, оказывают иногда друг на друга влияние, то законы этого взаимодействия неизбежно должны быть весьма сложны; а с другой стороны, достаточно весьма слабого изменения в начальных условиях, и взаимодействие между этими двумя мирами не имело бы места. Как мало было бы нужно, чтобы прохожий прошел на одну секунду раньше или чтобы кровельщик уронил свою черепицу на одну секунду позже.
Все изложенное до сих пор еще не объясняет, почему случай повинуется законам. Достаточно ли, чтобы причины были незначительны или чтобы они были сложны, для того чтобы мы могли уже предвидеть если не результаты каждого случая, то по крайней мере средние результаты. Чтобы ответить на этот вопрос, лучше всего обратиться к одному из приведенных уже выше примеров.
Я начну с рулетки. Я сказал, что точка, на которой остановится игла, будет зависеть от начального толчка, который ей дан. Какова вероятность того, что этот толчок будет иметь ту или другую величину? Я об этом ничего не знаю, но мне трудно не допустить, что эта вероятность выражается непрерывной аналитической функцией. Тогда вероятность того, что толчок содержится между а и а + ε, будет практически такая же, как и вероятность того, что он заключен между а + ε и а + 2ε, лишь бы ε было очень мало. Это общее свойство всех аналитических функций: небольшие изменения функций будут пропорциональны небольшим изменениям переменных.
Но, как мы предположили, весьма малого изменения силы толчка будет достаточно для изменения цвета сектора, перед которым в конце концов остановится игла. При интервале от а до а + ε это будет красный сектор, при интервале от а + ε до a + 2ε это будет черный сектор. Вероятность каждого красного сектора такая же, как и вероятность следующего за ним черного, и общая вероятность красного та же, что и общая вероятность черного.
Данной в этой задаче является аналитическая функция, которая выражает вероятность определенного начального толчка. Но теорема остается справедливой, каково бы ни было это данное, так как она зависит от свойства, общего всем аналитическим функциям. Отсюда следует, что в конечном результате данное нам вовсе не нужно.
То, что мы сказали о рулетке, применяется также к примеру малых планет. Мы можем смотреть на зодиак как на громадную рулетку, по которой Творец разбросал большое число шариков, сообщив им различные начальные скорости, меняющиеся согласно закону, вообще говоря, произвольному. В настоящее время они распределены равномерно, независимо от этого закона, по той же причине, что и в предыдущем случае. Мы видим также, почему явления повинуются законам случая, когда незначительные разницы в причинах способны вызвать большие различия в результатах. Вероятности этих малых разностей мы можем в этом случае считать пропорциональными самим разностям именно потому, что эти разности очень малы, и незначительные приращения непрерывной функции пропорциональны приращениям переменной.
Перейдем теперь к совершенно другому примеру, где главную роль играет сложность причин. Я предположу, что игрок тасует колоду карт. При каждой перетасовке он меняет порядок карт и может это сделать несколькими способами. Предположим для простоты, что мы имеем только три карты. Карты, которые вначале были расположены в порядке 1 2 3, могут после перетасовки оказаться в одном из шести расположений:
123, 231, 312, 321, 132, 213.
Каждая из этих шести гипотез возможна и соответственно имеет вероятность
p1, p2, p3, p4, p5, p6.
Сумма этих шести чисел равна единице, но это и все, что мы о них знаем. Эти шесть вероятностей зависят от привычек игрока, которых мы не знаем.
При второй тасовке повторится то же и притом в тех же условиях. Я хочу этим сказать, что р4 по-прежнему выражает возможность того, что три карты, которые после n-го взмаха были расположены в порядке 123, расположатся после n + 1-го взмаха в порядке 321; и это остается справедливым, каково бы ни было число n, ибо привычки игрока, его манера тасовать остаются теми же.
Но если число взмахов очень велико, то карты, которые до первого взмаха были расположены в порядке 123, могут после последнего взмаха иметь любое из расположений
123, 231, 312, 321, 132, 213,
и вероятность этих шести гипотез в доступных нам пределах будет одна и та же, т. е. 1/6; и это будет справедливо, каковы бы ни были числа p1, p2, p3, p4, p5, p6, которых мы не знаем. Большое число взмахов, т. е. сложность причин, вызвало это единообразие.
Это без изменения относится и к тому случаю, когда число карт больше трех, но даже и при трех картах доказательство было бы сложно. Я ограничусь тем, что проведу его для случая только двух карт. Тогда мы имеем лишь две гипотезы
12, 21
с соответственными вероятностями p1 и p2 = 1 − p1. Предположим теперь, что сделано n взмахов и что я выигрываю один франк, если карты оказываются в конце концов в первоначальном порядке, и столько же теряю, если они окажутся расположенными в обратном порядке. В таком случае мое математическое ожидание составит
(p1 − p2)n.
Разность p1 − p2 конечно, меньше единицы. Вследствие этого, если n слишком велико, то мое ожидание сведется к нулю. Мы не имеем нужды знать p1 и p2, мы и без того знаем, что игра должна кончиться вничью.
Есть, однако, одно исключение – именно, когда одно из чисел p1 и p2 равно единице, а другое нулю.
В этом случае дело будет обстоять иначе, потому что начальные гипотезы слишком просты.
Изложенное относится не только к смеси карт, но и ко всяким смесям, в том числе и к смесям порошков и жидкостей; оно относится и к смесям газовых молекул в кинетической теории газов. Чтобы перейти от изложенных примеров к этой теории, представим себе газ, молекулы которого не могут взаимно сталкиваться, но могут отклоняться только при ударах о стенки сосуда, в который они заключены. Если сосуд имеет достаточно сложную форму, то распределение молекул и скоростей не замедлит стать однородным; этого, однако, не будет, если сосуд имеет форму шара или прямоугольного параллелепипеда. Почему же? Потому что в первом случае расстояние центра от каждой траектории остается постоянным. Во втором случае постоянной остается абсолютная величина угла, составляемого каждой траекторией с гранями параллелепипеда.
Мы видим также, что нужно понимать под очень простыми условиями. Это те условия, которые сохраняют нечто неизменное, которые допускают инварианты. Не слишком ли просты дифференциальные уравнения задачи, чтобы мы могли применить к ней законы случая? На первый взгляд вопрос кажется лишенным точного смысла, но теперь мы понимаем его содержание. Эти дифференциальные уравнения слишком просты, если они сохраняют что-то постоянным, если они допускают общий интеграл. Если что-то из начальных условий остается неизменным, то ясно, что конечное состояние не сможет быть независимым от начального.
Обратимся теперь к теории ошибок. Чем обусловливаются случайные ошибки, мы не знаем, и именно потому, что мы этого не знаем, мы уверены, что они будут подчиняться закону Гаусса. Таков парадокс. Он объясняется приблизительно так же, как и предыдущий случай. Нам нужно знать только одно: что ошибки очень многочисленны, что они очень малы, что каждая из них может столь же легко оказаться отрицательной, как и положительной. Какова кривая вероятностей каждой из них, мы этого не знаем; мы только предполагаем, что это симметричная кривая. Тогда мы можем доказать, что окончательная ошибка будет следовать закону Гаусса, и этот окончательный закон не зависит от частных законов, которые остались для нас неизвестными. Здесь опять-таки простота результата обусловливается сложностью данных.
Однако мы еще не покончили с парадоксами. Выше я воспользовался выдумкой Фламмариона о человеке, который движется быстрее света и для которого время вследствие этого меняет знак. Я сказал, что ему все явления представлялись бы случайными. С известной точки зрения это справедливо; и все эти явления в некоторый определенный момент не были бы распределены согласно законам случая потому, что они в действительности были бы распределены так же, как и для нас, на глазах которых они разматываются гармонично, не возникая из какого-то первичного хаоса, а мы отнюдь не считаем их результатом случая. Что же это значит? Люмену, человеку Фламмариона, кажется, что незначительные причины приводят к большим эффектам. Почему же явления не протекают для него так же, как для нас, когда мы полагаем, что видим большие результаты, обусловливаемые малыми причинами. Нельзя ли и к его случаю применить то же самое рассуждение?
Возвратимся же к этому рассуждению. Почему в тех случаях, когда незначительные изменения причин вызывают большую разницу в результатах, последние распределяются по законам случайностей? Допустим, что разница в один миллиметр в причине вызывает разницу в один километр в результате. Если я выигрываю всякий раз, когда результат будет соответствовать километру, занумерованному четным числом, то вероятность выигрыша составит половину. Почему же так? Потому, что для этого необходимо, чтобы причина соответствовала миллиметру с четным номером. Между тем, по всей видимости, вероятность, что причина будет меняться в известных пределах, пропорциональна расстоянию между этими пределами, если только последнее очень мало. Не делая этого допущения, мне было бы совершенно невозможно выражать вероятность непрерывной функцией.
Что же произойдет теперь, когда большие причины будут вызывать мелкие результаты? В этом случае мы не приписывали бы явления случаю, между тем как Люмен считал бы их случайными. При разнице в километр в причине мы имели бы разницу в один миллиметр в результате. Будет ли и теперь пропорциональна n вероятность того, что причина заключается в интервале длиною n километров? Мы не имеем никаких оснований это предполагать, ибо расстояние в n километров весьма велико. Но вероятность того, что следствие останется в пределах n миллиметров, будет совершенно та же; она не будет потому пропорциональна числу n, несмотря на то, что расстояние в n миллиметров очень мало. В этом случае закон вероятности результатов невозможно, следовательно, представить непрерывной кривой. Заметим, однако, что в аналитическом смысле слова эта кривая может оставаться непрерывной, т. е. бесконечно малым изменениям абсциссы соответствовали бы бесконечно малые изменения ординаты. Но практически она не будет непрерывной, ибо очень малым изменениям абсциссы не будут соответствовать очень малые изменения ординаты. Я хочу сказать, что нарисовать такую кривую карандашом было бы невозможно.
Что же мы должны отсюда заключить? Люмен не имеет права утверждать, что вероятность причины (его причины, которая для нас является результатом) непременно должна выражаться непрерывной функцией. Но в таком случае почему же имеем на это право мы? Потому, что то состояние неустойчивого равновесия, которое мы выше назвали начальным, само представляет собой конечный момент долгой предшествующей истории. В продолжение этой истории сложные причины действовали и действовали долго: именно они содействовали тому, что образовалось смешение элементов, они стремились придать всему однородный характер, по крайней мере на небольшой части пространства; они закругляли углы, нивелировали горы, заполняли долины: как бы капризна и неправильна ни была первоначальная кривая, которая была им дана, они затратили столько труда на то, чтобы сделать ее правильной, что мы в конце концов получим непрерывную кривую. Вот почему мы можем совершенно спокойно допустить ее непрерывность.
Однако Люмен не имел бы права сделать такое заключение; ему сложные причины не представлялись бы факторами правильности n нивелирования; напротив, с его точки зрения они вели бы только к дифференциации и к неравенству; в его глазах из первоначального хаоса разрастался бы мир, все более и более разнородный; изменения, которые он наблюдал бы, были бы для него неожиданными; предусмотреть их он бы не мог; ему казалось бы, что они обусловлены бог весть каким капризом, но это был бы каприз, совершенно не похожий на нашу случайность; он был бы противоположен всякой закономерности, между тем как наши случайности имеют свои законы. Полное выяснение всего этого требовало бы еще более продолжительного изложения, которое, быть может, содействовало бы лучшему пониманию необратимости мироздания.
Мы старались определить, что такое случайность. Теперь будет уместно спросить: определив таким образом случайность, можем ли мы утверждать, что она имеет объективный характер?
Можно задать себе этот вопрос. Я говорил о причинах, весьма малых и весьма сложных, но не будет ли то, что кажется малым одному, весьма большим для другого, и не будет ли то, что представляется весьма сложным одному, казаться простым другому? Я уже отчасти ответил на этот вопрос, потому что я выше точно указал, в каком случае дифференциальные уравнения становятся слишком простыми, чтобы законы случая оставались применимыми. Но будет полезно вдуматься несколько глубже в этот вопрос; так как возможны и другие точки зрения.
Что означает слово «весьма малый»? Чтобы уяснить его себе, нужно обратиться к тому, что мы сказали выше. Разница весьма мала, интервал весьма мал, если в пределах этого интервала вероятность остается приблизительно постоянной. Но почему же эта вероятность может считаться постоянной в таком небольшом интервале? Именно потому, что мы допускаем, что закон вероятности выражается непрерывной кривой, и притом непрерывной не только в аналитическом смысле этого слова, но и практически, как я это старался выяснить выше.
Что же дает нам право делать такое предположение? Как было сказано выше, это происходит оттого, что с начала веков имеются сложные причины, неизменно действующие в одном и том же смысле и постоянно направляющие мир к однородному состоянию, возврат от которого для него невозможен. Эти именно причины мало-помалу отбили выступы и заполнили впадины, и по этой-то причине наши кривые вероятности имеют лишь слабые колебания. Через миллиарды миллиардов веков мы сделаем еще шаг вперед по направлению к единообразию, и эти колебания сделаются еще в десять раз медленнее. Радиус средней кривизны нашей кривой сделается в десять раз больше. И тогда длина, которая сейчас не представляется для нас очень малой, так как на нашей кривой дуга такой длины не может считаться прямолинейной, будет в ту эпоху признана весьма малой, ибо кривизна уменьшится в десять раз и дуга такой длины может быть в доступных нам пределах уподоблена прямой.
Таким образом, понятие о весьма малом все-таки остается относительным; но относительным оно оказывается не по отношению к тому или иному лицу, а по отношению к настоящему состоянию мира. Оно изменит смысл, когда мир станет более единообразным, когда все еще больше смешается, но тогда, несомненно, люди уже не смогут больше жить и должны будут уступить место другим существам, более крупным или более мелким – могу ли я это предсказать? Таким образом, наш критерий остается справедливым для всех людей, и в этом смысле он должен быть признан объективным.
С другой стороны, что должно означать слово «очень сложный»? Я уже дал ответ на этот вопрос и повторил его в начале этой главы. Но возможны и другие толкования. Как мы сказали, сложные причины вызывают все более и более тесное смешение; но сколько же нужно времени, чтобы эта смесь нас удовлетворила? В какой момент мы признаем достаточным накопление сложных элементов? Когда мы признаем достаточной тасовку карт? Если мы смешиваем два порошка – белый и голубой, то наступает момент, когда окраска смеси представляется нам однородной. Это обусловливается, однако, несовершенством наших чувств. Смесь может оказаться уже однородной для дальнозоркого, который должен рассматривать ее издалека, но она не будет таковой для близорукого. Если она станет уже однородной для всякого глаза, то можно будет эту границу отодвинуть еще далее, если мы будем пользоваться оптическими инструментами. Нет, конечно, никаких шансов на то, чтобы какой-нибудь человек мог когда-либо различать все бесконечное многообразие, которое скрывается под видимой однородностью газа, если только верна кинетическая теория. И все же, если принять идеи Гуи о броуновском движении, то микроскоп, по-видимому, находится уже на той ступени, что может обнаружить нам такого рода вещи.
Этот критерий таким же образом является относительным, как и первый; и если он сохраняет характер объективности, то это происходит оттого, что люди одарены приблизительно одними и теми же чувствами, что силы наших инструментов ограничены и что мы пользуемся ими лишь в виде исключения.
С тем же обстоятельством мы встречаемся в гуманитарных науках и, в частности, в истории. Историк должен делать выбор между событиями эпохи, которую он изучает. Он рассказывает только о тех, которые ему кажутся более важными. Он довольствуется поэтому тем, что изложит, скажем, наиболее значительные события XVI века и также наиболее важные факты, относящиеся к XVII веку. Если первых оказывается достаточно, чтобы объяснить вторые, то говорят, что последние согласуются с законами истории. Но если великое событие XVII столетия имеет своей причиной незначительный факт XVI столетия, о котором не сообщает ни один историк и который все оставили в пренебрежении, то говорят, что это событие обусловливается случаем, и слово это имеет, таким образом, то же значение, что в физических науках. Оно означает, что незначительные причины произвели большие действия.
Что может быть в большей мере явлением случайности, как не рождение великого человека! Только случай свел две клетки различных полов, которые содержали каждая со своей стороны те элементы, взаимодействие которых было необходимо для создания гения. Все согласятся, что эти элементы вообще должны быть редки, а такое совпадение должно было быть еще реже. Как мало было бы нужно, чтобы уклонить с пути сперматозоид, который его нес, достаточно было бы отклонить его на десятую долю миллиметра, и Наполеон не родился бы, и судьбы целого материка изменились бы. Никакой другой пример не может лучше выяснить истинных признаков случайности.
Еще несколько слов относительно парадоксов, к которым привело применение теории вероятностей в гуманитарных науках. Доказывали, что ни одна Палата не должна была бы включать ни одного оппозиционного депутата, или по крайней мере это должно было бы быть явлением настолько редким, что за это можно было бы спокойно биться об заклад, ставя при этом миллион против одного су. Кондорсе пытался выяснить, сколько должно быть присяжных, для того чтобы судебная ошибка была практически невозможна. Если мы, однако, вздумали бы пользоваться результатами этого вычисления, то нас, несомненно, ожидало бы такое же разочарование, как и в случае, если бы мы держали пари, основываясь на вычислениях, по которым оппозиция не должна была бы иметь ни одного представителя в Палате.
Законы случая не применяются к этим вопросам. Если суд не всегда руководствуется справедливыми доводами, то он, во всяком случае, пользуется методами Бридуа меньше, чем это можно думать; может быть, это дурно, ибо тогда система Кондорсе избавила бы нас от судебных ошибок.
Что же это значит? Мы пытались приписать случаю факты этого рода, потому что причины их весьма темны. Но здесь нет настоящей случайности. Причины остаются нам, правда, неизвестными; верно и то, что они сложны; но они не в достаточной мере сложны, ибо они нечто сохраняют неизменным. Мы видели, что этим именно и отличаются причины «слишком простые». Когда люди сталкиваются, они не предоставлены уже случаю независимо один от другого, они воздействуют друг на друга. Многочисленные причины оказывают свое влияние, они толкают людей, увлекают их вправо и влево; но есть нечто, чего они не в состоянии разрушить: это их привычки панургова стада. Именно это и сохраняется.
Применение теории вероятностей к точным наукам также сопряжено с большими трудностями. Почему десятичные знаки таблицы логарифмов или числа π распределены по законам случайности? Я занимался исследованием этого вопроса в другом месте – в применении к логарифмам. Ясно, что небольшая разница в аргументе должна дать незначительную разницу в логарифме, но это может выразиться большой разницей в шестом или седьмом десятичном знаке. Мы приходим, таким образом, к тому же критерию. Но что касается числа π, то здесь представляется затруднение, о котором я не могу сказать ничего путного.
Пришлось бы разобрать много других вопросов, если бы я хотел к ним приступить, не разрешив того, который я себе специально поставил. Когда мы обнаруживаем простой результат, например, когда мы получаем круглое число, мы говорим, что такого рода результат не может быть делом случая, и мы ищем для его объяснения причину не случайную. И действительно, вероятность того, чтобы из десяти тысяч чисел случай привел нас к круглому числу, скажем, именно к числу 10 000, очень незначительна; она составляет один шанс из десяти тысяч. Но есть также один шанс из десяти тысяч, что мы пришли бы к любому из остальных чисел. И все-таки такой результат нас не удивит, и мы спокойно припишем его случаю. И это только потому, что он менее бросается в глаза.
В чем же тут дело? Есть ли это простая иллюзия с нашей стороны или бывают случаи, в которых эта точка зрения законна? Нужно думать, что это так, ибо иначе никакая наука не была бы возможна. Что делаем мы, когда хотим проконтролировать какую-либо гипотезу? Мы не можем проверить все ее выводы, потому что таковых имеется бесчисленное множество. Мы ограничиваемся тем, что выверяем некоторые и в благоприятном случае объявляем гипотезу установленной, ибо такое число совпадений не могло быть делом случая. По существу, это то же самое рассуждение.
Я не имею возможности здесь вполне его оправдать, так как это потребовало бы слишком много времени, но я могу сказать по крайней мере следующее. Мы стоим перед двумя гипотезами: либо здесь действует простая причина, либо же совокупность сложных причин, которую мы называем случаем. Мы считаем естественным допустить, что первая вызывает простой результат; поэтому, когда мы констатируем простой результат, например круглое число, нам представляется гораздо более правдоподобным приписать его простой причине, которая почти наверное должна была к нему привести, чем случайности, которая могла его дать только с вероятностью один на десять тысяч. Иначе будет обстоять дело, когда мы обнаружим не простой результат. Случай, конечно, тоже приведет к нему с вероятностью один на десять тысяч, но зато простая причина не имеет шансов его воспроизвести.