Глава I. Относительность пространства
Совершенно невозможно представить себе пространство пустым. Все наши усилия представить себе чистое пространство, из которого были бы исключены изменчивые образы материальных предметов, могут заканчиваться только тем, что мы составляем себе, например, представление, в котором сильно окрашенные поверхности заменены линиями со слабой окраской; и идти в этом направлении до конца нет возможности без того, чтобы все не уничтожалось, не свелось на нет. Отсюда и возникает неустранимая относительность пространства.
Если кто говорит об абсолютном пространстве, то он употребляет слово, лишенное смысла. Эту истину высказывали уже давно все, кто размышлял по этому вопросу, но ее слишком часто забывают и по сей день.
Я нахожусь в определенной точке Парижа, скажем на площади Пантеона, и говорю: «я возвращусь сюда завтра». Если меня спросить: «разумеете ли вы, что возвратитесь в ту же точку пространства», то я буду склонен ответить: «да!»; и все же я буду неправ, ибо в течение этого времени Земля будет двигаться, унося с собой и площадь Пантеона, которая пробежит, таким образом, свыше двух миллионов километров. Если же я пожелал бы учесть это обстоятельство и выразиться точнее, то это все-таки ни к чему бы не привело; в самом деле, эти два миллиона километров Земля пробежала относительно Солнца; но Солнце перемещается относительно Млечного Пути, а Млечный Путь в свою очередь, несомненно, имеет движение, скорости которого мы не можем знать. Таким образом, мы совершенно не знаем и не будем знать никогда, на какое, собственно, расстояние перемещается площадь Пантеона в течение суток. Все, что я хотел сказать, сводится, таким образом к следующему: «завтра я снова увижу купол и фасад Пантеона», и если бы не было Пантеона, то моя фраза потеряла бы всякий смысл – пространство свелось бы на нет.
Это одна из наиболее тривиальных форм идеи относительности пространства; но есть и другая точка зрения, которую особенно отстаивал Дельбёф. Вообразим себе, что за одну ночь все размеры Вселенной возросли в тысячу раз. Мир остался бы подобен самому себе, если разуметь под подобием то, что указано в третьей книге «Геометрии». Все сведется к тому, что предмет, имевший метр в длину, будет измеряться километром; предмет, имевший миллиметр, возрастет до метра. Постель, на которой я лежал, и само мое тело возрастут в одной и той же пропорции. Что же почувствую я на следующее утро, проснувшись после такого поразительного превращения? Я попросту ничего не замечу. Самые точные измерения не будут в состоянии ни в малейшей мере обнаружить этот поразительный переворот, ибо метры, которыми я буду пользоваться, изменятся в совершенно том же отношении, что и предметы, которые я буду измерять. В действительности переворот существует только для тех, которые рассуждают так, как будто бы пространство было абсолютным. Если бы я стал на минуту рассуждать, как они, то лишь для того, чтобы обнаружить, что их точка зрения необходимо содержит противоречие. В действительности было бы лучше сказать, что ввиду относительности пространства не произошло, собственно говоря, ничего, и именно потому мы ничего не заметили.
Можем ли мы, таким образом, сказать, что мы знаем расстояние между точками? Нет, ибо это расстояние может подвергнуться огромным изменениям, и мы могли бы их не заметить, если бы другие расстояния изменились в той же пропорции. Если я говорю: «я буду здесь завтра», то, как мы видели только что, я не хочу этим сказать, что я буду завтра в той же точке пространства, где сегодня; я имею в виду только, что я буду завтра на том же расстоянии от Пантеона, что и сегодня. Но, строго говоря, и эта формулировка недостаточно ясна. Я, собственно, должен был бы сказать: «завтра, как и сегодня, расстояние от меня до Пантеона составит столько-то раз взятую длину моего тела».
Но это не все; я предположил, что размеры мира изменятся, но что этот мир останется по крайней мере подобен самому себе. Но в этом направлении можно идти гораздо дальше, и одна из наиболее поразительных теорий современных физиков дает нам к этому повод. По теории Лоренца и Фицджеральда все тела, увлекаемые движением Земли, подвергаются деформации. Эта деформация в действительности весьма мала, потому что все размеры, параллельные движению Земли, должны уменьшиться на одну стомиллионную часть, между тем как размеры, перпендикулярные этому движению, совсем не должны измениться. Но для нас даже неважно, что эти изменения ничтожны; достаточно того, что они существуют, чтобы сделать вывод, который я имею в виду. Да к тому же, когда я говорю, что изменения ничтожны, я в действительности об этом ничего не знаю; я обнаруживаю только, что становлюсь сам жертвой упорной иллюзии, рисуя себе абсолютное пространство. Я размышлял о движении Земли вокруг Солнца по ее эллиптической орбите, и я принял скорость, равную 30 километрам. Но ее истинная скорость (я разумею на этот раз не абсолютную скорость, которая не имеет никакого смысла, а скорость по отношению к эфиру) мне совершенно неизвестна, и я не имею никаких средств ее узнать; она может быть в 10, 100 раз больше; а тогда и деформация будет в 100 или в 10 000 раз больше.
Можем ли мы обнаружить эту деформацию? Конечно, нет. Вот перед нами куб, ребро которого равно одному метру; вследствие перемещения Земли куб испытывает деформацию; одно из ребер, то, которое параллельно движению, становится меньше, другие же не изменяются. Если я хочу в этом убедиться при помощи метра, то я измерю сначала одно из ребер, перпендикулярных движению, и найду, что мой метр точно совпадает с этим ребром; и, в самом деле, ни одна из этих величин ведь не изменилась, так как обе они перпендикулярны движению. Я хочу затем измерить другое ребро, параллельное движению: для этого я перемещаю свой метр и поворачиваю его, чтобы наложить на это ребро. Но метр, изменив свое направление и сделавшись параллельным движению, в свою очередь претерпел деформацию; таким образом, хотя длина ребра не равна более одному метру, последний точно совпадает с ребром, и я ровно ничего не замечу.
Меня спросят в таком случае, в чем же польза гипотезы Лоренца и Фицджеральда, если она не может быть проверена опытом? Но мое изложение не было полное, я говорил только об измерениях, которые могут быть произведены при помощи метра; но длину можно измерять и при помощи времени, которое нужно свету, чтобы ее пробежать, в предположении, что скорость света постоянна и не зависит от направления. Лоренц мог бы дать объяснение того же факта, допустив, что скорость света по направлению движения Земли больше, чем скорость света в перпендикулярном направлении. Он предпочел допустить, что скорость эта одинакова во всех направлениях, но что тела в одних направлениях обладают меньшими размерами, чем в других. Если бы поверхности световой волны испытали те же деформации, что и материальные тела, то мы не заметили бы деформации Лоренца – Фицджеральда.
Как в одном случае, так и в другом нет речи об абсолютной величине, а лишь об измерении этой величины посредством какого-нибудь инструмента; этим инструментом может быть метр или же путь, пройденный светом; мы измеряем только отношение величины к инструменту, и, если это отношение изменилось, мы никоим образом не можем узнать, что именно изменилось – измеряемая величина или инструмент.
Но я хочу лишь показать, что при деформации, о которой идет речь, мир не остался себе подобным: квадраты обратились в прямоугольники или в параллелограммы, круги – в эллипсы, сферы – в эллипсоиды. И однако мы ни в каком случае не можем знать, реальна ли эта деформация.
Очевидно, что в этом направлении можно было бы пойти гораздо дальше: вместо деформации Лоренца – Фицджеральда, законы которой чрезвычайно просты, мы могли бы вообразить какую-нибудь совершенно произвольную деформацию. Тела могли бы изменяться по законам сколь угодно сложным, и мы бы этого не заметили, если бы все тела без исключения подчинялись тем же законам. Говоря «все тела», я разумею, конечно, в том числе и наше тело и световые лучи, исходящие от разных предметов. Если бы мы рассматривали мир в одном из тех зеркал сложной формы, которые самым причудливым образом изменяют предметы, то взаимные отношения различных частей мира от этого не изменялись бы; если, в самом деле, два реальных предмета касаются друг друга, то их изображения также будут касаться друг друга. Собственно говоря, когда мы смотрим в такое зеркало, мы замечаем происшедшую деформацию, но это потому, что реальный мир существует рядом с его измененным образом, и если бы даже этот реальный мир был от нас скрыт, то все же осталось бы нечто, что от нас не было бы скрыто: это мы сами; мы не можем не видеть или по крайней мере не чувствовать нашего тела и наших членов, которые не испытали деформации и продолжают служить нам орудием измерения. Но если бы мы вообразили, что наше тело изменилось и притом стало таким, каким оно показалось бы в зеркале, то у нас исчезло бы орудие измерения, и деформация не могла бы быть обнаружена.
Вот два мира, из которых каждый является изображением другого; всякому предмету Р мира А соответствует в мире В предмет Р’, который и есть его изображение; координаты изображения являются определенными функциями координат предмета Р; эти функции могут, конечно, быть какими угодно; я предполагаю только, что они выбраны раз и навсегда. Между положением Р и положением Р’ существует постоянное соотношение; не важно, каково это соотношение; достаточно, что оно постоянное.
При таких условиях эти два мира не будут отличимы друг от друга. Я хочу сказать, что первый будет для своих обитателей тем же, чем является второй мир для своих.
И так будет до тех пор, пока два мира останутся обособленными друг от друга. Допустим, что мы обитаем в мире А, что мы построили нашу науку и, в частности, нашу геометрию. В это же время обитатели мира В также построят науку и, так как их мир есть образ нашего мира, то их геометрия будет также образом нашей геометрии, или, лучше сказать, она будет такой же, как и наша. Но если в один прекрасный день перед нами откроется окно в мир В, нас охватит чувство жалости: «несчастные, – скажем мы, – они думают, что построили геометрию, но то, что они называют этим именем, есть не что иное, как смешной и странный образ нашей геометрии, их прямые искривлены, их круги искажены буграми, их сферы усажены капризными неровностями». И мы не сомневаемся в том, что они скажут то же самое о нас, и никогда нельзя будет сказать, кто прав.
Ясно, таким образом, в каком широком смысле нужно понимать относительность пространства. В действительности пространство аморфно, и форму ему сообщают те вещи, которые в нем находятся. Что же можно сказать о той непосредственной интуиции, которую мы как будто имеем о прямой линии и о расстоянии? Мы столь мало обладаем интуицией расстояния самого по себе, что, как мы уже сказали, в течение ночи расстояние может увеличиваться в тысячу раз незаметно для нас, если только все другие расстояния испытывают то же самое изменение. И в течение ночи же мир В может стать на место мира A, причем мы этого решительно не будем знать; вместе с тем прямые линии перестанут быть прямыми и мы этого совершенно не заметим.
Одна часть пространства сама по себе и в абсолютном смысле слова не равна другой части пространства; ибо если она равна для нас, она не равна для обитателей мира В; а эти последние могут иметь такое же точно право отвергнуть наше воззрение, какое имеем мы для того, чтобы отвергнуть их воззрение.
Я указал в другом сочинении, какие последствия вытекают из этих фактов для того представления, которое мы должны себе составить о неевклидовой геометрии и о других аналогичных геометриях; я не буду к ним возвращаться. Теперь же я стану на несколько иную точку зрения.
Если эта интуиция расстояния, направления, прямой линии, словом, если эта непосредственная интуиция пространства не существует, то почему нам кажется, что мы ее имеем? Если здесь только иллюзия, то почему эта иллюзия держится так прочно? Этот вопрос требует исследования. Непосредственной интуиции величины, сказали мы, не существует, и мы в состоянии только определить отношение этой величины к нашим измерительным инструментам. Мы не были бы способны построить пространство, если бы мы не имели инструмента для его измерения. А инструмент, к которому мы всё относим, которым мы инстинктивно пользуемся, – это наше собственное тело. По отношению к нашему телу мы располагаем внешние предметы, и единственные пространственные отношения этих предметов, какие мы можем себе представить, суть их отношения с нашим телом. Наше тело служит, так сказать, системой осей координат.
Например, в один момент α присутствие предмета А обнаруживается мною органом зрения. В другой момент β присутствие другого предмета В обнаруживается мною при помощи другого органа чувств, например слуха или осязания. Я заключаю, что предмет В занимает то же место, что и предмет А. Что же это значит? Прежде всего, это не значит, что оба предмета занимают в два различных момента одну и ту же точку в абсолютном пространстве; такое пространство, если бы и существовало, ускользало бы от нашего сознания, ибо между моментами α и β Солнечная система переместилась, а мы этого перемещения не знаем. Это значит только, что оба предмета занимают одно и то же положение по отношению к нашему телу.
Но какое же содержание имеет это утверждение? Впечатления, которые мы получили от этих предметов, шли по совершенно различным путям: по зрительному нерву для предмета А, по слуховому нерву для предмета В. С точки зрения качественной эти впечатления не имеют ничего общего. Представления, которые мы можем себе составить об этих двух предметах, являются абсолютно разнородными, друг к другу не сводимыми. Но я знаю только, что мне стоит известным образом протянуть правую руку, и я ухвачу тело А; если даже я воздерживаюсь от соответствующего движения, то я представляю себе мускульные ощущения и другие аналогичные ощущения, которыми сопровождается это движение. Такое представление и ассоциируется с представлением предмета А.
Я знаю, однако, что могу достать тело В, протягивая тем же самым образом правую руку, причем это движение сопровождается таким же рядом мускульных ощущений. И только это я и разумею, когда утверждаю, что оба предмета занимают одно и то же положение.
Я знаю также, что мог бы достать предмет А при помощи другого подходящего движения левой руки, и я представляю себе те мускульные ощущения, которыми сопровождалось бы это движение; и при помощи того же движения левой руки, влекущего за собою те же ощущения, я мог бы достать предмет В.
Это очень важно, потому что именно этим путем я могу защитить себя против опасностей, которыми мне могут угрожать предметы А и В. Каждому удару, который может быть нам нанесен извне, природа противопоставила один или несколько ответных ударов, которые имеют для нас предохранительное значение. Одним и тем же парированием можно отвечать на несколько ударов; например, одним и тем же движением правой руки можно будет защитить себя в момент α против предмета A и в момент β против предмета В. Точно так же один и тот же удар может быть отражен несколькими приемами, и, например, как мы уже указали, предмет А можно достать при помощи известного движения либо правой, либо левой руки.
Все эти ответные удары не имеют между собою ничего общего, кроме того, разве, что они дают возможность избежать одного и того же удара, и только об этом-то идет речь, когда мы говорим о них как о движениях, заканчивающихся в одной и той же точке пространства. Равным образом то общее, которое заключается в предметах, когда мы говорим, что они занимают одно и то же место пространства, выражается лишь в том, что для защиты от них может быть употреблен один и тот же ответный удар.
Другими словами, представим себе сеть бесчисленных телеграфных проволок, из которых одни имеют центробежное, другие центростремительное направление. Центростремительные проволоки предупреждают нас о бедах, совершившихся во внешнем мире, центробежные должны принести помощь. Соединения установлены таким образом, что когда по одной из центростремительных проволок пробегает ток, он действует на электрический прибор, реле, и вызывает ток в одной из центробежных проволок. При этом несколько центростремительных проволок могут действовать на одну и ту же центробежную, если один и тот же вид помощи применим в разных несчастных случаях, и одна центростремительная проволока может поколебать разные центробежные проволоки либо одновременно, либо в каком-нибудь последовательном порядке, если одно и то же бедствие может быть исправлено несколькими средствами.
Вот эта-то сложная система связей, этот, если можно так сказать, распределительный щит и есть вся наша геометрия или, иначе говоря, все то истинктивное, что заключается в нашей геометрии. То, что мы называем интуицией прямой линии или расстояния, и есть реализация в нашем сознании этих связей и их управляющего характера.
Легко понять, откуда вытекает этот управляющий характер. Связь нам кажется тем более неразрушимой, чем древнее ее происхождение. Но эти связи в большинстве случаев не являются приобретениями индивидуума, ибо в зачаточном состоянии они заметны уже у новорожденного. Эти связи – приобретения расовые. Естественный отбор должен был упрочить их тем скорее, чем они более необходимы.
В числе последних на первом месте должны были быть, конечно, те приобретения, о которых мы говорили, потому что без них защита организма была бы невозможна. Как только клетки вышли из стадии простого наложения и стали вступать в стадию взаимного служения друг другу, должен был создаться механизм, аналогичный тому, который мы выше описали, для того чтобы это служение не уклонялось от должного пути и направлялось против опасности.
Если пустим каплю кислоты на кожу обезглавленной лягушки, то последняя старается снять эту каплю лапой, ближайшей к тому месту, где упала капля; а если эта лапа ампутирована, то лягушка пользуется другой лапой. Вот пример того дублирования ответного удара, о котором я только что говорил и которое позволяет бороться с бедствием вторым средством, если первое вышло из строя. Именно эта множественность ответных ударов и координация, которая из нее вытекает, образуют в своей совокупности пространство.
Мы видим, в какие глубины бессознательного надобно спуститься, чтобы найти первые следы пространственных связей, ибо в них играют роль простейшие и низшие части нервной системы. Можно ли после этого удивляться сопротивлению, которое мы оказываем каждой попытке разъединить то, что уже так давно соединено? Но это сопротивление и есть то, что мы называем очевидностью геометрических истин, эта очевидность есть не что иное, как то тягостное чувство противления, которое мы обыкновенно испытываем, когда отказываемся от очень старых привычек, с коими нам всегда легко жилось.
Созданное таким образом пространство имеет малые размеры: оно не простирается дальше того места, которое достигается моей рукой. Границы пространства расширяются благодаря вмешательству памяти. Имеются такие точки, которые навсегда останутся для меня недостижимыми, какие бы усилия я ни употреблял, протягивая руку. Если бы я был прикреплен к почве наподобие, например, гидроидного полипа, который может протягивать свои щупальца, то все эти точки оставались бы вне пространства, потому что те ощущения, которые мы можем испытывать благодаря действию тел, помещенных в этих точках, не были бы ассоциированы ни с какой-либо идеей движения, необходимого для достижения этих тел, ни с каким-либо соответствующим ответным ударом. Нам казалось бы, что эти ощущения не имеют пространственного характера, и мы не старались бы их локализовать.
Но, в отличие от низших животных, мы не прикреплены к почве. Если враг находится далеко от нас, то мы можем до него дойти и, приблизившись, протянуть руку. Это тоже ответный удар, но дальнего действия. Кроме того, это сложный ответный удар, и в представление, которое мы о нем себе составляем, входит представление о мускульных ощущениях, вызванных движением ног, представление о мускульных ощущениях, вызванных конечным движением руки, представление об ощущениях полукружных каналов м т. д. Мы должны, кроме того, представить себе не комплекс одновременных ощущений, а комплекс ощущений последовательных, сменяющих друг друга в определенном порядке, и вот почему я указал выше на необходимость вмешательства памяти.
Заметим еще, что для того, чтобы прийти к одной и той же точке, я могу очень близко подойти к цели, которую мне нужно достигнуть, и лишь немного вытянуть руку. Что же еще мне известно? Не один, а тысячу ответных ударов могу я противопоставить одной и той же опасности. Все эти удары образованы из ощущений, которые могут не иметь между собой ничего общего, но мы их рассматриваем как определяющие одну и ту же точку пространства, потому что они могут отвечать одной и той же опасности и все ассоциированы с понятием об этой опасности. Возможность парировать один и тот же удар и сообщает этим различным ответным ударам единство, подобно тому как возможность быть парированным одним и тем же способом сообщает единство различного рода ударам, которые могут угрожать нам из одной и той же точки пространства. Именно это двоякое единство и создает индивидуальность каждой точки пространства, а понятие о точке ничего, кроме этого, в себе не заключает.
Пространство, которое я рассматривал в предыдущем разделе и которое я мог бы назвать ограниченным пространством, было отнесено к осям координат, связанным с моим телом; эти оси были постоянны, так как мое тело не двигалось, а перемещались лишь мои члены. Каковы же оси, к которым может быть отнесено расширенное пространство, т. е. то пространство, которое я только что определил? Мы определяем точку при помощи ряда движений, которые необходимо совершать для ее достижения, исходя при этом из определенного начального положения тела. Оси, следовательно, связаны с этим начальным положением.
Но положение, которое я называю начальным, может быть произвольно избрано среди всех тех положений, которые мое тело последовательно занимало; если более или менее бессознательное воспоминание об этих последовательных положениях необходимо для генезиса понятия пространства, то это воспоминание может простираться более или менее далеко в прошлое. Отсюда получается известная неопределенность в самом определении пространства, и этой именно неопределенностью обусловливается его относительность.
Итак, нет абсолютного пространства, а есть только пространство, отнесенное к известному начальному положению тела. Для сознательного существа, которое, как низшие животные, было бы прикреплено к почве и которому, следовательно, было бы знакомо лишь ограниченное пространство, это пространство также было бы относительным, так как оно было бы отнесено к его телу; но такое существо не сознавало бы этой относительности, потому что оси, к которым оно относило ограниченное пространство, не изменялись бы! Конечно, скала, к которой это существо было бы приковано, не оставалась бы неподвижной, так как она увлекалась бы движением нашей планеты; для нас, следовательно, эти оси изменялись бы в каждое мгновение; но для него они оставались бы неизменными. Мы обладаем способностью относить наше расширенное пространство то к положению А нашего тела, рассматриваемому как начальное, то к положению В, которое наше тело приобрело несколькими мгновениями позже и которое совершенно свободно можем также рассматривать как начальное; мы, следовательно, каждое мгновение производим бессознательное изменение координат. Этой способности не было бы у нашего воображаемого существа; лишенное возможности путешествовать, оно почитало бы пространство абсолютным. В каждое мгновение его система в действительности изменялась бы, но для него она оставалась бы одной и той же, так как она была бы единственной его системой. Не то для нас, обладающих в каждое мгновение несколькими системами, между которыми мы можем произвольно выбирать, и сохраняющих воспоминания, которые могут нас переносить в более или менее далекое прошлое.
Но это не все. Ограниченное пространство не было бы однородным; различные точки этого пространства не могли бы рассматриваться как эквивалентные, потому что для достижения одних потребовались бы величайшие усилия, для достижения других – незначительные. Напротив, наше беспредельное пространство кажется нам однородным, и мы говорим, что все его точки эквивалентны. Что же это, собственно, значит?
Если мы исходим из известного положения A, то мы можем совершить известные движения M, характеризуемые известным комплексом мускульных ощущений. Но, исходя из другого положения В, мы сможем совершить движения М’, характеризуемые теми же мускульными ощущениями. Обозначим буквой а положение определенной точки тела, например конца указательного пальца правой руки при начальном положении A, и обозначим буквой В положение того же пальца после того, как, исходя из этого положения A, мы совершили движения М. Пусть а’ будет положение того же пальца в В, а b’ – положение того же пальца после совершения движений М’.
Так вот, при таких условиях я обыкновенно говорю, что точки пространства а и b относятся друг к другу как точки а’ и b’, а это обозначает только, что два ряда движений М и М’ сопровождаются одними и теми же мускульными ощущениями. И так как я сознаю, что при переходе из положения A в В мое тело сохранило способность к одним и тем же движениям, то я знаю, что есть точка пространства, которая по отношению к точке а’ составляет то же, что произвольно выбранная точка В относительно точки а, и что, таким образом, обе точки а и а’ эквивалентны. И вот поэтому пространство в то же время относительно, ибо его свойства остаются одними и теми же, когда оно отнесено к осям A или к осям В. Таким образом, относительность пространства и его однородность – это одно и то же.
Теперь, если я захочу перейти к огромному пространству, которое служит уже не только для меня, но в котором я могу себе представить всю Вселенную, я прибегну к акту воображения. Я представлю себе, что испытал бы великан, который несколькими шагами достиг бы планет или, если это угодно, что испытал бы я сам перед лицом миниатюрного мира, в котором планеты были бы заменены маленькими шариками, и на одном из них суетился бы лилипут, и этим лилипутом был бы я. Но вот акт воображения был бы для меня невозможен, если бы я не построил предварительно и притом для собственного обихода своего ограниченного и своего обширного пространства.
Теперь возникает вопрос; почему все эти пространства имеют три измерения? Обратимся к «распределительному щиту», о котором мы говорили выше. Мы имеем, с одной стороны, список возможных опасностей: обозначим их А1, А2 и т. д.; с другой стороны – список разных средств защиты, которые мы обозначим В1, В2 и т. д. Мы имеем, таким образом, связи между элементами первого и второго списков, так что, когда, например, сработает сигнализатор опасности А3, он приведет или может привести в действие реле, соответствующее ответному удару В3.
Так как я говорил выше о центростремительных и центробежных проволоках, то я опасаюсь, как бы во всем этом не усмотрели не простое сравнение, а описание нервной системы. Но моя мысль не такова. Прежде всего я не позволил бы себе высказать мнение относительно структуры нервной системы, которой я не знаю, между тем как лица, изучавшие ее, высказываются о ней с большой осторожностью. Затем, несмотря на мою некомпетентность, я чувствую, что эта схема была бы слишком упрощенной, и, наконец, в моем списке ответных ударов имеются некоторые очень сложные; как мы выше видели, когда речь шла об обширном пространстве, некоторые ответные удары могут включать в себя ряд движений ног, сопровождающихся движением руки. Дело, следовательно, идет не о физической связи между двумя реальными проводниками, но о психологической связи между двумя рядами ощущений.
Если сигнализаторы А1 и А2, например, связаны один и другой с ответным ударом В1 и если А1 связан также с ответным ударом В2, то обыкновенно случается, что А2 и В2 также связаны. Если бы этот основной закон не был вообще справедлив, то произошло бы неимоверное смешение, и ничего схожего с понятием о пространстве или с геометрией не могло бы составиться. В самом деле, вспомним, как мы определяли точку пространства. Мы это сделали двояко: с одной стороны, мы имели совокупность сигнализаторов A, которые связаны с одним и тем же ответным ударом В, с другой – совокупность ответных ударов В, связанных с одним и тем же сигнализатором A. Если бы наш закон не был справедлив, следовало бы сказать, что А1 и A2 отвечают одной и той же точке, потому что оба они связаны с ответным ударом В1, но, равным образом, следовало бы также сказать, что они не отвечают одной и той же точке, потому что А1 связан с В2, а А2 не связан с В2. Это было бы противоречием.
Но, с другой стороны, если бы закон был строго и всегда правилен, пространство было бы отлично от того, каким оно является. Мы имели бы резко очерченные категории, между которыми распределились бы, с одной стороны, сигнализаторы A и с другой – ответные удары В; эти категории были бы чрезвычайно многочисленны, но они были бы друг от друга совершенно отделены. Пространство было бы составлено из очень многочисленных, но раздельных точек, оно было бы прерывным. Не было бы оснований предпочесть один порядок расположения точек другому, не было бы, следовательно, оснований приписывать пространству три измерения.
Но дело обстоит не так. Да будет мне позволено воспользоваться на мгновение языком людей, уже знающих геометрию. Это даже необходимо, потому что именно такой язык наиболее понятен читателям, которых я имею в виду, поясняя свою мысль. Когда я хочу отразить удар, я стараюсь достигнуть той точки, откуда удар исходит, но для этого достаточно, чтобы я приблизился к точке на надлежащее расстояние. В таком случае ответный удар В1 может отвечать ударам А1 и А2, если только точка, отвечающая В1, одновременно достаточно близка к точкам, отвечающим А1 и А2. Но может случиться, что точка, отвечающая другому ответному удару В2, окажется достаточно близкой к точке, отвечающей А1, но недостаточно близкой к точке, отвечающей A2. Таким образом, ответный удар В2 будет соответствовать А1 и не соответствовать A2.
Для того, кто не знает еще геометрии, все это покажется просто нарушением формулированного выше закона. Для него дело будет происходить таким образом: два ответных удара В1 и В2 будут связаны с одним и тем же сигнализатором А1 и с еще большим числом сигнализаторов, которые мы включили в туже категорию, в какой находится А1, и которые мы отнесем к одной и той же точке пространства. Но мы сможем найти сигнализаторы А2, которые будут связаны с В2, не будучи связанными с В1, и которые зато связаны с B3, причем В3 не связан с А1 и т. д. Итак, мы можем писать ряд В1, А1, В2, А2, В3, A3, В4, A4, в котором каждый член связан со следующим и с предыдущим, но не связан с членами, отстоящими от него дальше.
Излишне прибавлять, что каждый из членов этих рядов не является изолированным, а составляет часть очень многочисленной категории других сигнализаторов или других ответных ударов. Эта категория имеет такие же связи, как и первый член, и ее можно рассматривать как относящуюся к одной и той же точке пространства. Основной закон, несмотря на исключения, остается, следовательно, почти всегда верным. Но благодаря этим исключениям упомянутые категории вместо того, чтобы оставаться совершенно обособленными, захватывают друг друга некоторыми частями, проникают одни в другие, и пространство, таким образом, становится непрерывным.
С другой стороны, порядок, в котором категории должны быть размещены, не оказывается уже произвольным. Обращаясь к предыдущему ряду, легко заметить, что В2 должен быть помещен между А1 и А2 и, следовательно, между В1 и В3, но не может быть помещен, например, между В3 и В4.
Итак, существует порядок, в котором естественно располагаются категории, отвечающие точкам пространства. И опыт нас учит, что этот порядок представляется в виде таблицы с тремя входами, вот почему пространство имеет три измерения.
Характерная особенность пространства, выражающаяся в том, что оно обладает тремя измерениями, есть, таким образом, особенность нашего распределительного щита, есть, так сказать, внутреннее свойство человеческого ума. Достаточно было бы разрушить некоторые из соединений, т. е. некоторые ассоциации идей, чтобы получить другой распределительный щит, а этого было бы достаточно, чтобы пространство приобрело четвертое измерение. Такой результат может удивить некоторых. Ведь внешний мир, скажут они, должен же играть здесь какую-то роль. Если число измерений зависит от того, как мы созданы, то можно предположить, что мыслящие существа, живущие в нашем мире, но созданные иначе, чем мы, полагали бы, что пространство имеет больше или меньше трех измерений. И не утверждал ли Цион, что японские мыши, имеющие только две пары полукружных каналов, думают, что пространство имеет два измерения? А подобное мыслящее существо, если бы оно было способно создать физику, разве не построило бы физики двух или четырех измерений, физики, которая, в известном смысле, была бы такою же, как и наша, ибо она описывала бы другим языком тот же самый мир?
В самом деле, не представляет, по-видимому, никаких затруднений перевести нашу физику на язык геометрии четырех измерений. Осуществить действительно такую задачу значило бы потратить много усилий с ничтожной пользой, и я ограничусь лишь указанием на механику Герца, в которой мы имеем нечто, напоминающее такой перевод. Но такой перевод, по-видимому, всегда был бы сложнее текста и всегда обнаруживал бы свою заимствованную природу, тогда как язык трех измерений кажется наиболее приспособленным к описанию нашего мира, хотя это описание может быть точно выполнено и на другом языке.
Однако наш распределительный щит возник неслучайно. Имеется связь между сигналом А1 и ответным ударом В1, это – внутреннее свойство нашего ума. Но чем объясняется эта связь? Тем, что ответный удар В1 позволяет действительно защититься против опасности А1, а это – факт, внешний для нас, это – свойство внешнего мира. Таким образом, наш распределительный щит есть лишь выражение совокупности внешних фактов; если он имеет три измерения, то это потому, что он приспособлен к миру, имеющему определенные свойства, и главное из этих свойств заключается в том, что в этом мире существуют твердые тела, перемещающиеся по таким законам, которые мы называем законами движения неизменяющихся твердых тел. Если, следовательно, язык трех измерений лучше всего позволяет нам описать наш мир, то мы не должны этому удивляться. Этот язык скопирован с нашего распределительного щита, а этот щит установлен для того, чтобы можно было жить в этом мире.
Я сказал, что мы могли бы представить себе мыслящие существа, живущие в нашем мире и обладающие распределительным щитом четырех измерений; такие существа мыслили бы сверхпространство. Но не может быть уверенности в том, что такие существа, если бы и рождались, могли бы выжить и защититься против тысяч опасностей, которыми они были бы окружены в этом мире.
В заключение несколько замечаний. Существует разительный контраст между грубостью той примитивной геометрии, которая сводится к распределительному щиту, и безграничной точностью геометрии геометров. И, однако, последняя – плод первой. Но не ее одной; она должна была быть оплодотворена присущей нам способностью к построению математических понятий, как, например, понятия о группах; нужно было среди этих чистых понятий найти наиболее приспособленное к этому грубому пространству, генезис которого я пытался объяснить на предшествующих страницах и которое является общим у нас и у высших животных.
Очевидность некоторых геометрических постулатов, сказали мы, есть не что иное, как наша косная неспособность отказаться от очень старых привычек. Но эти постулаты чрезвычайно точны, тогда как привычки заключают в себе нечто по существу зыбкое. И, как только мы хотим мыслить, мы испытываем нужду в этих чрезвычайно точных постулатах, так как лишь с их помощью мы можем избежать противоречия. Но среди всех возможных систем постулатов имеются такие, которые мы отказываемся принять, потому что они не согласуются с нашими привычками; как ни зыбки, как ни эластичны эти привычки, все же они имеют предел этой эластичности.
Мы видим, что если геометрия не есть экспериментальная наука, то это все же наука, рожденная в связи с опытом; мы создали пространство, которое она изучает, но мы приспособили его к миру, в котором мы живем. Мы сделали выбор наиболее удобного пространства, но этим выбором руководил опыт. И так как выбор был бессознателен, то нам кажется, что он для нас необходим; одни говорят, что он сделался для нас необходимым путем опыта, другие говорят, что мы рождаемся с вполне сложившимся представлением о пространстве. Из предыдущих рассуждений явствует, какая доля истины и ошибки заключается в этих двух суждениях.
Очень трудно определить участие индивида и участие расы в том эволюционном процессе воспитания, который закончился построением пространства. В какой мере кто-нибудь из нас, будучи перенесен с момента рождения в другой совершенно мир, где, например, преобладали бы тела, перемещающиеся по законам движения, свойственным неевклидовским твердым телам, в какой мере, повторяю, мог бы он отказаться от пространства предков, чтобы построить совершенно новое пространство?
Участие расы кажется преобладающим. Однако если мы и обязаны ему грубым пространством, зыбким пространством высших животных, о котором я говорил выше, то не обязаны ли мы бессознательному опыту индивида тем безгранично точным пространством, которое имеет геометр? Этот вопрос нелегко разрешается. Укажем, однако, на факт, который показывает, что пространство, завещанное нам предками, сохраняет известную пластичность. Некоторые охотники научиваются ловить рыбу под водой, хотя изображение этих рыб вследствие преломления несколько приподнято. Они учатся этому инстинктивно: они сумели, следовательно, изменить свой прежний инстинкт направления. Или, если хотите, они сумели на место связи А1, В1 поставить другую связь А1, В2, потому что опыт показал им, что с первой связью нельзя достигнуть цели.
Глава II. Математические определения и преподавание
1. Я должен говорить здесь об общих определениях в математических науках; по крайней мере к этому меня обязывает название настоящей главы. Но мне невозможно будет оставаться в рамках предмета в такой мере, в какой это требовалось бы правилом единства действия; я не смогу трактовать вопроса, не затрагивая отчасти других ближайших вопросов, и потому прошу простить мне уклонения вправо и влево, которые встретятся в дальнейшем.
Что разумеют под хорошим определением? Для философа или для ученого это есть определение, которое приложимо ко всем определяемым предметам и только к ним; такое определение удовлетворяет правилам логики. Но при преподавании дело обстоит иначе. Здесь хорошим определением будет то, которое понято учениками.
Чем объяснить, что многие умы отказываются понимать математику? Не парадоксально ли это? В самом деле, вот наука, которая апеллирует только к основным принципам логики, например к принципу противоречия, апеллирует к тому, что составляет, так сказать, скелет нашего разумения, к тому, от чего нельзя отказаться, не отказываясь вместе с тем от самого мышления, и все же встречаются люди, которые находят эту науку темной! И этих людей большинство! Пусть бы они оказались неспособными изобретать – это еще допустимо. Но они не понимают доказательств, которые им предлагают, они остаются слепыми, когда им подносят свет, который для нас горит чистым и ярким пламенем, – вот что чрезвычайно странно.
А между тем достаточно и небольшого опыта, доставляемого экзаменами, чтобы убедиться в том, что эти слепые отнюдь не являются исключениями. Здесь имеется проблема, которая не легко решается, но которая должна занимать всех, желающих посвятить себя делу преподавания.
Что значит понимать? Имеет ли это слово для всех одно и то же значение? Понять доказательство теоремы – значит ли это рассмотреть последовательно каждый из силлогизмов, из коих составляется доказательство, и констатировать, что он правилен и согласуется с ходом задачи? Точно так же понять определение – значит ли это только признать, что смысл всех употребленных в нем терминов уже известен, и констатировать, что определение не заключает в себе никакого противоречия?
«Да», – скажут одни, которые, констатировав отсутствие противоречия в определении, говорят: «мы его поняли». «Нет», – скажет большинство. Почти все люди оказываются более требовательными; они хотят не только знать, правильны ли все силлогизмы доказательства, но еще и знать, почему силлогизмы связываются в данном, а не в другом порядке. Пока им кажется, что эта связь рождена капризом, а не разумом в постоянном сознании преследуемой цели, они думают, что не поняли доказательства.
Без сомнения, они сами не отдают себе отчета в том, чего они, собственно, требуют, и не могут формулировать своего желания; но если они не находят удовлетворения, то они смутно чувствуют, что чего-то им недостает. Что же тогда происходит? Вначале они еще схватывают те очевидные вещи, которые представляются их взору; но, так как последние связаны чрезвычайно тонкой нитью с предшествующими и последующими, то они не оставляют никакого следа в их мозгу; они тотчас забываются. Освещенные на одно мгновение, они сейчас же исчезают в сумраке вечной ночи. А когда эти люди следят за дальнейшим развитием доказательства, для них исчезает и прежняя эфемерная ясность, так как теоремы опираются одна на другую, а теоремы, которые им нужны, уже забыты. Таким образом, эти люди становятся неспособными понимать математику.
Не всегда здесь виной преподаватель; зачастую ум людей, нуждающийся в руководящей нити, слишком ленив для поисков ее. Но, чтобы помочь непонимающим, мы должны сначала хорошо узнать то, что их останавливает.
Другие же спросят, для чего все это служит; они не поймут силлогизмов, если они не нашли вокруг себя на практике или в природе основания для того или иного математического понятия. Под всяким словом они хотят разглядеть чувственный образ; необходимо, чтобы определение вызывало этот образ, чтобы на каждой стадии доказательства они видели его превращения и эволюцию. Лишь при таком условии они поймут и удержат в памяти доказательство. Такие люди часто заблуждаются относительно самих себя; они не слушают рассуждений, а рассматривают фигуры, они воображают, что поняли, тогда как они только видели.
2. Сколько различных тенденций! Нужно ли с ними бороться? Или нужно ими воспользоваться? А если мы хотим с ними бороться, то какой из них должны мы благоприятствовать? Нужно ли доказывать тем, которые довольствуются чистой логикой, что они видят только одну сторону вещей? Или, напротив, нужно доказывать тем, которые не удовлетворяются так легко, что то, чего они требуют, не является необходимостью?
Другими словами, должны ли мы принуждать молодых людей к тому, чтобы они изменяли природу своего ума? Такая попытка была бы бесплодна. Мы не обладаем философским камнем, который дал бы нам возможность превращать один в другой вверенные нам металлы; все, что мы можем сделать, – это работать, приспосабливаясь к их свойствам.
Многие дети неспособны стать математиками, тем не менее им необходимо преподавать математику. Да и сами математики не все отлиты по одной и той же модели. Достаточно прочитать их труды, чтобы заметить существование умов двух типов: логиков, как Вейерштрасс, и интуитивистов, как Риман. Такая же разница наблюдается и среди студентов. Одни любят разрабатывать задачи, как они выражаются, «путем анализа», другие – «путем геометрии».
Было бы бесполезно пытаться изменить что-либо в этом отношении, да и, помимо того, было ли бы это желательно?
Хорошо, что существуют логики и интуитивисты; кто рискнет утверждать, что он предпочел бы, чтобы Вейерштрасс никогда не писал или чтобы Римана не было? Таким образом, мы должны примириться с разнообразием умов или, еще лучше, мы должны ему радоваться.
3. Так как слово «понимать» имеет несколько значений, то определения, наиболее понятные для одних людей, не будут совпадать с определениями, которые подходят для других. Мы имеем такие определения, которые стараются вызвать в нас образ, и такие, которые лишь комбинируют пустые формы, доступные интеллекту, но только ему одному, определения, которые по своей абстрактности лишены всякого материального содержания.
Я не знаю, нужно ли приводить примеры. Однако мы приведем некоторые, и прежде всего мы остановимся на определении дробей, которое даст нам крайний пример. В начальных школах, чтобы определить дробь, разрезают яблоко или пирог; конечно, разрезание происходит в уме, а не в действительности, ибо я не думаю, чтобы бюджет начальной школы позволял такую расточительность. В высшей нормальной школе или на факультетах, напротив, скажут: дробь – это совокупность двух целых чисел, разделенных горизонтальной чертой; определят при помощи соглашений те операции, которым можно подвергать эти символы; докажут, что правила для этих операций те же, какие употребляются в исчислении целых чисел и, наконец, обнаружат, что, умножая, согласно этим правилам, дробь на знаменатель, мы находим числитель. Такое определение будет здесь уместным, потому что его преподносят молодым людям, которые уже давно освоились с понятием о дробях – они уже делили яблоки и другие предметы; ум которых уже изощрен математической эрудицией; которые хотят, наконец, получить чисто логическое определение. Но как был бы ошеломлен начинающий, к которому подошли бы с подобным определением.
Таковы же определения, которые вы найдете в удивительной и несколько раз премированной книге Гильберта «Основания геометрии». Посмотрим, как он начинает: вообразим три системы вещей, которые мы назовем точками, прямыми и плоскостями. Что это за «вещи» – мы не знаем, да и незачем нам это знать. Было бы даже греховно стараться это узнать. Все, на что мы можем претендовать, сводится к тому, чтобы мы усвоили относящиеся к ним аксиомы, например следующую: две различные точки всегда определяют прямую, и комментарий к ней: вместо «определяют» мы можем сказать, что прямая проходит через две точки, или соединяет эти две точки, или что две точки расположены на прямой. Значит, фраза «точки расположены на прямой» является просто синонимом фразы «точки определяют прямую». Вот книга, которую я очень высоко ценю, но которую я не рекомендую лицеисту. Впрочем, я мог бы это сделать без опаски, так как в чтении ее он ушел бы не очень далеко.
Я взял крайние примеры; никакой преподаватель, конечно, не предложил бы таких определений. Но разве не остается такая же опасность и тогда, когда мы стоим ближе к действительности?
Вот в четвертом классе. Преподаватель диктует: «окружность – это геометрическое место точек на плоскости, находящихся на одном и том же расстоянии от одной внутренней точки, именуемой центром». Хороший ученик вписывает эту фразу в свою тетрадь; плохой ученик рисует в ней «человечков», но ни тот, ни другой ничего не поняли. Тогда преподаватель берет мел и рисует круг на доске. «Ага, – думают ученики, – почему он не сказал сразу: окружность – это кружок, и мы бы сразу поняли». Без сомнения, преподаватель прав. Определение учеников не имело бы никакой ценности, потому что не могло бы служить ни для какого доказательства, и в особенности не привило бы им спасительной привычки анализировать свои понятия. Но им надобно было бы доказать, что они не понимают того, что им кажется понятным, надобно было бы заставить их отдать себе отчет в грубости их первоначального представления, сделать так, чтобы они сами пожелали очистить и улучшить это представление.
4. Я еще вернусь ко всем этим примерам. Я хотел лишь показать вам две противоположные идеи: между ними имеется самый резкий контраст, причина которого нам раскрывается историей науки. Если мы читаем книгу, написанную пятьдесят лет назад, то рассуждения, которые мы в ней находим, кажутся нам большей частью лишенными логической строгости.
В ту эпоху допускали, что непрерывная функция не может изменить знак, не проходя через нуль; теперь это доказывают. Допускали, что обыкновенные правила счисления приложимы к несоизмеримым числам, теперь это доказывают. Допускали еще и другие вещи, которые порою оказывались ложными.
Доверялись интуиции. Но интуиция не может дать ни строгости суждений, ни уверенности в их правильности, в этом убеждались все более и более. Интуиция, например, учит нас, что всякая кривая имеет касательную, т. е. что каждая непрерывная функция имеет производную, и однако это положение ложно. А так как знание стремилось к уверенности, то приходилось все более и более ограничивать роль интуиции. Каким образом свершилась эта необходимая эволюция? Вскоре было замечено, что рассуждения лишь тогда приобретут строго доказательную силу, когда эта строгость будет предварительно внесена в определения.
Объекты, которыми занимаются математики, долгое время не имели хороших определений; эти предметы казались известными потому, что их себе представляли при помощи чувств или воображения; но в действительности их образы отличались грубостью; не было точных идей, на которые могли бы опереться доказательства. Вот в эту сторону логики вынуждены были направить свои усилия. Примером могут служить несоизмеримые числа.
Неопределенная идея непрерывности, которой мы обязаны интуиции, разрешилась в сложную систему неравенств, имеющих дело с целыми числами. Благодаря этому исчезли, наконец, все те трудности, которые пугали наших отцов, когда они размышляли об основаниях исчисления бесконечно малых величин.
Теперь анализ имеет дело только с целыми числами или же с конечными или бесконечными системами целых чисел, связанных совокупностью равенств и неравенств.
Математические науки, как говорят, арифметизировались.
5. Но можно ли думать, что эти науки достигли абсолютной строгости, ничем со своей стороны не жертвуя? Ничуть; то, что они выиграли в строгости, они потеряли в объективности. Они приобретали совершенную чистоту, удаляясь от реальности. Теперь можно свободно обозреть всю область математического знания, которая раньше была усеяна преградами, но эти преграды не исчезли. Они были лишь перенесены на границу; и если мы хотим перейти эту границу, чтобы вступить в область практики, то мы должны снова преодолеть эти препятствия.
Прежде мы обладали лишь неясными понятиями, составленными из несвязанных элементов, из которых одни были априорны, другие вытекали из более или менее уясненного опыта; мы думали, что главные их свойства узнаны интуитивным путем. Теперь эмпирические элементы отвергаются и сохраняются лишь элементы априорные, для определения берется одно из свойств, все другие выводятся из него путем строгого рассуждения. Это хорошо, но остается еще доказать, что свойство, ставшее определением, принадлежит действительно тем реальным объектам, с которыми нас познакомил опыт и из которых мы вывели наше ясное интуитивное понятие. Чтобы это доказать, необходимо обратиться к опыту или прибегнуть к усилию интуиции; если же мы этого не докажем, то наши теоремы будут совершенно строгими, но и совершенно бесполезными.
Логика приводит часто к уродствам. На протяжении полувека мы видели, как возникло множество причудливых функций; эти новые функции как будто старались возможно менее походить на те благородные функции, которые чему-нибудь да служат. Таковы, например, функции непрерывные, но без производных, и т. д. Более того, с точки зрения логической эти именно причудливые функции и являются наиболее общими; те же функции, которые мы находим без долгих поисков, образуют как бы частный случай. Для них остается лишь маленький уголок. Некогда при нахождении новых функций имелась в виду какая-нибудь практическая цель. Теперь функции изобретаются специально для того, чтобы обнаружить недостаточность рассуждения наших отцов, никакого иного вывода, кроме этого, из них нельзя извлечь.
Если бы логика была единственным руководителем педагога, то нужно было бы начинать с наиболее общих, т. е. наиболее причудливых функций. Именно начинающего следовало бы в таком случае отдать во власть этого музея уродств. «Если вы этого не делаете, – могли бы сказать логики, – то вы достигнете надлежащей строгости лишь после целого ряда этапов».
6. Быть может, это и так; но мы не можем не дорожить реальностью. Я разумею здесь не только реальность чувственного мира, который, впрочем, имеет свою ценность уже потому, что девять десятых ваших учеников ищут у вас орудий именно для борьбы с этой реальностью. Но есть реальность более утонченная, которая составляет жизнь математических субстанций и которая все-таки не логика.
Наше тело составлено из клеток, клетки – из атомов. Составляют ли эти клетки и эти атомы все, что есть реального в человеческом теле? Не представляет ли собою способ, каким эти клетки собраны и который обусловливает единство индивида, также реальности, и реальности гораздо более интересной? Мог бы натуралист, изучавший слона только под микроскопом, думать, что он достаточно познакомился с этим животным?
То же самое в области математики. Когда логик разложил всякое доказательство на множество элементарных операций, вполне правильных, он еще не уловил реальности в ее целом; то неизвестное мне, что составляет единство доказательства, совершенно от него ускользнуло.
Стоит ли в здании, возведенном нашими учителями, удивляться работе каменщика, если мы не понимаем плана архитектора? Но общий взгляд не дается нам чистой логикой; чтобы получить его, мы должны обратиться к интуиции.
Возьмем для примера идею непрерывной функции. Сначала это не что иное, как чувственный образ, след, начертанный мелом на черной доске. Мало-помалу эта идея очищается. Ею пользуются для построения сложной системы неравенств, воспроизводящей все линии примитивного образа. Когда построение закончено, кружала снимаются, как это делается после сооружения свода, то грубое представление, которое стало отныне бесполезным, исчезает, остается лишь само здание, безупречное в глазах логика. И, однако, если бы преподаватель не влил содержания в первоначальные образы, если бы он не установил на время кружал, разве мог бы ученик догадаться, по какому капризу все эти неравенства определенным образом нанизывались одно на другое? Определение было бы правильным с логической стороны, но оно не раскрыло бы ученику настоящей реальности.
7. Мы должны вернуться назад. Без сомнения, учителю неприятно вести преподавание в рамках, которые его не вполне удовлетворяют. Но удовлетворение учителя – не единственная цель обучения; нужно прежде всего считаться с умом ученика и с тем, что из него желают сделать.
Зоологи утверждают, что эмбриональное развитие животного резюмирует вкратце историю его предков в разные геологические периоды. Воспитатель должен заставить ребенка пройти через те ступени, которые были пройдены его предками, пройти быстрее, но без пропуска промежуточных этапов. В этом смысле история науки должна быть нашим первым руководителем.
Наши предки думали, что знают, что такое дробь, непрерывность, площадь кривой поверхности; лишь мы заметили, что они этого не знали. Точно так же наши ученики думают, что они это знают, когда уже принимаются серьезно за изучение математики. Если я, без предварительной подготовки, скажу им: «нет, вы этого не знаете, вы не понимаете того, что вам казалось понятным; я должен вам доказать то, что вы считали очевидным», – и если я в своих доказательствах буду опираться на посылки, которые им кажутся менее очевидными, чем заключения, то что подумают эти несчастные? Они подумают, что математическая наука есть не что иное, как произвольно собранная груда бесполезных умствований; и они либо почувствуют к ней отвращение, либо будут забавляться ею, как игрою, и в умственном отношении уподобятся греческим софистам.
Напротив, позже, когда ученик освоится с математическим суждением и ум его созреет в этой продолжительной работе, сомнения станут возникать сами собой, и тогда ваше доказательство будет своевременным. Оно разбудит новые сомнения, и вопросы предстанут перед юношей в той последовательности, в какой они представлялись нашим отцам; и это будет продолжаться до тех пор, пока он не разовьется в такой мере, что его будут удовлетворять только совершенно строгие определения. Недостаточно еще во всем сомневаться, нужно знать, почему возникает сомнение.
8. Главная цель обучения математике – это развить известные способности ума, а между этими способностями интуиция отнюдь не является наименее ценной. Благодаря ей мир математических образов остается в соприкосновении с реальным миром; и если чистая математика может обойтись без нее, то она всегда необходима, чтобы заполнить пропасть, которая отделяет символы от реального мира; к нему будет постоянно обращаться практик, а ведь на одного чистого геометра приходится сто практиков.
Инженер должен получить полное математическое образование, но для чего оно ему? Для того чтобы видеть различные стороны вещей, видеть их быстро. У него нет времени гоняться за мелочами. В сложных физических предметах, которые представляются его взору, он должен быстро найти точку, к которой могут быть приложены данные ему в руки математические орудия. Как бы он это сделал, если бы между предметами и орудиями оставалась та пропасть, которую вырыли логики?
9. Наряду с будущими инженерами имеются ученики, не столь многочисленные, которые должны стать учителями. Последние должны дойти до конца; для них прежде всего обязательно глубокое и строгое изучение основных принципов. Но отсюда не следует, что в них не надо культивировать интуиции. Ибо они могут составить себе ложное представление о науке, если всегда будут смотреть на нее с одной только стороны, и они не сумеют развить в своих питомцах того качества, которым сами не обладают.
Для чистого геометра эта способность необходима. Доказывают при помощи логики, изобретают при помощи интуиции. Хорошо уметь критиковать, еще лучше – уметь творить. Вы способны распознать, правильна ли данная комбинация, и это недурно, раз вы не обладаете искусством сделать выбор между всеми возможными комбинациями. Логика нам говорит, что на таком-то пути мы можем быть уверены, что не встретим препятствий; она не говорит, какой путь ведет к цели. Для этого необходимо видеть цель издалека, и интуиция есть та способность, которая этому нас учит. Без нее геометр походил бы на писателя, который был бы прикован к грамматике, но не имел бы идей. Но как может развиться такая способность, раз ее преследуют и изгоняют, лишь только она обнаруживается, раз приучают относиться к ней с недоверием еще раньше, чем убедились в пользе, которую она может принести.
Позвольте мне здесь мимоходом остановиться на важности письменных работ. Эти работы занимают, быть может, слишком мало места на экзаменах, например, в Политехнической школе. Мне говорят, что такие работы закрыли бы доступ хорошим ученикам, которые понимают пройденные курсы, хорошо их знают, но не способны сделать из них ни малейшего применения. Я сказал выше, что слово «понимать» имеет несколько значений: эти ученики «понимают» определения в первом из указанных мною значений этого слова; но мы видели, что такого понимания недостаточно ни для инженера, ни для геометра. Атак как здесь необходимо сделать выбор, то я предпочитаю выбрать тех, которые понимают вполне.
10. Но искусство правильно рассуждать разве не есть драгоценное качество, которое преподаватель математики должен прежде всего культивировать? Я этого не забываю. Об этом нужно позаботиться с самого начала. Я был бы в отчаянии, если бы увидел, что геометрия выродилась в какую-то тахеометрию нижайшего уровня, и нисколько не подписываюсь под крайними доктринами некоторых немецких обер-учителей. Но при изучении математики и именно тех отделов ее, где указанные выше неудобства не встречаются, бывает немало случаев, которые дают место для упражнения учеников в правильном рассуждении. У нас имеются длинные сцепления теорем, в которых абсолютная логика сразу и как будто естественно заняла господствующее положение и которые, как образцы, вышедшие из рук первых геометров, достойны всякого удивления и подражания.
Именно в изложении основных принципов нужно избегать излишних тонкостей. Здесь они и не привились бы и к тому же были бы бесполезны. Нельзя все доказать и нельзя все определить. Приходится всегда делать заимствование у интуиции. Не важно, сделаем ли мы это заимствование немного раньше или немного позже, будет ли оно немного больше или меньше, лишь бы мы, правильно пользуясь теми посылками, которые даны нам интуицией, научились правильно рассуждать.
11. Можно ли, однако, удовлетворить столь противоположным условиям? Возможно ли это в особенности тогда, когда приходится дать определение? Как найти такую краткую формулировку, которая одновременно удовлетворяла бы непреклонным правилам логики, нашему желанию понять то место, которое занимает новое понятие в совокупности знаний, нашей необходимости мыслить образами? Чаще всего такой формулировки найти нельзя, и вот почему недостаточно высказать определение: необходимо его подготовить и необходимо его оправдать.
Что я хочу этим сказать? Вы знаете, как часто говорят: всякое определение включает в себя аксиому, так как оно утверждает существование определенного объекта. Определение будет, следовательно, оправдано с точки зрения логической лишь тогда, когда будет доказано, что оно не находится в противоречии ни с терминами, ни с ранее допущенными истинами.
Но это не все. Определение теперь называют соглашением; но большинство умов возмутится, если вы захотите навязать это определение как соглашение произвольное. Они успокоятся только тогда, когда вы им дадите ответ на многочисленные вопросы, которые у них возникнут.
Чаще всего математические определения, как это показал Лиар, суть целые построения, составленные при помощи простейших понятий. Но почему эти элементы соединены именно данным образом, когда возможна еще тысяча других способов соединения? Каприз ли это? А если нет, то почему данная комбинация имеет больше прав на существование, чем все прочие? Какой необходимости она отвечает? Как можно было предвидеть, что она сыграет важную роль в развитии науки, что она сократит наши суждения и наши вычисления? Существует ли в природе некоторый особый предмет, который является, так сказать, неясным и грубым прообразом такой комбинации?
Это не все. Если вы ответите на эти вопросы удовлетворительно, то мы увидим, что принятую комбинацию нужно окрестить каким-либо именем. Но выбор имени не является произвольным. Нужно объяснить, какими аналогиями руководились, избирая имя. Если же аналогичное имя присваивалось различным вещам, то нужно показать, что эти вещи отличаются между собой только материально, по форме же близки друг к другу, что их свойства подобны и, так сказать, параллельны.
Вот какой ценой можно удовлетворить всем притязаниям. Если формулировка достаточно правильна, чтобы удовлетворить логика, то ее оправдание удовлетворит интуитивиста. Но лучше поступить иначе: необходимо, чтобы оправдание во всех случаях, когда это возможно, предшествовало формулировке и подготовляло ее; изучение нескольких частных примеров лучше всего приводит к общей формулировке.
Еще другое обстоятельство: каждая часть формулированного определения имеет целью установить отличие определяемого объекта от класса других близких предметов. Определение будет понято лишь тогда, когда вы покажете не только определяемый предмет, но и те соседние предметы, от которых его надобно отличать; когда вы сделаете явственным это отличие и при этом прибавите: «вот для чего я внес в определение то-то и то-то».
Теперь нам нужно перейти от общих суждений к исследованию вопроса, каким образом все изложенные мною несколько абстрактные принципы могут быть приложены в арифметике, геометрии, анализе и механике.
Нет нужды определять целое число; но зато обыкновенно определяют действия над целыми числами. Я предполагаю, что ученики выучивают определения наизусть и не связывают с ними никакого смысла. Для этого у меня есть два основания: во-первых, учеников заставляют заучивать определения слишком рано, когда их ум не чувствует в этом никакой потребности; во-вторых, даваемые им определения неудовлетворительны с логической точки зрения. Для сложения нельзя найти хорошее определение просто потому, что нельзя же все определить и необходимо где-нибудь остановиться. Сказать: «сложение заключается в прибавлении» – не значит дать определение. Все, что можно сделать, это взять за исходный пункт некоторое число конкретных примеров и сказать: «действие, которое мы сделали, называется сложением».
Иное дело при вычитании; его можно логически определить как действие, обратное сложению. Но следует ли с этого и начинать? И здесь надобно начать с примеров, выяснить на них взаимность этих двух действий; тогда определение будет и подготовлено и оправдано.
То же самое нужно сказать об умножении. Надо взять частную задачу и показать на ней, что она может быть разрешена, если складывать между собой равные числа. Затем уже можно показать, что к такому же результату можно прийти посредством умножения, т. е. посредством действия, которое учениками уже усвоено, и тогда логическое определение выяснится само собой.
Деление необходимо определить как действие, обратное умножению; но начать нужно с примера, заимствованного из повседневного обихода, например с деления какого-нибудь предмета на равные доли, и на этом примере показать, что делимое получается посредством умножения.
Остаются действия над дробями. Некоторые затруднения здесь представляет только умножение. Лучше изложить сначала теорию пропорций, так как только из нее можно извлечь логическое определение.
Но для того чтобы стали приемлемы те определения, которые встречаются в начале этой теории, необходимо предварительно воспользоваться многими примерами, заимствованными из классических задач на тройное правило, вводя в них дробные величины. Можно без боязни прибегать к геометрическим образам для ознакомления учеников с понятием о пропорции; для этого либо нужно вызвать в их памяти воспоминания, если они уже занимались геометрией, либо обращаться к их непосредственной интуиции, что, между прочим, подготовит их к занятию геометрией. Прибавлю, наконец, что, дав определение умножения дробей, необходимо оправдать это определение, показав, что умножение является действием переместительным, сочетательным и распределительным, а также указать при этом, что такое доказательство приводится для оправдания определения.
Отсюда видно, какую роль играют во всем этом геометрические образы, и эта роль оправдывается философией и историей науки. Если бы арифметика не имела никакой геометрической примеси, она знала бы только целые числа; для приспособления к нуждам геометрии она кроме них изобрела еще и нечто другое.
В геометрии мы встречаемся на первых шагах с понятием о прямой линии. Можно ли определить прямую линию? Обычное определение ее как кратчайшего расстояния от одной точки до другой меня не удовлетворяет. Я исходил бы просто из линейки и показал бы ученику, как можно проверить линейку, повернув ее другой стороной, такая проверка есть истинное определение прямой линии: прямая линия – это ось вращения. Затем надобно ученику показать, что линейку можно проверить посредством скольжения, и при этом обнаружится одно из наиболее важных свойств прямой линии. Что же касается того свойства, что прямая линия есть кратчайшее расстояние между двумя точками, то это уже теорема, которая может быть доказана аподиктически, но это доказательство слишком тонко, чтобы найти себе место в курсе средней школы. Лучше было бы показать, что линейка, предварительно проверенная, налагается на натянутую проволоку. При всех затруднениях такого рода можно без опасений умножать число аксиом, оправдывая их даже на грубых примерах. Некоторое число аксиом необходимо должно быть допущено, и если число их немного превосходит то, которое строго необходимо, то беда еще невелика. Главное – это научить правильно рассуждать при помощи раз допущенных аксиом. Дедушка Сарсей часто говорил, что в театре зритель охотно принимает те постулаты, которые ему навязаны сначала, но раз занавес поднят, он становится неумолимым в своей логической требовательности. То же самое происходит в математике.
Для определения круга можно исходить из циркуля. Ученики с первого взгляда узнают начерченную кривую. Затем им покажут, что расстояние между двумя точками инструмента остается постоянным, что одна из этих точек неподвижна, а другая движется, и таким образом ученики естественно придут к логическому определению. Определение плоскости содержит в себе аксиому, этого не нужно скрывать. Возьмем рисовальную доску и покажем, что движущаяся линейка постоянно накладывается на эту плоскость, сохраняя при этом три степени свободы. Сравним затем плоскость с цилиндром и конусом, с поверхностями, на которые прямая может быть наложена только при сохранении двух степеней свободы. Возьмем далее три рисовальные доски и покажем сначала, что они, будучи наложены одна на другую, могут скользить при трех степенях свободы. И, наконец, чтобы установить различие между плоскостью и сферой, покажем, что две доски, накладывающиеся порознь на третью, накладываются также друг на друга.
Быть может, вас удивит это постоянное применение подвижных инструментов. Это не грубый прием, он более философский, чем это кажется с первого взгляда. Что такое геометрия для философа? Это изучение некоторой группы. Какой именно? Группы движений твердых тел. Каким же образом определить эту группу, не заставляя двигаться некоторые твердые тела?
Должны ли мы сохранить классическое определение параллельных линий и сказать, что параллельными называются такие прямые, которые расположены в одной плоскости и никогда не встречаются, сколько бы их ни продолжали? Нет, ибо это определение отрицательное, оно не может быть проверено опытом и не может быть, следовательно, рассматриваемо как непосредственное данное интуицией. Определение это не может быть сохранено особенно еще потому, что оно совершенно чуждо понятию о группе, чуждо идее о движении твердых тел, которая, как я уже сказал, является истинным источником геометрии. Не лучше ли определить сначала прямолинейное переносное движение какой-либо неизменяемой фигуры как такое движение, в котором все точки этой фигуры описывают прямолинейные траектории, показать, что подобное перемещение возможно, когда треугольник скользит по линейке? Из экспериментального констатирования этого факта, возведенного в аксиому, легко было бы вывести как понятие о параллельной прямой, так и сам евклидов постулат.
Мне нет надобности останавливаться на определении скорости или ускорения, а также и других кинематических понятий; они с большим удобством могут быть отнесены к определению производной. Я остановлюсь, напротив, на динамических понятиях о силе и массе.
Одна вещь меня поражает, а именно: сколь многие молодые люди, получившие среднее образование, далеки от того, чтобы применять к реальному миру те механические законы, которые им были преподаны. И это не только потому, что они к этому неспособны, но и потому, что об этом даже и не думают. Для них мир науки и мир реальности отделены друг от друга непроницаемой перегородкой. Нередко можно видеть господина, прилично одетого, вероятно, бакалавра, сидящего в карете и воображающего, что он помогает ей двигаться, толкая ее вперед, вопреки принципу действия и противодействия.
Если мы попытаемся проанализировать душевное состояние наших учеников, то это нас менее удивит. Каково в их глазах настоящее определение силы? Не то определение, которое они произносят наизусть, но то скрытое в далеком углу их разума, которое из него всем управляет? Вот это определение: силы суть стрелы, при помощи которых составляются параллелограммы. Эти стрелы суть воображаемые существа, которые ничего общего не имеют с тем, что существует в природе. Но этого не случилось бы, если бы раньше, чем изображать силы при помощи стрелок, ученикам показали бы их в действительности.
Как же определить силу? Логическое определение, как я это показал в другом месте, вряд ли уместно. Есть определение антропоморфное: ощущение мускульного усилия, но оно поистине слишком грубо и ничего полезного из него извлечь нельзя.
Вот тот путь, по которому нужно следовать. Для того чтобы познакомить с понятием силы, нужно показать в последовательном порядке все виды этого понятия. Эти виды очень многочисленны и разнообразны, как то: давление жидкостей на стенки сосудов, в которых они заключаются; напряжение проволок; упругость пружины; тяжесть, которая действует на все молекулы тела; трение; взаимное нормальное действие и противодействие двух твердых тел, касающихся друг друга.
Это определение, конечно, только качественное. Нужно научиться измерять силу. Здесь надобно сначала показать, что можно одну силу заменить другой, не нарушая равновесия. Первый пример такой замены мы найдем в рычажных весах и в двойном взвешивании Борда. Мы покажем затем, что данный вес может быть заменен не только другим весом, но и силами, отличающимися по своей природе; например, нажим Прони позволяет нам заменить вес трением.
Из всего этого вытекает понятие об эквивалентности двух сил.
Необходимо теперь определить направление силы. Если сила F эквивалентна другой силе F’, приложенной к данному телу через посредство натянутой проволоки, так что сила F может быть заменена силой F’ без всякого нарушения равновесия, то точка приложения проволоки будет, согласно определению, точкою приложения силы F’ и, следовательно, эквивалентной силы F. Направление проволоки будет направлением силы F’ и направлением эквивалентной силы F.
Отсюда мы переходим к сравнению величины сил. Если одна сила может заместить две другие одного и того же направления, значит, она равна их сумме; показать это можно на примере с гирей в 20 граммов, замещавшей две гири по 10 граммов.
Достаточно ли этого? Нет еще. Мы умеем сравнивать интенсивность двух сил, имеющих одно и то же направление и одну и ту же точку приложения. Нужно уметь производить сравнения и в том случае, когда направления различны. Для этого вообразим проволоку, перекинутую через блок и натянутую при помощи гири; мы скажем тогда, что натяжение обеих частей проволоки одинаково и равно весу натягивающего груза.
Вот наше определение. Оно позволяет нам сравнить натяжение двух частей проволоки или нити и, пользуясь предыдущими определениями, сравнить любые две силы, имеющие то же направление, что и обе нити. Нужно оправдать его, показав, что натяжение второй части нити остается тем же при том же натягивающем весе, каковы бы ни были число и расположение направляющих блоков. Нужно дополнить еще это определение, указав, что оно верно лишь в тех случаях, когда блоки не производят трения.
Дав эти определения, нужно показать, что точка приложения, направление и интенсивность достаточны для определения силы; что две силы, у коих эти три элемента одинаковы, всегда эквивалентны и всегда могут друг друга заменить как в состоянии равновесия, так и в состоянии движения, и притом независимо от других сил, привходящих в систему.
Нужно показать, что две сходящиеся силы всегда могут быть заменены одной равнодействующей и что эта равнодействующая остается одной и той же как в том случае, когда тело остается в покое, так и в случае его движения, и притом независимо от других приложенных к нему сил.
Нужно показать, наконец, что силы, определенные таким образом, как мы показали, удовлетворяют принципу равенства действия и противодействия.
Все это есть опыт, но только опыт и может нас этому научить.
Достаточно привести несколько примеров из тех обычных действий, которые ученики без всяких колебаний производят ежедневно, и сделать на их глазах несколько простых и хорошо подобранных опытов.
Когда ученики прошли по всем этим обходным путям, можно перейти к изображению сил при помощи стрелок, но я считал бы желательным, чтобы воспитатели, развивая в учениках способность рассуждать, возвращались время от времени от символа к реальности. Не представит труда, например, иллюстрировать параллелограмм сил при помощи прибора, составленного из трех нитей, проходящих через блоки и натянутых посредством грузов, которые уравновешивают друг друга в одной и той же точке.
Зная силу, легко определить массу. На этот раз определение должно быть заимствовано из динамики. Иначе этого сделать нельзя, так как цель, которой здесь хотят достигнуть, заключается в уяснении различия между массой и весом. Здесь определение также должно быть подготовлено рядом опытов. У нас есть машина, которая как будто нарочно создана для того, чтобы познать, что такое масса, это – машина Атвуда. Затем следует напомнить о законах падения тел, о том, что ускорение тяжести остается одним и тем же для тяжелых и легких тел, что оно изменяется вместе с географической широтой и т. д.
Если вы мне теперь скажете, что методы, которые я пропагандирую, давно уже применяются в лицеях, я буду более обрадован, чем удивлен. Я знаю, что в общем у нас обучение математике поставлено удовлетворительно. Я не хочу, чтобы оно было нарушено, это меня опечалило бы, я желаю лишь медленных прогрессивных улучшений. Это обучение не должно подвергаться крутым колебаниям и капризу преходящей моды. Его высокая воспитательная ценность померкла бы в такой буре. Здравая и прочная логика должна по-прежнему лежать в его основании. Определение, внушаемое при помощи примеров, всегда необходимо, но оно должно подготовлять определение, а не заменять его; оно должно по крайней мере выяснить желательность такого логического определения в тех случаях, когда это последнее с пользой для дела может быть дано лишь на ступени высшего обучения.
Вы, конечно, понимаете, что изложенными соображениями я отнюдь не отказываюсь от того, что писал раньше. Я часто имел случай критиковать некоторые определения, которые я теперь сам же предлагаю. Эта критика сохраняет всю свою силу. Определения, о которых идет речь, могут быть только предварительными. Но пройти через эти определения необходимо.
Глава III. Математика и логика
Можно ли математику свести к логике, не обращаясь предварительно к тем принципам, которые ей, математике, свойственны? Существует школа математиков, которая со всей страстью и верой в дело стремится доказать это. Она выработала специальный язык, в котором нет больше слов, а имеются одни только знаки. Этот язык понятен только немногим посвященным, так что профаны склонны преклоняться перед категорическими утверждениями горячих адептов. Небесполезно, однако, ближе исследовать эти утверждения, чтобы убедиться, насколько оправдывается тот категорический тон, с которым они высказываются.
Но чтобы понять сущность вопроса, необходимо познакомиться с историческими деталями дела и в особенности вспомнить характер работ Кантора.
Понятие бесконечности уже давно было введено в математику. Но эта бесконечность была такой, какую философы называют потенциальной. В математике бесконечность обозначала количество, способное расти выше или ниже какого бы то ни было предела; это было изменяющееся количество, о котором можно было сказать, что оно перейдет все пределы, но нельзя было сказать, что оно их перешло. Кантор решил ввести в математику актуальную бесконечность, т. е. количество, не только способное перейти все пределы, но уже перешедшее через них. Он поставил себе вопросы вроде следующих: существует ли больше точек в пространстве, чем целых чисел? Существует ли больше точек в пространстве, чем точек на плоскости? И так далее.
Число целых чисел, число точек в пространстве и т. д. составляет то, что Кантор назвал кардинальным трансфинитным числом, т. е. таким количественным числом, которое больше всех обыкновенных количественных чисел. Кантор затем занялся сравнением этих кардинальных трансфинитных чисел. Размещая в соответствующем порядке элементы в совокупности, составленной из бесконечного числа таких элементов, он изобрел так называемые порядковые трансфинитные числа, на которых я не буду здесь останавливаться.
Многие математики последовали за Кантором и поставили ряд аналогичных вопросов. Они в такой степени освоились с трансфинитными числами, что готовы поставить теорию конечных чисел в зависимость от теории кардинальных чисел Кантора. По их мнению, чтобы вести преподавание арифметики по действительно логическому методу, необходимо начать с установления общих свойств кардинальных трансфинитных целых чисел, а затем выделить из них очень небольшой класс обыкновенных целых чисел. Этим способом можно было бы достигнуть цели, т. е. доказать все предложения, относящиеся к этому небольшому классу (т. е. всю нашу арифметику и нашу алгебру), не прибегая ни к какому началу, лежащему вне логики.
Этот метод, очевидно, противоречит всякой здоровой психологии. Конечно, не этим путем шел человеческий ум, создавая математику; и адепты нового метода, я полагаю, не думают ввести его на ступени среднего образования. Но по крайней мере логичен ли этот метод или, лучше сказать, безошибочен ли он? В этом можно усомниться.
Однако геометры, пользовавшиеся этим методом, очень многочисленны. Они собрали массу формул. Написав мемуары, в которых формулы не чередовались со словесными объяснениями, как это делается в обыкновенных математических книгах, а в которых, следовательно, такие объяснения совершенно отсутствуют, они вообразили, что освободились от всего того, что не представляет собой чистой логики. К несчастью, они пришли к противоречивым результатам. Это так называемые антиномии Кантора, к которым мы еще вернемся. Эти противоречия, однако, их не обескуражили, и они попытались внести такие изменения в свои правила, при которых обнаружившиеся уже противоречия исчезли; но мы при этом не приобрели уверенности в том, что не обнаружатся новые противоречия.
Настало время для справедливой оценки этих преувеличений. Я не надеюсь убедить упомянутых математиков: слишком долго дышали они своей атмосферой. Да и, кроме того, если вы опровергли одно из их доказательств, вы можете быть уверены, что оно возродится лишь в слегка измененном виде. Некоторые из доказательств уже несколько раз возрождались из пепла, наподобие той лернейской гидры[27], у которой вырастали новые головы. Геркулес выпутался из затруднения, потому что его гидра имела девять голов, если не одиннадцать; но здесь слишком много голов: они имеются в Англии, в Германии, в Италии, во Франции, и Геркулес должен был бы отказаться от состязания. Я обращаюсь поэтому только к непредубежденным людям, обладающим здравым смыслом.
В последние годы появилось много трудов, посвященных чистой математике и философии математики, имевших своей задачей выделить и изолировать логические элементы математического рассуждения. Эти труды были ясно изложены и исследованы в работе Кутюра, озаглавленной: «Основания математических наук».
По мнению Кутюра, новейшие труды, в особенности работы Рассела и Пеано, окончательно разрешили давний спор между Лейбницем и Кантом. Они показали, что не существует синтетического априорного суждения (этим именем Кант называл суждения, которые не могут быть ни доказаны аналитически, ни сведены к тождествам, ни установлены экспериментально); они показали, что математические науки целиком могут быть сведены к логике и что интуиция не играет в них никакой роли.
Все это Кутюра изложил в названном выше сочинении. Еще отчетливее высказал он это в речи, произнесенной на юбилее Канта, высказал так убедительно, что мой сосед сказал вполголоса: «мы видим ясно, что истекло столетие со дня смерти Канта».
Можем ли мы подписаться под этим решительным приговором? Я этого не думаю и постараюсь ниже показать, почему я этого не думаю.
Что нам сразу бросается в глаза в новой математике, так это ее чисто формальный характер. «Вообразим, – говорит Гильберт, – три рода вещей, которые мы назовем точками, прямыми и плоскостями; условимся, что прямая будет определяться двумя точками, и вместо того, чтобы сказать, что данная прямая определяется данными двумя точками, мы будем говорить, что она проходит через эти две точки или что эти две точки расположены на этой прямой». Что это за вещи, мы не только не знаем, но и не должны стремиться узнать. Нам этого не нужно, и всякий, кто никогда не видел ни точки, ни прямой, ни плоскости, так же легко мог бы построить геометрию, как и мы. Слова «проходят через» или «расположены на» не должны вызывать у нас никакого образа, ибо первые являются синонимом слова «определяться», вторые – синонимом слова «определять».
Таким образом, для доказательства теоремы не нужно и даже бесполезно знать, что она хочет сказать. Геометра можно было бы заменить «логической машиной», выдуманной Стенли Джевонсом. Или, если угодно, можно было бы выдумать машину, в которую через один конец были бы введены аксиомы, а в другом конце ее были бы собраны теоремы, наподобие той легендарной машины в Чикаго, в которую вкладывают живых поросят и из которой извлекают окорока и сосиски. Математик, как и эта машина, отнюдь не должен понимать, что он делает.
Я не ставлю в вину Гильберту этот формальный характер его геометрии. Он должен был прийти к ней, разрешая ту проблему, которую он себе ставил. Он хотел довести до минимума число основных аксиом геометрии и перечислить их все без остатка. Но в тех суждениях, в которых наш ум обнаруживает активность, в которых интуиция еще играет роль, трудно отделаться от внесения постулата или аксиомы, которые незаметно входят в суждение. Лишь в случае, если бы все геометрические суждения приняли чисто механическую форму, Гильберт мог бы быть уверенным в том, что он исполнил свое намерение и успешно закончил свою задачу.
То, что Гильберт сделал в геометрии, другие захотели сделать в арифметике и в анализе. Однако если бы они в этом даже и успели, то разве кантианцы были бы осуждены на полное молчание? Может быть, и нет, ибо когда мы сообщаем математической мысли пустую форму, эта мысль, конечно, подвергается искажению. Допустим даже, что удалось установить, что все теоремы могут быть выведены из конечного числа аксиом путем чисто аналитических приемов, путем простых логических комбинаций, и что эти аксиомы суть не что иное, как соглашения. Философ, однако, сохранил бы за собой право исследовать происхождение этих условий и определить, почему эти условия оказались предпочтительными перед противоположными им.
Кроме того, не одна только логическая правильность суждений, ведущих от аксиом к теоремам, должна нас занимать. Разве вся математика исчерпывается правилами совершенной логики? Это было бы все равно как если бы мы сказали, что все искусство шахматного игрока сводится к правилам хода пешек. Из всех построений, которые могут быть скомбинированы из материалов, доставляемых логикой, нужно сделать выбор. Настоящий геометр и производит этот выбор здраво, руководствуясь верным инстинктом или же некоторым смутным сознанием о – я не знаю какой именно – более глубокой и более скрытой геометрии, которая одна и составляет ценность воздвигнутого здания.
Искать происхождение этого инстинкта, изучать законы этой глубокой геометрии, которые чувствуются, но словесно не формулируются – вот прекрасная задача для философов, которые не допускают, что логикой исчерпывается все. Но не на эту точку зрения хочу я стать, не так хочу я ставить вопрос. Инстинкт, о котором мы только что говорили, необходим изобретателю, но на первый взгляд кажется, будто при изучении уже созданной науки можно обойтись и без него. И вот я хочу исследовать, можно ли, приняв однажды принципы логики, я уж не говорю открыть, но даже доказать все математические истины, не прибегая снова к интуиции.
На этот вопрос я однажды уже дал отрицательный ответ (см. «Наука и гипотеза», глава I). Должен ли я этот ответ изменить ввиду появившихся новых трудов? Если я в то время ответил отрицательно, то это потому, что «принцип совершенной индукции» казался мне, с одной стороны, необходимым для математика, а с другой стороны, не сводимым к логике. Известно, что этот принцип заключается в следующем.
«Если какое-либо свойство справедливо относительно числа 1 и если установлено, что оно справедливо относительно числа n + 1, коль скоро оно справедливо относительно числа n, то оно будет верно для всех целых чисел».
В этом я по преимуществу видел математическое суждение. Я не хотел этим сказать, как некоторые это думали, что все математические суждения могут быть сведены к приложению этого принципа. Исследуя эти суждения ближе, можно заметить, что в них применяются многие другие аналогичные принципы, обладающие теми же существенными признаками. В их ряду принцип полной индукции является лишь простейшим, и вот почему я остановился на нем как на типичном.
Название принципа совершенной индукции, упрочившееся за этой формой суждения, не может быть признано правильным. Этот способ суждения представляет настоящую математическую индукцию, которая отличается от обыкновенной индукции только степенью своей достоверности.
Существование подобных принципов ставит непримиримых логиков в затруднительное положение. Но как думают они выпутаться из него? Принцип полной индукции, говорят они, не есть аксиома в собственном смысле слова или априорное синтетическое суждение, он есть просто определение целого числа. Следовательно, этот принцип является простым соглашением. Чтобы разобраться в этой точке зрения, нужно подробнее исследовать отношения между определениями и аксиомами.
Обратимся сначала к статье Кутюра о математических определениях, появившейся в выходящем в Женеве журнале «Математическое образование». Мы найдем здесь различие между прямым определением и определением при помощи постулатов.
«Определение при помощи постулатов, – говорит Кутюра, – применяется не к одному понятию, а к системе понятий; оно заключается в перечислении основных соотношений, их связывающих и позволяющих доказать все прочие их свойства; эти соотношения и суть постулаты»…
Если предварительно были определены все эти понятия, за исключением одного, то это последнее и будет по определению тем объектом, который проверяет эти постулаты.
Итак, некоторые недоказуемые аксиомы математики суть лишь скрытые определения. Такая точка зрения часто правомерна, и я сам ее принял, когда шел вопрос, например, о постулате Евклида. Другие аксиомы геометрии недостаточны для полного определения расстояния между двумя точками. Ввиду этого из всех величин, удовлетворяющих этим остальным аксиомам, расстояние будет по определению той именно величиной, которая удовлетворяет постулату Евклида.
Так вот, логики в применении к принципу совершенной индукции допускают то же самое, что я допускаю относительно постулата Евклида; они хотят видеть в этом принципе только скрытое определение.
Но они вправе это сделать лишь при двух условиях. Стюарт Милль сказал, что всякое определение заключает в себе одну аксиому, а именно ту, которая утверждает существование определяемого объекта. В таком случае не аксиома будет скрытым определением, а, напротив, определение будет скрытой аксиомой. Милль понимал слово «существование» в эмпирическом и материальном смысле слова. Он хотел сказать, что, определяя круг, утверждают тем самым, что в природе имеются круглые предметы.
В таком виде его мнение неприемлемо. Математика не зависит от существования материальных объектов. В математике слово «существующее» имеет только один смысл и обозначает: «свободное от противоречия». При такой поправке мысль Стюарта Милля становится точной; определяя какой-нибудь объект, мы утверждаем, что определение не заключает противоречия.
Если, следовательно, мы имеем систему постулатов и если мы можем доказать, что эти постулаты не заключают противоречия, то мы вправе рассматривать их как определения одного из тех понятий, которые фигурируют в этой системе предложений. Если мы этого доказать не можем, то мы допускаем понятие без доказательства. Тогда мы имеем аксиому; и если мы искали определение в постулатах, то мы обратно находим аксиому в определении.
Чаще всего, для того чтобы доказать, что определение не заключает противоречия, прибегают к методу примеров: пытаются создать пример предмета, удовлетворяющий определению. Возьмем определение, выражаемое при помощи постулатов. Мы хотим определить понятие А и говорим, что, согласно определению, А есть всякий предмет, для которого известные постулаты истинны. Если мы можем прямо доказать, что все эти постулаты истинны для известного предмета В, то определение будет оправдано, и предмет В будет примером понятия А. Мы будем уверены, что постулаты непротиворечивы, так как имеются случаи, в которых все они оказываются истинными.
Но такое прямое доказательство при помощи примера не всегда возможно.
Чтобы установить, что постулаты не содержат в себе противоречия, нужно рассмотреть все предложения, которые могут быть выведены из данных постулатов как посылок, и показать, что среди этих предложений нет двух, противоречащих друг другу. Если число этих предложений конечное, то прямая проверка возможна. Но такой случай и встречается редко, и интереса не представляет.
Если же число этих предложений оказывается неограниченным, то прямая проверка уже невозможна. Тогда необходимо обратиться к таким способам доказательства, в которых вообще нельзя обойтись без принципа полной индукции, т. е. того принципа, который именно и надлежит проверить.
Мы указали на одно условие, которому логики должны были удовлетворить, и мы увидим ниже, что они ему не удовлетворили.
Есть еще другое условие. Если мы даем определение, то мы делаем это для того, чтобы им пользоваться.
В пределах некоторого рассуждения, например, мы неоднократно встречаемся с определяемым словом. Возникает вопрос: вправе ли мы в отношении к предмету, который мы в этом рассуждении называем нашим термином, утверждать тот постулат, который послужил для его определения? Очевидно, вправе, если термин сохранил свой смысл, если мы неявно (implicite) не приписали ему другого значения. Но иногда такое изменение смысла имеет место и при этом чаще всего остается незамеченным. Необходимо убедиться, каким путем это слово проникло в наше рассуждение, не вошло ли оно в другом определении, отличающемся от того, которое было формулировано первоначально.
Это затруднение встречается во всех приложениях математического знания. Математическое понятие получило вполне чистое и строгое определение, которое не возбуждает никаких колебаний в чистой математике. Но, когда мы его применяем, например, к физическим наукам, тут мы уже имеем дело не с этим чистым понятием, но с конкретным предметом, который зачастую является лишь грубым образом этого понятия. Сказать, что этот предмет удовлетворяет, хотя бы приблизительно, определению, это значит высказать новую истину, которая может быть подтверждена только опытом и которая уже не имеет характера условного постулата.
Но то же затруднение встречается и в пределах чистой математики.
Вы даете тонкое определение числа. Но, однажды дав его, вы о нем больше не думаете, ибо в действительности не из этого определения вы узнали, что такое число, а вам это уже давно было известно; и когда в дальнейшем вы употребляете слово «число», вы приписываете ему такое же значение, какое ему дает первый встречный. Чтобы узнать, каково это значение и остается ли оно одним и тем же в той или другой фразе, необходимо проследить, что заставило вас заговорить о числе и ввести это слово в обе фразы. Я не буду больше здесь по этому поводу распространяться, так как нам еще представится случай вернуться к этому вопросу.
Итак, вот слово, которому мы явно (explicite) дали некоторое определение A; затем мы пользовались им в рассуждении таким образом, что неявно (implicite) внесли другое его определение В. Возможно, что оба определения обозначают одно и то же. Но самая эта возможность есть уже новая истина, которую нужно либо доказать, либо допустить как независимую аксиому.
Мы увидим ниже, что логики столь же мало удовлетворили второму условию, сколько первому.
Определения числа чрезвычайно многочисленны и разнообразны; я отказываюсь даже перечислить имена авторов, давших эти определения. В этом нет ничего удивительного. Если бы одно из них было удовлетворительно, не было бы нужды в прочих. Если всякий новый философ, занимавшийся этим вопросом, считал необходимым изобрести другое определение, то это потому, что определения предшественников его не удовлетворяли, а не удовлетворяли они его потому, что он усматривал в них petitio principii.
Когда я читал труды, посвященные этой проблеме, я всегда испытывал чувство беспокойства; я ожидал, что натолкнусь на petitio principii, и если не встречал этой логической ошибки с самого начала, то всегда опасался, что просмотрел ее.
И это потому, что невозможно дать определение, не выражая его при помощи фразы; с другой стороны, трудно сказать фразу, не вводя в нее слова «число», или слова «несколько», или, наконец, какого-либо слова во множественном числе. И вот уже готова наклонная плоскость; в каждое мгновение мы рискуем впасть в petitio principii.
В дальнейшем я остановлюсь только на тех определениях которых petitio principii наиболее искусно скрыто.
Символический язык, который создал Пеано, играет большую роль в новых исследованиях. Этот язык может оказать некоторые услуги, но мне кажется, что Кутюра приписывает ему такое преувеличенное значение, которое удивило бы и самого Пеано.
Существенным элементом в этом языке являются определенные алгебраические знаки, представляющие собой различные союзы: «если», «и», «или», «следовательно». Возможно, что эти знаки и удобны, но призваны ли они обновить всю философию – это совершенно другой вопрос. Трудно допустить, чтобы слово «если», изображенное при помощи знака ⊃, приобрело особенное свойство, которого оно не имело раньше.
Это изобретение Пеано названо было сначала пасиграфией, т. е. искусством писать математические трактаты, не употребляя ни одного слова из житейского словаря. Это название очень точно определяет и меру важности самого искусства. Но позже изобретению Пеано было предписано более высокое достоинство, и ему дали название логистики. Последнее слово, кажется, употребляется в военных школах для обозначения искусства квартирмейстера, искусства передвижения и распределения войск; но здесь нет никакого основания опасаться смешения понятий, и сразу видно, что новое слово выражает намерение революционизировать логику.
Применение нового метода можно видеть в математическом мемуаре Бурали-Форти, озаглавленном: «Вопрос о трансфинитных числах» и помещенном в XI томе «Rendiconti del Circolo Matematico di Palermo».
Я должен прежде всего сказать, что этот мемуар чрезвычайно интересен, и потому именно беру его в качестве примера, что он является важнейшим из всех трудов, написанных на новом языке. К тому же и люди непосвященные легко могут его читать благодаря имеющемуся в нем междустрочному итальянскому переводу.
Важность этого мемуара заключается в том, что в нем дан первый пример тех антиномий, которые встречаются в изучении трансфинитных чисел и которые на протяжении нескольких лет приводили в отчаяние математиков. Цель настоящего мемуара, говорит Бурали-Форти, это показать, что могут быть два трансфинитных числа (порядковых) а и b, причем а не будет ни равно, ни больше, ни меньше b.
Пусть читатель будет спокоен; чтобы понять рассуждение, которое последует, ему нет необходимости знать, что такое порядковое трансфинитное число.
Между тем Кантор точно показал, что между двумя трансфинитными числами, как и между двумя конечными числами, не может быть другого отношения, кроме равенства либо неравенства в ту или другую сторону. Но не о сути этого мемуара хочу я здесь говорить, это увлекло бы меня далеко от моего предмета. Я хочу лишь заняться формой и задаюсь вопросом, много ли выиграл автор в строгости положений, применяя эту форму, и вознаграждает ли она за те усилия, которые писатель и читатель должны употребить.
Мы видим, что Бурали-Форти определяет число 1 следующим образом:
Это определение в высшей степени подходит для того, чтобы дать представление о числе 1 тем лицам, которые никогда о нем ничего не слышали!
Я слишком мало понимаю приверженцев Пеано, чтобы рискнуть его критиковать; но я опасаюсь, что это определение заключает petitio principii, так как я вижу цифру 1 в первой части и изображенное буквами слово «один» (Un) во второй части равенства.
Как бы то ни было, Бурали-Форти исходит из этого определения и после коротких вычислений приходит к уравнению
1εNO,
которое дает нам понять, что «один» есть число.
Так как нам теперь приходится иметь дело с определениями простых чисел, то мы напомним, что Кутюра также определил 0 и 1.
Что такое нуль? Это число элементов нулевого класса. А что такое нулевой класс? Это класс, который не содержит никакого элемента.
Определять нуль при помощи нулевого класса, а нулевой класс при помощи термина «никакой» – это значит поистине злоупотреблять богатством языка; поэтому Кутюра ввел усовершенствование в свое определение, написав:
что обозначает: нуль есть число предметов, удовлетворяющих такому условию, которое никогда не выполняется.
Но так как «никогда» обозначает «ни в одном случае», то я не вижу значительного успеха в этой замене.
Спешу прибавить, что определение, которое Кутюра дает числу 1, более удовлетворительно.
«Один, – говорит он, – в сущности, есть число элементов класса, два любых элемента коего тождественны».
Это определение более удовлетворительно, как я сказал, в том смысле, что для определения понятия 1 автор не пользуется словом «один». Но зато он пользуется словом «два». И я боюсь, что если спросить у Кутюра, что такое «два», то он должен будет в ответе воспользоваться словом «один».
Вернемся к мемуару Бурали-Форти. Я сказал, что его заключения прямо противоположны выводам Кантора. Но однажды меня посетил Адамар. Разговор коснулся этой антиномии.
– Не кажется ли вам, – сказал я, – что рассуждение Бурали-Форти безупречно?
– Нет, напротив, я не вижу в нем никаких возражений Кантору. Кроме того, Бурали-Форти не имел права говорить о совокупности всех порядковых чисел.
– Простите, он имел это право, потому что всегда мог написать:
– Я хотел бы знать, кто бы мог ему в этом воспрепятствовать, и можно ли сказать, что предмет не существует, если его назвали Q?
Мои старания были тщетны, убедить Адамара я не мог (противоположное было бы, впрочем, очень прискорбно, так как он был прав). Потому ли это было, что я не говорил достаточно красноречиво на языке Пеано? Возможно; но, между нами говоря, я этого не думаю.
Таким образом, несмотря на весь этот пасиграфический аппарат, вопрос не был разрешен. Что это доказывает? Когда вопрос идет только о том, чтобы доказать, что один есть число, пасиграфия достаточна; но если представляется затруднение, если возникает антиномия, требующая разрешения, то пасиграфия становится бессильной.
Глава IV. Новые логики
Чтобы оправдать свои притязания, логика должна была преобразоваться. Народились новые логики, среди которых наиболее интересной является логика Рассела. Казалось бы, что в области формальной логики ничего нового нельзя сказать и что Аристотель давно узрел ее основы. Но поле действия, которое Рассел отводит логике, бесконечно шире, чем поле классической логики, и Рассел сумел высказать в этом отношении оригинальные и часто правильные взгляды.
Между тем как логика Аристотеля была преимущественно логикой классов и за исходную точку брала отношение субъекта к предикату, Рассел прежде всего подчиняет логику классов логике предложений. Классический силлогизм «Сократ – человек и т. д.» уступает место гипотетическому силлогизму: если А истинно, то В истинно, но если В истинно, то С истинно и т. д.; и эта идея, на мой взгляд, одна из наиболее счастливых, ибо классический силлогизм легко свести к гипотетическому, тогда как обратное превращение представляет затруднение.
Но это не все: логика предложений Рассела есть этюд о законах, по которым комбинируются союзы «если», «и», «или» и отрицание «не». Это значительное расширение старой логики. Свойства классического силлогизма без труда распространяются на гипотетический силлогизм, и в формах последнего легко узнаются схоластические формы. Мы находим здесь то, что является существенным в классической логике. Но теория силлогизма есть еще не что иное, как синтаксис союза «если» и, быть может, отрицания.
Присоединяя два других союза – «и» и «или», – Рассел открывает логике новую область. Знаки «и», «или» подчиняются тем же законам, что и знаки × и +, т. е. переместительному, сочетательному и распределительному законам. Таким образом, «и» представляет логическое умножение, тогда как «или» представляет логическое сложение. Это также весьма интересно.
Рассел приходит к выводу, что какое-нибудь ложное предложение заключает в себе и все прочие истинные или ложные предложения. Кутюра говорит, что этот вывод покажется на первый взгляд парадоксальным. Но кто исправлял плохую кандидатскую математическую работу, тот мог заметить, насколько правильно смотрит на дело Рассел. Кандидат часто много трудится для того, чтобы найти первое ложное уравнение; но лишь только он его получил, для него уже не представляет никакого труда сделать из него самые неожиданные выводы, из которых иные могут оказаться и точными.
Отсюда ясно, насколько новая логика богаче классической логики. Символы разрослись и сочетаются в разнообразные комбинации, число которых уже неограниченно. Вправе ли мы так сильно расширять смысл слова «логика». Разбирать этот вопрос и вступать с Расселом в спор о слове – занятие бесцельное. Признаем то, чего требует Рассел, но не будем удивляться, если окажется, что некоторые истины, которые мы считали несводимыми к логике в старом смысле этого слова, теперь сводятся к новой логике, которая совершенно отличается от прежней.
Мы ввели большое число новых понятий, и эти понятия не были простыми комбинациями старых. Рассел на этот счет не обманывался; не только в начале первой главы, т. е. логики предложений, но в начале второй и третьей глав, т. е. логики классов и отношений, он вводит новые слова, которые принимает как определению не подлежащие.
Но это не все, он вводит также принципы, которые признает недоказуемыми. Но эти недоказуемые принципы являются обращениями к интуиции, являются априорными синтетическими суждениями. Мы принимали их за интуитивные, когда встречали их в более или менее явной форме в математических трактатах. Но изменился ли их характер от того, что смысл слова «логика» расширился и что мы находим их теперь в книге, носящей заголовок «Трактат по логике»? Они не изменили своей природы, они изменили лишь свое место.
Можно ли рассматривать эти принципы как скрытые определения?
Чтобы дать положительный ответ на этот вопрос, нужно было бы быть в состоянии доказать, что они не заключают в себе противоречия. Нужно установить, что, как бы далеко мы ни проводили ряд дедукций, мы никогда не впадем в противоречие с собой.
Можно было бы попытаться рассуждать таким образом. Мы можем проверить, что операции новой логики, будучи приложены к посылкам, не заключающим противоречия, приводят только к следствиям, также свободным от противоречия. Если, следовательно, после n операций мы не пришли к противоречию, то мы не придем к противоречию после n + 1 операций. Невозможно, следовательно, наступление такого момента, когда противоречие началось бы, а это доказывает, что мы никогда не можем к нему прийти. Вправе ли мы так рассуждать? Нет, ибо это значило бы прибегнуть к полной индукции; принцип же полной индукции, будем это помнить, еще нам неизвестен.
Мы не вправе, следовательно, рассматривать эти аксиомы как скрытые определения, и нам остается только один исход: допустить для каждой из них новый акт интуиции. И такова именно, я думаю, мысль Рассела и Кутюра.
Таким образом, каждое из девяти неопределяемых понятий и каждое из двадцати недоказуемых предложений (я думаю, что если бы я считал, то насчитал бы их несколько больше), которые составляют основу новой логики, логики в широком смысле слова, предполагают акт новый, независимый от нашей интуиции, предполагают – почему этого не сказать? – настоящее синтетическое априорное суждение. В этом вопросе все, кажется, согласны. Но Рассел утверждает, что этими обращениями к интуиции дело и закончится, что в других обращениях не будет более нужды и можно будет построить всю математику, не вводя никакого нового элемента. Это мне и кажется сомнительным.
Кутюра часто повторяет, что эта новая логика совершенно не зависит от идеи о числе. Я не стану подсчитывать, как часто в его изложении встречаются числительные, как количественные, так и порядковые, или неопределенные прилагательные, как, например, «несколько». Процитируем, однако, некоторые примеры:
«Логическое произведение двух или нескольких предложений есть…»
«Все предложения допускают только двоякую оценку: как истинные или как ложные».
«Относительное произведение двух отношений есть отношение».
«Отношение имеет место между двумя терминами» и т. д.
В некоторых случаях можно было бы избежать неудобства такого выражения, но иногда оно требуется существом дела. Отношение не может быть понято без двух терминов; нельзя иметь интуиции отношения, не имея в то же время интуиции двух его терминов; мало того, мы должны усмотреть, что есть два термина, ибо для того, чтобы можно было постигнуть отношение, необходимо, чтобы этих терминов было два и только два.
Я подхожу к тому, кто Кутюра называет теорией расположения (или порядка) и что является основанием арифметики в собственном смысле этого слова. Кутюра начинает с формулировки пяти аксиом Пеано, независимость которых доказали Пеано и Падоа.
1. Нуль есть целое число.
2. Нуль не следует ни за каким целым числом.
3. Следующее за целым числом есть целое число; к этому следовало бы прибавить: всякое целое число имеет следующее за ним число.
4. Два целых числа равны, если равны следующие за ними числа.
Пятая аксиома есть принцип полной индукции.
Кутюра смотрит на эти аксиомы как на скрытые определения; они содержат выраженные при помощи постулатов определения нуля, целого числа и «следующего числа».
Но, как мы видели, для того чтобы основанное на постулатах определение могло быть принято, необходимо установить, что оно не заключает противоречия.
Имеем ли мы дело здесь с таким именно случаем? Нисколько.
Доказательства этого нельзя дать с помощью примера. Нельзя выбрать часть всех целых чисел, например первые три числа, и доказать, что они удовлетворяют определению.
Если я возьму ряд 0, 1, 2, то увижу, что он удовлетворяет аксиомам 1, 2, 4, 5. Но, для того чтобы он удовлетворял третьей аксиоме, необходимо еще, чтобы 3 было целым числом, следовательно, чтобы ряд 1, 2, 3 удовлетворял всем аксиомам. При проверке окажется, что ряд 0, 1, 2, 3 удовлетворяет аксиомам 2, 4, 5, но третья аксиома требует, сверх того, чтобы 4 было целым числом и чтобы ряд 0, 1, 2, 3, 4 удовлетворял всем аксиомам, и т. д.
Нет, следовательно, возможности доказать аксиомы для нескольких целых чисел, не доказывая их для всех. Приходится отказаться от доказательства путем примера.
Остается собрать все выводы из наших аксиом и рассмотреть, не заключают ли они в себе противоречия. Если бы число этих выводов было конечное, то это было бы легко сделать; но число выводов бесконечно велико, они охватывают всю математику или по крайней мере всю арифметику. Что же делать? Быть может, повторить рассуждение, указанное в разделе III.
Но мы уже сказали, что это рассуждение основано на полной индукции, а между тем дело идет именно о том, чтобы оправдать принцип полной индукции.
Я перехожу теперь к тому капитальному труду Гильберта, о котором последний сделал сообщение на Математическом конгрессе в Гейдельберге. Французский перевод этого труда, сделанный Пьером Бутру, появился в «Математическом образовании»; английский перевод, сделанный Халстедом, появился в «The Monist». В этом труде, изобилующем самыми глубокими мыслями, автор преследует такую же цель, как и Рассел, но во многих случаях отклоняется от своего предшественника.
«Если мы присмотримся ближе, – говорит он, – то мы заметим, что логические принципы, в той форме, в какой их обыкновенно представляют, уже включают в себя известные арифметические понятия, как, например, понятие совокупности, а в некоторой мере и понятие о числе. Таким образом, мы находимся как бы в заколдованном круге, и вот почему, во избежание всякого парадокса, мне кажется необходимым развивать одновременно логику и принципы арифметики».
Как мы видели выше, то, что Гильберт говорит о принципах логики в той форме, в какой их себе обыкновенно представляют, одинаково приложимо и к логике Рассела. Для Рассела логика предшествует арифметике; для Гильберта они «одновременны». Мы встретимся ниже с другими, более глубокими различиями, но мы будем их отмечать по мере того, как они перед нами предстанут; я предпочитаю следить шаг за шагом за развитием мысли Гильберта и цитировать текстуально наиболее важные места его работы.
«Рассмотрим прежде всего предмет 1». Заметим, что в это рассмотрение мы отнюдь не включаем понятия о числе, ибо само собой разумеется, что 1 в данном случае является только символом и что мы не стремимся узнать его значение. «Группы, образованные этим предметом, повторенным два, три или несколько раз…» Ну, здесь уже дело меняется; если мы вводим слова «два», «три» и в особенности «несколько», мы вводим понятие числа, а в таком случае понятие конечного целого числа, к которому нас приведет это рассуждение, окажется запоздалым. Автор был слишком предусмотрителен, чтобы не заметить этого petitio principii. В конце своего труда он пытается загладить погрешность.
Гильберт вводит затем два простых предмета 1 и =, рассматривает все комбинации из этих двух предметов, затем комбинации этих комбинаций и т. д. Само собой разумеется, что при этом нужно забыть обычное значение этих двух знаков, не нужно приписывать им никакого значения. Затем Гильберт распределяет эти комбинации в два класса, в класс «сущего» и в класс «не сущего», и впредь до следующего соглашения это распределение совершенно произвольно. Всякое утвердительное предложение показывает нам, что комбинация принадлежит классу сущего; всякое отрицательное предложение показывает, что известная комбинация относится к классу не сущего.
Отметим теперь некоторое различие, имеющее важное значение. Для Рассела какой-нибудь предмет, который он обозначает буквой х, есть предмет абсолютно неопределенный, относительно которого он не делает никаких предположений; для Гильберта этот предмет есть одна из комбинаций, составленных из символов 1 и =, не нужно представлять, будто здесь вводится что-либо новое помимо комбинации уже определенных предметов. Гильберт, впрочем, формулирует свою мысль самым точным образом, и я считаю необходимым воспроизвести его слова полностью: «Неопределенные, которые фигурируют в аксиомах (вместо понятий „нечто“ и „все“ обыкновенной логики), представляют собой исключительно совокупность предметов и комбинаций, которыми мы уже владеем при данном состоянии теории или которые мы начинаем вводить. Как только мы из рассматриваемых аксиом начнем выводить предложения, мы получим право заменять упомянутые предметы только этими предметами и этими комбинациями. Но если мы увеличиваем число основных предметов, то не нужно забывать, что тем самым аксиомы также испытывают новое расширение, и они, следовательно, должны быть снова проверены и, в случае нужды, изменены».
Здесь мы имеем полный контраст с точкой зрения Рассела. В той постановке, в какой вопрос ставится у этого философа, мы можем на место x ставить не только известные нам, но и какие угодно предметы. Рассел остается верным своей точке зрения, именно точке зрения понятия. Он исходит из общей идеи существующего и обогащает ее, придавая ей новые качества. Напротив, Гильберт считает существенными одни только комбинации известных уже предметов, так что (имея в виду лишь одну сторону его идеи) можно сказать, что Гильберт стоит на точке зрения объема понятий.
Проследим за изложением идей Гильберта. Он вводит две аксиомы, которые формулирует на своем символическом языке, но которые на языке таких профанов, как мы, обозначают, что всякое количество равно самому себе и что всякая операция, произведенная над двумя тождественными количествами, дает тождественные результаты. В такой формулировке аксиомы очевидны, но выразить их в таком виде значило бы исказить мысль Гильберта. С точки зрения Гильберта, математика комбинирует только чистые символы, и настоящий математик должен рассуждать о них, не заботясь об их смысле. Его аксиомы не являются для него тем же, чем они являются для обыкновенного человека.
Он рассматривает эти аксиомы как выраженное при помощи постулатов определение символа =, не опороченного еще каким-либо значением. Но чтобы оправдать это определение, необходимо доказать, что эти две аксиомы не ведут ни к какому противоречию.
Для этого Гильберт пользуется рассуждением, изложенным у него в разделе III, не замечая, по-видимому, что он прибегает к полной индукции.
Конец мемуара Гильберта совершенно загадочен, и мы на нем не будем подробно останавливаться. Противоречия здесь умножаются; чувствуется, что автор сознает смутно petitio principii, в которое он впал, и что он напрасно старается замазать трещины своего рассуждения.
Что же это значит? В тот момент, когда необходимо доказать, что определение целого числа при помощи аксиомы полной индукции не влечет противоречия, Гильберт от этого отделывается, как отделываются Рассел и Кутюра, ибо трудность слишком велика.
Геометрия, говорит Кутюра, есть обширная область доктрин, в которой не фигурирует принцип полной индукции. В известной мере это верно; нельзя сказать, чтобы он совсем не входил, но он входит мало. Если обратиться к «Rational Geometry», написанной Халстедом (N. Y., John Wiley and Sons, 1904) и построенной на принципах Гильберта, то можно заметить, что принцип полной индукции появляется в первый раз на с. 114, если только я не пропустил его раньше, что очень возможно.
Таким образом, геометрия, которая еще несколько лет тому назад казалась областью, в которой господство интуиции бесспорно, является теперь областью, в которой торжествует логистика. Этим лучше всего измеряется важность геометрических трудов Гильберта и тот глубокий отпечаток, который они оставили на наших понятиях.
Но не нужно поддаваться обману. Какова в конце концов основная теорема геометрии? Она заключается в том, что аксиомы геометрии не заключают в себе противоречия, а это не может быть доказано без принципа индукции.
Как же Гильберт доказывает этот существенный пункт? Опираясь на анализ, через анализ на арифметику и через арифметику на принцип индукции.
И если когда-нибудь изобретут другое доказательство, то придется все же опереться на этот принцип, потому что выводов из тех аксиом, логическую совместимость которых нужно доказать, может быть бесконечное множество.
Наш вывод заключается прежде всего в том, что на принцип индукции нельзя смотреть как на скрытое определение целого числа.
Вот три истины:
принцип полной индукции;
постулат Евклида;
физический закон, согласно которому фосфор плавится при 44° (приводится у Леруа).
Говорят, что эти истины являются скрытыми определениями: первое есть определение целого числа, второе – прямой линии, третье – фосфора.
Я принимаю это для второй истины, но не принимаю для двух других. Объясню причину такой кажущейся непоследовательности.
Мы видели прежде всего, что определение приемлемо лишь в случае, если установлено, что оно не заключает в себе противоречия. Мы доказали также, что такое доказательство невозможно для первого определения; для второго, наоборот, Гильберт дал полное доказательство.
Что же касается третьего определения, то оно, очевидно, не заключает противоречия; но значит ли это, что определение, как это требовалось бы, с несомненностью свидетельствует о существовании определенного предмета? Мы выходим здесь из области математических наук и вступаем в область физических наук. Слово «существование» не имеет уже того смысла, что раньше, оно не обозначает отсутствия противоречия, а обозначает объективное существование.
Вот уже первое основание для различия, которое я делаю между вышеприведенными тремя случаями. Есть еще другое основание. Эти три понятия находят последующие применения; имеют ли эти понятия в применениях то значение, которое установлено этими тремя постулатами?
Возможные применения принципа индукции бесчисленны. Возьмем для примера одно из указанных нами выше применений, где мы стремились установить, что некоторая совокупность аксиом не может вести к противоречию. Для этого следует рассмотреть один из рядов силлогизмов, которые можно построить, исходя из этих аксиом как посылок.
Когда мы закончили n-й силлогизм, мы видим, что можно еще составить (n + 1) – й силлогизм. Таким образом, число n служит для счета ряда последовательных операций, это – число, которое может быть получено путем последовательных прибавлений. Другими словами, это есть число, исходя из которого, можно прийти к единице путем последовательных вычитаний. Этого, очевидно, нельзя было бы достигнуть, если бы мы имели равенство n = n − 1, потому что в таком случае мы при вычитании всегда получали бы то же самое число. Таким образом, способ, при помощи которого мы пришли к рассмотрению этого числа n, заключает в себе определение конечного целого числа, и это определение гласит: конечное целое число есть такое число, которое может быть получено путем последовательных сложений, это есть число n, которое не равняется n − 1.
Приняв это, что делаем мы дальше? Мы показываем, что если нет противоречия с n-м силлогизмом, то не будет противоречия с (n + 1) – м и не будет такого противоречия никогда. Вы скажете: я вправе сделать такое заключение, потому что целые числа по определению представляют собой такие именно числа, для которых подобное рассуждение законно. Но это приводит к другому определению целого числа, а именно к следующему: целое число есть такое число, о котором можно рассуждать в рекуррентном порядке. В данном случае это – число, о котором можно сказать следующее: если отсутствие противоречия в момент силлогизма, имеющего целый номер, влечет за собой отсутствие противоречия для силлогизма, имеющего следующий целый номер, то нет оснований опасаться противоречия для любого из силлогизмов, имеющего целый номер.
Оба определения не тождественны; они эквивалентны, без сомнения, но они таковы в силу априорного синтетического суждения: нельзя прийти от одного к другому путем чисто логических операций. Мы не вправе, следовательно, принять второе определение, раз мы ввели целое число, следуя такому пути, который предполагает первое определение.
Посмотрим, напротив, как обстоит дело с прямой линией. Я так часто уже говорил об этом, что не решаюсь снова повторять то же самое.
Мы не имеем здесь, как это было в предыдущем случае, двух эквивалентных определений, логически друг к другу несводимых. Мы имеем только одно определение, выраженное словами. Могут сказать, что мы имеем еще другое определение, которое мы чувствуем, но не можем выразить, потому что мы имеем интуицию прямой линии, или потому, что мы представляем себе прямую линию. Но, прежде всего, мы не можем представить себе этой линии в геометрическом пространстве, а можем представить лишь в пространстве, имеющемся в нашем представлении; и затем мы легко можем представить себе объекты, которые обладают всеми другими свойствами прямой линии, кроме того свойства, которое удовлетворяет постулату Евклида. Эти объекты суть «неевклидовы прямые», которые с известной точки зрения отнюдь не являются чем-то, лишенным смысла, но представляют собой окружности (настоящие окружности в настоящем пространстве), ортогональные к определенной сфере. Если из этих объектов, которые мы также можем себе представить, мы считаем прямыми первые, т. е. евклидовы прямые, а не последние, т. е. неевклидовы прямые, то это обусловливается определением.
Если мы, наконец, обратимся к третьему примеру, к определению фосфора, то мы увидим, что истинное определение будет таково: фосфор – это кусок вещества, который я вижу вот в этом флаконе.
Остановившись уже на этом примере, скажу еще несколько слов. Относительно истины, касающейся фосфора, я выше сказал: «это предложение есть настоящий физический закон, доступный проверке, так как оно обозначает: все тела, которые обладают всеми прочими свойствами фосфора, помимо точки его плавления, плавятся, как и фосфор, при 44°». На это мне ответили: «нет, этот закон не может быть проверен, потому что, если бы после проверки оказалось, что два тела, похожие на фосфор, плавятся одно при 44°, а другое при 50°, то всегда можно было бы сказать, что, кроме точки плавления, наверное, имеется еще и другое неизвестное свойство, благодаря которому эти тела друг от друга отличаются».
Это было не совсем то, что я хотел сказать. Я должен был бы написать: все тела, которые обладают такими-то и такими-то свойствами в конечном числе (а именно теми свойствами фосфора, которые перечислены в руководствах по химии, за исключением точки плавления), плавятся при 44°.
Чтобы сделать более очевидной разницу между примером с прямой линией и примером с фосфором, сделаем еще одно замечание. Прямая линия имеет в природе несколько более или менее несовершенных образов, между которыми главные суть световой луч и ось вращения твердого тела. Я допускаю, что каким-нибудь образом было бы установлено, что световой луч не удовлетворяет постулату Евклида (т. е. было бы, например, доказано, что звезда имеет отрицательный параллакс), что сделаем мы дальше? Заключим ли мы отсюда, что прямая, будучи по определению траекторией света, не удовлетворяет постулату или, наоборот, что раз прямая по определению удовлетворяет постулату, то световой луч не представляет собой прямой линии?
Конечно, мы свободны в выборе того или другого определения и, следовательно, того или иного заключения. Но принять первое заключение было бы нелепо, потому что световой луч удовлетворяет лишь несовершенным образом, вероятно, не только постулату Евклида, но и другим свойствам прямой линии; если он отклоняется от евклидовой прямой, то он также отклоняется и от оси вращения твердых тел, которая является другим несовершенным образом прямой линии; и, наконец, он, без сомнения, подвержен изменениям: будучи прямым вчера, он перестает быть таковым завтра, если какое-нибудь физическое условие изменилось.
Предположим, что было бы найдено, что фосфор плавится не при 44°, а при 43,9°. Заключим ли мы отсюда, что это новое тело, которое мы назвали фосфором, не есть настоящий фосфор, ибо последний, согласно определению, есть тело, которое плавится при 44°, или, напротив, мы заключим, что фосфор плавится при 43,9°?
В этом случае мы также свободны в выборе того или другого определения, а следовательно, того или другого заключения. Но было бы нелепо принять первое заключение, так как нельзя же менять наименование тела каждый раз, когда удается определить лишний десятичный знак в его температуре плавления.
В итоге Рассел и Гильберт сделали большие усилия. Тот и другой написали книги, изобилующие оригинальными, глубокими и часто очень правильными взглядами. Эти две книги дают нам большой материал для размышления; из них мы можем многому научиться. Некоторые и даже многие из выводов, к которым приходят авторы, прочны и будут жить.
Но, очевидно, было бы неправильно сказать, что они окончательно разрешили спор между Кантом и Лейбницем и разрушили кантову теорию математики. Я не знаю, стоят ли они сами на этой точке зрения, но если они это думают, то они ошибаются.
Глава V. Последние усилия логистиков
Логистики пытались ответить на все приведенные выше соображения. Для такого ответа им надобно было преобразовать логистику, и Рассел в особенности видоизменил в некоторых отношениях первоначальные ее точки зрения. Не входя в детали дела, я хочу остановиться только на двух вопросах, на мой взгляд, наиболее важных.
Дали ли правила логистики действительно доказательства своей плодотворности и непогрешимости? Верно ли, что они имеют возможность доказать принцип полной индукции, совершенно не обращаясь к интуиции?
Что касается плодотворности, то Кутюра, по-видимому, строит наивные иллюзии. Логистика, по его мнению, дает изобретательности в ее распоряжение «леса и крылья». А на следующей странице он говорит: «десять лет тому назад Пеано опубликовал первое издание своего „Formulaire“».
Как, уже десять лет, как вы имеете крылья, и вы еще не полетели!
Я питаю величайшее уважение к Пеано, который сделал превосходные работы (например, его кривая, которая заполняет целую площадь), но в конце концов он не ушел ни дальше, ни выше, ни быстрее, чем большая часть бескрылых математиков, и этот путь он мог бы ведь проделать так же хорошо на своих ногах.
Я, напротив, вижу в логистике только помеху для изобретателя; с ее помощью мы отнюдь не выигрываем в сжатости; если нужны 27 уравнений, для того чтобы установить, что 1 есть число, то сколько нужно будет уравнений, чтобы доказать настоящую теорему? Если мы различаем вместе с Уайтхедом индивид x, класс, единственный член коего есть x и который называется ιx, затем – класс, единственный член которого есть класс с единственным членом x и который называется ιιx, то можно ли думать, что эти различия, как бы ни были они полезны, облегчат нам движение вперед?
Логистика заставляет нас сказать все то, что обыкновенно подразумевается; она заставляет нас двигаться шаг за шагом; это, быть может, делает движение более верным, но не более быстрым.
Вы даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи – единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках.
Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет.
Вы не вправе сказать нам: «мы ошибаемся – это правда, но вы также ошибаетесь». Но наша ошибка для нас – несчастье, большое несчастье, для вас – это смерть.
Еще менее вправе вы сказать: «Разве непогрешимость арифметики препятствует ошибкам сложения? Правила счета непогрешимы, и все же мы видим, как ошибаются те, которые их применяют». Однако, просматривая их переделки, легко заметить, в какой момент они уклонились от правил. Здесь же совсем не то; логистики применили свои правила и впали в противоречие. Это настолько верно, что они готовы изменить правила и «пожертвовать понятием класса». Зачем же изменять правила, если они были непогрешимы?
«Мы не обязаны, – говорите вы, – разрешать hic et nunc все возможные проблемы». О, мы от вас не требуем столь многого; если бы вы, разрешая проблему, не давали никакого решения, мы ничего не сказали бы; но вы, напротив, даете нам два решения, которые друг другу противоречат и из которых, следовательно, по крайней мере одно ложно. А это банкротство.
Рассел старается примирить эти противоречия и признает, что для такого примирения необходимо «ограничить понятие класса или даже пожертвовать им». Кутюра же, учитывая успех этой попытки, прибавляет: «если логистики достигнут того, что не удавалось другим, Пуанкаре не откажется вспомнить эту фразу и воздать должное решению логистики».
Но это не так: логистика существует, она имеет свое уложение, вышедшее уже в четырех изданиях; или, правильнее, это уложение и есть сама логистика. Готов ли Рассел показать, что по крайней мере одно из двух противоречивых суждений вышло за пределы уложения? Отнюдь нет; он готов изменить эти законы, а некоторые из них и уничтожить. Если он успешно выполнит свою попытку, то я воздам должное интуиции Рассела, но не логистике Пеано, которую он таким образом разрушит.
Я привел выше два главных возражения против того определения целого числа, которое принято в логистике. Какой ответ дает Кутюра на первое возражение?
Что обозначает в математике слово существовать? Оно обозначает, сказал я, отсутствие противоречия. Кутюра возражает против этого. Он говорит: «Логическое существование есть нечто отличное от отсутствия противоречия. Оно заключается в том факте, что некоторый класс не пуст; сказать: „элементы а существуют“ – значит, согласно определению, утверждать, что класс не есть нулевой». И, само собой разумеется, утверждать, что класс а не есть нулевой, значит, согласно определению, утверждать, что элементы а существуют. Но одно из этих утверждений так же лишено смысла, как и другое, если только они оба не обозначают либо то, что можно это а видеть или осязать, либо то, что можно постигнуть а, не впадая в противоречие. Но в первом случае мы имеем дело с утверждением, которое принимают физики и натуралисты; во втором случае – с утверждением, которое выставляют логики и математики.
Для Кутюра не отсутствие противоречия доказывает бытие, а бытие доказывает отсутствие противоречия. Чтобы установить существование класса, нужно установить при помощи примера, что есть какой-нибудь индивид, принадлежащий к этому классу. «Но, – скажут, – как доказать существование такого индивида? Не надобно ли, чтобы это существование было установлено для того, чтобы мы из него могли вывести существование класса, к которому принадлежит индивид? Совсем нет. Как ни покажется парадоксальным такое утверждение, нужно сказать, что никогда не доказывают существования индивида. Индивиды уже по одному тому, что они индивиды, всегда рассматриваются как существующие. Абсолютно говоря, нет нужды высказывать, что индивид существует, а нужно лишь сказать, что он существует в классе». Кутюра находит свое собственное утверждение парадоксальным, и, конечно, не он один найдет его таковым. Это утверждение, однако, должно иметь свой смысл. Кутюра, без сомнения, хочет сказать, что существование индивида, который является единственным в мире и о котором ничего не утверждается, не может повлечь противоречия; пока он остается единственным, он, очевидно, никого не стесняет. Пусть так; допустим, «абсолютно говоря», существование индивида; но с этим существованием нам нечего делать; нам нужно будет доказать существование индивида «в классе», а для этого надобно будет доказать, что утверждение «такой-то индивид принадлежит к такому-то классу» не стоит в противоречии ни с самим собой, ни с другими принятыми постулатами.
«Утверждать, что определение лишь тогда имеет действительное значение, когда раньше доказано, что оно непротиворечиво, это значит, – продолжает Кутюра, – предъявлять произвольное и неправильное требование». Капитуляция в вопросе об отсутствии противоречия выражена здесь в словах как нельзя более энергичных и самонадеянных. «Во всяком случае, onus probandi падает на тех, кто полагает, что эти принципы противоречивы». Постулаты предполагаются совместимыми друг с другом до тех пор, пока не доказано противоположное, подобно тому, как обвиняемый по презумпции предполагается невиновным.
Излишне говорить, что я не подписываюсь под этой капитуляцией. Но, говорите вы, доказательство, которого вы от нас требуете, невозможно, вы не должны от нас требовать, чтобы мы «схватили Луну зубами». Простите, оно невозможно для вас, но не для нас, допускающих принцип индукции в качестве априорного синтетического суждения. И оно так же необходимо вам, как и нам.
Чтобы доказать, что система постулатов не заключает противоречия, необходимо применить принцип полной индукции; этот способ суждения не только не «странный», но единственно правильный. Отнюдь нельзя считать «неправдоподобными» случаи его применения; и нетрудно найти соответствующие «примеры и прецеденты». Я цитировал в моей статье два таких примера, заимствованных из брошюры Гильберта. Но он не один применял такой способ; те же, которые его избегали, были неправы. Я упрекал Гильберта не в том, что он к нему прибегал (как настоящий математик, Гильберт не мог не увидеть, что здесь необходимо было доказательство и что данное им доказательство было единственно возможное), но в том, что, прибегая к нему, он не признавал в нем суждения по рекуррентному методу.
Я отметил вторую ошибку логистиков в статье Гильберта. Теперь Гильберт отлучен, и Кутюра более не считает его логистиком. Он меня спросит, нашел ли я ту же самую ошибку у логистиков-ортодоксов. Нет, я не встречал ее на тех страницах, которые прочитал; но я не знаю, не встречу ли я ее на трехстах страницах, которые написаны ортодоксами и которые у меня нет желания читать.
Но логистикам придется впасть в эту ошибку, как только они захотят сделать из математической науки какое-нибудь приложение. Эта наука не имеет единственной целью вечное созерцание своего собственного пупа; она приближается к природе, и раньше или позже она придет с ней в соприкосновение; в этот момент необходимо будет отбросить чисто словесные определения, которыми нельзя будет более довольствоваться.
Вернемся к примеру Гильберта. Дело идет все о том же рекуррентном суждении и о том, заключает ли система постулатов противоречие. Кутюра скажет, без сомнения, что это его не касается; но это заинтересует, быть может, тех, кто не отказывается, как он, от доказательства отсутствия противоречия.
Мы хотим установить, как мы говорили выше, что не встретим противоречия после сколь угодно большого числа суждений, раз это число будет конечным. Для этого необходимо применить принцип индукции. Должны ли мы под конечным числом понимать здесь всякое число, к которому по определению применим принцип индукции? Очевидно, нет, так как в противном случае мы пришли бы к следствиям, которые нас чрезвычайно затруднили бы.
Для того чтобы мы имели право установить систему постулатов, мы должны быть уверены, что постулаты непротиворечивы. Это – истина, принятая большинством ученых, я бы сказал «всеми учеными» до того, как прочел последнюю статью Кутюра. Но что обозначает эта истина? Имеется ли в виду: необходимо, чтобы мы были уверены в том, что не встретим противоречия после конечного числа предложений, причем конечным по определению будет такое число, которое обладает всеми свойствами рекуррентного характера, так что, если одно из этих свойств отсутствует, если мы, например, натолкнемся на противоречие, то мы условимся говорить, что данное число не есть конечное?
Другими словами, хотим ли мы сказать: необходимо, чтобы мы были уверены в том, что мы не встретим противоречия при условии, что мы согласимся остановиться в тот момент, когда такое противоречие начнет обрисовываться? Достаточно сформулировать такое предложение, чтобы тут же его осудить.
Таким образом, рассуждение Гильберта не только предполагает принцип индукции, но оно предполагает, что этот принцип нам дан не как простое определение, а как априорное синтетическое суждение.
Резюмируем:
доказательство необходимо;
единственно возможное доказательство есть рекуррентное доказательство;
оно законно только тогда, когда допускают принцип индукции и когда его рассматривают не как определение, а как синтетическое суждение.
Я обращаюсь теперь к рассмотрению нового мемуара Рассела. Этот мемуар был написан с целью преодолеть трудности, поднятые теми канторовскими антиномиями, на которые я неоднократно намекал выше. Кантор думал, что можно построить науку бесконечного; другие пошли по пути, открытому Кантором, но скоро натолкнулись на странные противоречия. Возникшие антиномии уже многочисленны, но наиболее известны следующие:
1. Антиномия Бурали-Форти.
2. Антиномия Цермело – Кёнига.
3. Антиномия Ришара.
Кантор доказал, что порядковые числа (речь идет о порядковых трансфинитных числах, т. е. о новом понятии, введенном Кантором) могут быть размещены в один линейный ряд, т. е. доказал, что из двух неравных порядковых чисел одно число всегда меньше другого. Бурали-Форти доказывает противоположное. В самом деле, говорит он, если бы все порядковые числа можно было разместить в один ряд, то этот ряд определял бы порядковое число, которое было бы больше, чем все другие, но к нему можно было бы прибавить единицу, и тогда получилось бы порядковое число, которое было бы еще больше, а это приводит к противоречию. Мы вернемся позднее к антиномии Цермело – Кёнига, которая имеет несколько отличную природу.
Но вот антиномия Ришара (Revue Générale des Sciences. – 1905, 30 juin). Рассмотрим все десятичные числа, которые можно определить при помощи конечного числа слов. Эти десятичные числа образуют совокупность Е, и легко видеть, что это есть исчислимая совокупность, т. е. можно перенумеровать различные десятичные числа этой совокупности от 1 до бесконечности. Допустим, что это уже произведено, и определим число N следующим образом. Если n-я цифра n-го числа совокупности Е есть
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
то n-я цифра числа N будет соответственно
1, 2, 3, 4, 5, 6, 7, 8, 1, 1.
Как мы видим, N не равно n-му числу совокупности Е, а так как n есть произвольное число, то N не принадлежит совокупности Е; между тем N должно ей принадлежать, так как мы определили N при помощи конечного числа слов.
Мы увидим ниже, что Ришар сам дал объяснение своего парадокса, обнаружив при этом большую проницательность, и что его объяснение может быть mutatis mutandis распространено на другие аналогичные парадоксы. Рассел цитирует еще другую довольно любопытную антиномию.
Каково то наименьшее целое число, которое нельзя определить при помощи фразы, имеющей менее ста французских слов?
Такое число существует. И в самом деле, числа, которые могут быть определены такой фразой, имеются, очевидно, в конечном количестве, ибо слова французского языка имеются также в конечном количестве. Следовательно, между этими числами будет одно такое, которое меньше всех прочих.
Но, с другой стороны, это число не существует, так как определение его заключает противоречие. Действительно, это число определяется самой фразой, напечатанной выше в разрядку и состоящей менее, чем из ста слов, а по определению это число не может быть определено подобной фразой.
Какую позицию занимает Рассел ввиду этих противоречий? Рассмотрев те, о которых мы только что говорили, указав еще на другие и придав им форму, которая заставляет вспомнить об Эпимениде, он без колебаний заключает:
«А propositional function of one variable does not always deter mine a class». Пропозициональная функция (т. e. определение) одной переменной не всегда определяет класс. «Пропозициональная функция», или «норма», может быть «непредикативной». И это не значит, что такие непредикативные предложения определяют пустой класс, нулевой класс; это не значит, что нет такой величины х, которая удовлетворяла бы определению и могла бы быть одним из элементов класса. Элементы существуют, но они не могут соединяться для образования класса.
Но это только начало, нужно еще быть в состоянии узнать, является ли определение предикативным или нет. Разрешая эту проблему, Рассел колеблется между тремя теориями, которые он называет:
A. теория зигзага (the zigzag theory);
B. теория ограничения размера (the theory of limitation of size);
C. теория неклассов (the no classes theory).
Согласно теории зигзагов «определения (пропозициональные функции) определяют класс, когда они очень просты, и перестают определять таковой, когда они становятся сложными и неясными». Кто же решит вопрос: можно ли рассматривать данное определение как достаточно простое, для того чтобы оно было приемлемо? На этот вопрос нет ответа, если не считать таковым форменное признание в полном бессилии: «правила, которые позволили бы распознавать, являются ли эти определения предикативными, были бы чрезвычайно сложны и рекомендовать их не было бы целесообразным ни с какой точки зрения. Это недостаток, который можно было бы исправить только при большой изобретательности или при помощи таких отличий, которые еще не намечены. Но до настоящего момента я в поисках этих правил не мог найти другого руководящего принципа, кроме отсутствия противоречия».
Эта теория остается, таким образом, довольно темной. В этой ночи – единственный проблеск, и этот проблеск есть слово «зигзаг». То, что Рассел называет «zigzagginess», является, без сомнения, тем особенным свойством, которым отличается аргумент Эпименида.
Согласно теории of limitation of size класс теряет право на существование, если он слишком обширен. Он может даже быть бесконечным, но не должен быть «чрезмерно» бесконечным.
Мы и здесь встречаемся все с тем же затруднением: в какой же именно момент класс начинает становиться слишком бесконечным? Само собой разумеется, это затруднение не разрешено, и Рассел переходит к третьей теории.
В no classes theory запрещено произносить слово «класс». Оно должно замещаться разнообразными перифразами. Какой это крупный переворот для логистиков, которые только и говорят о классах и о классах классов! Необходимо переделать всю логистику. Представляют ли себе эти авторы, какой вид примет страница логистики, если в ней будут уничтожены все предложения, в которых идет речь о классах? Кроме нескольких строк, переживших такую операцию, на белой странице ничего не останется.
Как бы то ни было, мы видим, каковы колебания Рассела, видим изменения, которым он подвергает принятые им же основные принципы. Необходимы были критерии, чтобы решить, является ли определение слишком сложным или слишком обширным, а эти критерии не могут быть оправданы иначе, как обращением к интуиции.
Рассел в конце концов склоняется к теории неклассов.
Как бы там ни было, логистика должна быть переделана, и неизвестно, что в ней может быть спасено. Бесполезно прибавлять, что на карту поставлены только канторизм и логистика. Истинные математические науки, т. е. те, которые чему-нибудь служат, могут продолжать свое развитие согласно свойственным им принципам, не заботясь о тех бурях, которые бушуют вне их; они будут шаг за шагом делать свои завоевания, которые являются окончательными и от которых им никогда не будет нужды отказываться.
Какой же выбор должны мы сделать между этими различными теориями? Мне кажется, что решение заключается в письме Ришара, о котором я уже говорил и которое помещено в «Revue Générale des Sciences» от 30 июня 1905 г. Изложив антиномию, которую я назвал антиномией Ришара, последний дает ей и объяснение.
Вернемся к тому, что мы сказали об этой антиномии в разделе V. Пусть Е будет совокупностью всех чисел, которые можно определить при помощи конечного числа слов, не вводя при этом понятия о самой совокупности Е. В противном случае определение Е заключало бы ложный круг: нельзя определять Е при помощи самой же совокупности Е.
Далее мы определили число N, правда, при помощи конечного числа слов, но мы опирались на понятие о совокупности Е. Вот почему N и не составляет части Е.
В примере, избранном Ришаром, вывод представляется с полной очевидностью, и очевидность эта станет еще более ясной, если обратиться к самому тексту письма. Но это же объяснение годится, как в том легко убедиться, и для других антиномий.
Итак, те определения, которые должны быть рассматриваемы как непредикативные, заключают ложный круг. Предшествовавшие примеры достаточно показали, что я под этим разумею. Не это ли Рассел обозначает названием «zigzagginess»?
Я ставлю вопрос, не разрешая его.
Рассмотрим теперь мнимые доказательства принципа индукции и в особенности доказательства Уайтхеда и Бурали-Форти. Поговорим сначала о доказательстве Уайтхеда и воспользуемся некоторыми новыми и удачными обозначениями, которые Рассел ввел в своем последнем мемуаре.
Назовем рекуррентным классом всякий класс чисел, который содержит 0 и который содержит n + 1, если он содержит n.
Назовем индуктивным числом всякое число, которое составляет часть всех рекуррентных классов.
При каком условии это последнее определение, играющее существенную роль в доказательстве Уайтхеда, будет «предикативным» и, следовательно, приемлемым?
Согласно предшествующему изложению под всеми рекуррентными классами надо понимать все классы, в определение которых не входит понятие об индуктивном числе.
Без этого можно впасть в ложный круг, который и породил антиномии.
Но Уайтхед не принял этой предосторожности.
Его рассуждение ложно; именно оно и повело к антиномиям; оно было незаконным, когда давало ложные результаты, и остается незаконным, когда приводит случайно к правильному результату.
Определение, которое содержит заколдованный круг, ничего не определяет. Не к чему говорить: мы уверены, что, какой бы смысл ни был дан нашему определению, все же существует по крайней мере нуль, который принадлежит классу индуктивных чисел. Дело не в том, чтобы узнать, пуст ли этот класс, а в том, чтобы его строго отграничить. «Непредикативный» класс – это не пустой класс, а класс, в котором граница оказывается неопределенной.
Излишне прибавлять, что это частное возражение оставляет в силе те общие возражения, которые приложимы ко всем доказательствам.
Второй гласит:
Первый постулат не более очевиден, чем принцип, подлежащий доказательству. Второй не только не очевиден, но и ложен, как это показал Уайтхед и как это, впрочем, заметил бы любой лицеист математического класса, если бы аксиома была выражена на понятном языке. Ибо эта аксиома означает: число комбинаций, которые можно образовать из нескольких предметов, менее числа этих предметов.
В известном доказательстве Цермело опирается на следующую аксиому:
В какой-либо совокупности (или даже в каждой из совокупностей некоторой совокупности совокупностей) мы можем всегда выбрать наудачу один элемент (даже тогда, когда эта совокупность совокупностей обнимает бесконечно много совокупностей). Тысячу раз применяли эту аксиому, не высказывая ее. Но лишь только она была высказана, как появились сомнения. Одни математики, как Борель, ее отвергают, другие восхищаются ею. Посмотрим, что об этом думает Рассел в своей последней статье.
Он не высказывается, но те размышления, которым он предается, очень знаменательны.
Однако сначала один наглядный пример. Допустим, что мы имеем столько пар сапог, сколько есть целых чисел, так что мы можем нумеровать пары от 1 до бесконечности. Сколько мы будем иметь сапог? Будет ли число сапог равно числу пар? Да, если в каждой паре правый сапог отличается от левого, ибо в таком случае достаточно будет обозначить номером 2n − 1 правый сапог n-й пары, а номером 2n – левый сапог n-й пары. Нет, если правый сапог подобен левому, так как в этом случае такая операция будет невозможна. Иначе придется допустить аксиому Цермело, потому что тогда можно в каждой паре выбрать наудачу сапог, который будет рассматриваться как правый.
Доказательство, действительно основанное па принципах аналитической логики, будет составляться из ряда предложений. Одни из них, которые служат посылками, будут тождествами или определениями; другие будут последовательно выведены из первых. Но, хотя связь между каждым предложением и последующим замечается непосредственно, трудно будет с первого взгляда увидеть, как мог совершиться переход от первого предложения к последнему, и явится соблазн рассматривать это последнее как новую истину. Но если последовательно заменить фигурирующие в нем различные выражения их определениями, если провести эту операцию насколько можно далеко, то в итоге останутся только тождества, так что все сведется к бесконечной тавтологии. Логика, следовательно, окажется бесплодной, если не будет оплодотворена интуицией.
Вот что я уже писал давно. Логистики исповедуют противоположную точку зрения и думают, что доказали ее, показав действительно новые истины. Но каким образом?
Почему, применяя к их рассуждениям описанный только что прием, т. е. заменяя определенные термины их определениями, мы не видим, чтобы они сливались в тождества, как это бывает с обыкновенными рассуждениями? Значит, этот прием к ним неприменим. А почему? Потому что их определения непредикативные и дают тот заколдованный круг, который я отметил выше; непредикативные определения не могут стать на место определяемого термина. В этих условиях логистика является уже не бесплодной, она родит антиномию.
Вера в существование актуальной бесконечности дала начало этим непредикативным определениям. Я объяснюсь. В этих определениях фигурирует слово «все», как это видно из приведенных выше примеров. Слово «все» имеет достаточно точный смысл, когда речь идет о бесконечном[28] числе предметов; для того чтобы оно имело также смысл, когда предметов имеется бесчисленное множество, необходимо, чтобы существовало актуально бесконечное. В противном случае на все эти предметы нельзя было бы смотреть как на данные до их определения; вместе с тем определение понятия N, если оно зависит от всех предметов A, может страдать пороком заколдованного круга, раз между предметами А имеются такие, которые нельзя определить без помощи самого понятия N.
Правила формальной логики выражают просто свойства всех возможных классификаций. Но для того чтобы эти правила были приложимы, необходимо, чтобы классификации оставались неизменными, чтобы их не приходилось изменять на протяжении рассуждений. Если приходится распределять конечное число предметов, то легко сохранить эти классификации без изменения. Если же предметы имеются в неопределенном количестве, т. е. если имеется возможность постоянного и внезапного появления новых предметов, то может случиться, что такое появление обяжет к изменению классификации. Отсюда опасность антиномий.
Нет актуальной бесконечности. Канторианцы забыли это и впали в противоречие. Верно то, что теория Кантора оказала услуги, но это было тогда, когда она применялась к истинной проблеме, термины которой были отчетливо определены; тогда можно было подвигаться вперед без опасений.
И логистики, подобно канторианцам, забыли об этом и встретились с теми же затруднениями. Но нужно знать, попали ли они на этот путь случайно или по необходимости.
Для меня вопрос не представляет сомнений. Вера в актуально бесконечное является существенной в логике Рассела. Этим она отличается от логистики Гильберта. Гильберт становится на точку зрения объема именно для того, чтобы избежать канторовских антиномий; Рассел становится на точку зрения содержания. Для него, следовательно, род предшествует виду и summum genus[29] предшествует всему. Это не представляло бы неудобства, если бы summum genus был конечным; но если он бесконечен, то приходится бесконечное ставить перед конечным, т. е. рассматривать бесконечное как актуальное.
Но мы имеем не только бесконечные классы. Когда мы переходим от рода к виду, суживая понятие введением новых условий, то эти условия тоже появляются в бесконечном числе. Ибо они вообще выражают, что рассматриваемый предмет находится в том или ином отношении ко всем предметам бесконечного класса.
Однако все это уже устаревшая история. Рассел заметил опасность. Он ее обдумает. Он все изменит. Он готов, запомним это, не только ввести новые принципы, которые позволяют производить не разрешенные никогда операции, но готов запретить операции, которые считал некогда законными. Он не довольствуется поклонением тому, что сжигал; он готов сжечь то, чему поклонялся, что еще тяжелее. Он не прибавляет нового крыла к зданию, он подрывает его основание.
Старая логистика умерла, a zigzag-theory и no classes theory оспаривают друг у друга преемственность. Чтобы судить о новой логистике, мы подождем, когда она образуется.
Общие выводы
На предыдущих страницах я старался объяснить, каким образом ученый должен производить выбор между бесчисленными фактами, раскрывающимися перед ним; ведь уже одна естественная немощность ума заставляет его делать такой выбор, хотя бы этот выбор и всегда представлял собой жертву. Сначала я искал оснований для этого в общих соображениях, указывая, с одной стороны, природу проблемы, подлежащей разрешению, с другой, – выясняя причину человеческого ума, этого главного орудия для разрешения. Затем я привел ряд пояснительных примеров. Я не умножал их до бесконечности; я сам должен был произвести между ними выбор и, естественно, выбрал вопросы, мною наиболее изученные. Другие на моем месте, без сомнения, сделали бы другой выбор; но это не имеет значения, потому что они пришли бы, я думаю, к тем же выводам.
Существует иерархия фактов. Одни факты не имеют значения; все то, чему они нас учат, касается их одних. Ученый, который констатировал их, не познал ничего более, как один факт, и не сделался способным предвидеть новые. Эти факты как бы происходят однажды, и повториться им не суждено.
С другой стороны, существуют факты большого значения. Каждый из них учит нас новому закону. И так как ученому предстоит сделать выбор, то именно к такого рода фактам он должен обратиться.
Без сомнения, такая классификация относительна и зависит от слабости нашего ума. Факты малого значения суть факты сложные, на которые могут оказывать очень чувствительное влияние различные обстоятельства, слишком многочисленные и многообразные, для того чтобы мы были способны уловить их. Но я должен прибавить, что эти факты мы считаем сложными потому, что запутанная связь влияющих обстоятельств превосходит пределы нашего ума. Без сомнения, ум более обширный и тонкий, чем наш, судил бы об этом иначе. Но все это несущественно; пользоваться мы можем не этим высшим умом, а нашим собственным.
Факты большого значения – это те, которые мы считаем простыми, потому ли, что они таковы в действительности, что на них, следовательно, оказывает влияние небольшое число вполне определенных обстоятельств, или же потому, что они кажутся простыми, и, следовательно, те многочисленные обстоятельства, от которых они зависят, подчиняются законам случая и таким образом друг друга компенсируют. Так, собственно, чаще всего и бывает. Вот почему мы должны были несколько ближе исследовать вопрос о том, что представляет собой случай. Факты, к которым приложимы законы случая, становятся доступны ученому, отступающему в унынии перед чрезвычайной сложностью тех проблем, к которым эти законы неприложимы.
Мы видели, что эти соображения приложимы не только к физическим, но и к математическим наукам. Метод доказательства не один и тот же для физика и для математика. Но методы открытия истины чрезвычайно сходны. В том и в другом случае они заключаются в восхождении от факта к закону и к разысканию фактов, способных вести к закону.
Чтобы сделать этот пункт очевидным, я проследил за творческой деятельностью математика и притом в трех ее формах: за деятельностью математика-изобретателя и творца; за умственным процессом бессознательного геометра, который у наших далеких предков или в смутные годы нашего детства строил наше инстинктивное понятие пространства; за умом юноши, перед которым наставники средней школы раскрывают первые основы науки и которому они стараются объяснить основные определения. Везде мы видели роль интуиции и обобщающего ума, без которых эти, если мне позволено будет так выразиться, три вида математиков были бы осуждены на одинаковое бессилие.
Но и в области доказательств логика еще не составляет всего. Настоящее математическое рассуждение есть настоящая индукция, во многих отношениях отличная от индукции физической, но, как и она, идущая от частного к общему. Все усилия, направленные на то, чтобы опрокинуть этот порядок и свести математическую индукцию к правилам логики, закончились без успеха, и эту неудачу трудно было скрыть под маской особого языка, недоступного профанам.
Примеры, которые я заимствовал из физических наук, ознакомили нас с разнообразными фактами большого значения. Опыт Кауфмана над лучами радия революционизирует сразу механику, оптику и астрономию. Почему? Потому что по мере того, как эти науки развивались, мы лучше познали соединяющие их связи; и тогда мы подметили нечто вроде общей схемы, представляющей собой карту универсальной науки. Существуют факты, общие и нескольким наукам, которые напоминают общие источники вод, направляющихся во все стороны; их можно сравнить с тем Сен-Готардским узлом, откуда выходят воды, питающие четыре различных бассейна.
Но мы можем произвести выбор между фактами с большим сознанием, чем наши предшественники, которые смотрели на эти бассейны как на обособленные и отделенные друг от друга непроходимыми преградами. Мы должны избирать всегда простые факты; но из массы этих простых фактов мы должны отдавать предпочтение тем, которые уподобляются, по месту своего положения, упомянутым выше узлам Сен-Готарда.
Если науки и не имеют непосредственной связи, то они взаимно освещают друг друга путем аналогии. Когда изучили законы, которым подчиняются газы, стало очевидным, что мы подошли к факту крупного значения; однако размер этого значения оценивался ниже действительного; между тем с известной точки зрения в газах мы имели прообраз Млечного пути, а факты, которые могли, как казалось, интересовать только физиков, должны открыть новые горизонты в астрономии, сверх ее ожидания.