30. Закон сохранения и превращения энергии
Первый закон термодинамики основан на всеобщем законе сохранения и превращения энергии, который устанавливает, что энергия не создается и не исчезает.
Тела, участвующие в термодинамическом процессе, взаимодействуют друг с другом путем обмена энергией. При этом у однихтел энергия уменьшается, а у других – увеличивается. Существует два варианта передачи энергии физическими телами: теплообмен и совершение механической работы.
На практике единицей работы является также джоуль, количество работы обозначается L, удельная работа на единицу массы П кг) обозначается /.
Существует несколько основных положений первого закона термодинамики.
L Любые виды энергии не возникают сами по себе, а взаимно превращаются друг в друга, причем их количества всегда одинаковы.
2. Невозможно построить вечный двигатель первого рода.
3. Если система полностью изолирована, то ее внутренняя энергия остается постоянной.
Предположим, что Q– количество теплоты, подведенное к телу, которое необходимо затратить на осуществление работы и на преобразование внутренней энергии:
Q = ΔU +L,
где L = ml– количество работы;
ДU = mДu– разность внутренней энергии начального и конечного состояния;
Q = mq.
В случае массы тела, равной 1 кг:
q = Δu+l,
где l, q, Du – удельные количества работы, теплоты, разность внутренних энергий начального и конечного состояния. Если процесс бесконечно малый, то
dq = du + dl.
Полученное соотношение является математической моделью первого закона термодинамики. Отсюда следует такая формулировка закона: «Все количество теплоты, которое получает физическое тело, тратится на выполнение работы и на преобразование внутренней энергии тела».
Существует так называемое правило знаков для параметров: q > 0, если теплота подводится к физическому телу, и q <0, если отводится; l > 0, если работа совершается самим телом (расширение), и l < 0, если работу совершают над телом извне (сжатие); Du > 0 – если внутренняя энергия тела увеличивается, Du < 0 – если внутренняя энергия уменьшается.
31. Внутренняя энергия
Внутренняя энергия складывается из внутренних кинетической и потенциальной энергий. Внутренняя кинетическая энергия создается хаотическим движением молекул вещества.
Кинетическая энергия всей макросистемы вычисляется:
где m– масса системы;
w– скорость ее движения в пространстве.
Силы взаимодействия молекул вещества друг с другом определяют внутреннюю потенциальную энергию тела.
Внутренней энергией называется такая энергия, которая заключена в самой системе и имеет две составляющие – кинетическую энергию.
Изменение удельной потенциальной (внутренней) энергии того же тела. Изменение всей удельной (внутренней) энергии при термодинамическом процессе будет выглядеть так:
Δu – Uk– ир.
Внутренняя энергия рабочего тела произвольной массы при этом рассчитывается по формуле:
Δv-Vk – Vp.
Предположим, что рабочее тело переходит из первого состояния во второе при подводе теплоты извне. Тогда количество этой теплоты выразится в виде:
q1,2 – u2 -U1.
Процесс проходит по изохорному закону, имеем:
q1,2 = ćv(T2 -T1).
В общем виде для любого вещества массой m:
v2 -v1 – mćv(T2– T1),
где T1 – начальная температура термодинамического процесса;
T2– конечная температура;
u1 – начальная величина внутренней энергии;
u2 – конечная величина внутренней энергии;
ć– средняя удельная теплоемкость (изохорная).
32. Вычисление работы газа
Газ получает теплоту от определенного источника вне системы. обозначим давление газа буквой р, площадь поршня – S, тогда под действием внешней силы F = pS на поршень он будет неподвижен. При уменьшении внешней силы F разность этих двух сил pS – F сместит поршень вправо. Газ под поршнем будет расширяться и преодолевать внешние силы, совершая при этом работу. При равновесном процессе имеем следующее.
1. Поршень должен перемещаться по цилиндру бесконечно медленно (т. е. с бесконечно малой скоростью). Это даст возможность считать, что давление газа по всему объему в любой момент времени одинаково.
2. Температура источника тепла практически не отличается от температуры рабочего тела (в качестве которого используем газ), т. е. разность их температур бесконечно мала. Это дает возможность считать, что температура по всему объему газа в любой момент времени одинакова.
При таких условиях процесс расширения рабочего тела в любой момент времени будет иметь температуру, плотность и давление одинаковыми во всем объеме, т. е. его состояние также будет равновесным.
Аналитическое решение задачи для вычисления работы газа вследствие его расширения. Скорость поршня во время перемещения его в цилиндре бесконечно мала. Поэтому для анализа процесса расширения разобьем весь отрезок пути, пройденного поршнем, на бесконечно малые части dl. Тогда dA(элементарная работа) на любом элементарном отрезке dl определяется произведением:
dA = pSdl,
где pS– сила;
dl– путь.
Используя равенство
Sdl = dv,
получаем
dA = pdv.
Дает выражение:
где А – работа, которую при расширении совершает газ массой j кг.
Такую работу, которую газ совершает при расширении, называют еще технической.
33. Обратимые и необратимые процессы
Если термодинамическая система под действием внешних сил проходит ряд последовательных состояний, то их совокупность называют термодинамическим процессом. Этот процесс совершается рабочим телом, а его состояние изменяется таким образом, что масса остается постоянной. Основным свойством упрощенного идеального процесса считается его обратимость.
Обратимыми называются процессы, протекающие как в прямом, так и в обратном направлении, и при которых ни в рабочем теле, ни в окружающем пространстве не возникают остаточные изменения. Причем рабочее тело проходит в обоих направлениях через те же самые равновесные элементарные состояния и в конце процесса возвращается в первоначальную точку.
Любой обратимый процесс является равновесным. Процесс называется равновесным, если последовательные состояния, которые проходит система, будут также равновесными. Процесс, протекающий очень медленно и таким образом в любой момент времени приближающийся к равновесному, называется квазистатическим (он также обратим).
Графически равновесное состояние изображается в виде точки в пространственной системе координат с тремя параметрами v, р, Т, а сам равновесный процесс – кривой, проходящей через ряд таких точек.
Состояние системы называется равновесным, если в любой момент времени во всем объеме, который занимает газ, величины v, р, Т (параметры состояния) одинаковы, хотя они изменяются во времени в случае изменения состояния. В случае изолированной системы она со временем возвращается в состояние равновесия и сама из него выйти не может. На практике обратимые процессы возможны при определенных условиях.
1. Рабочее тело изменяет свое состояние бесконечно медленно.
2. У рабочего тела существует бесконечное множество равновесных состояний.
3. Теплообмен с внешней средой (необратимый процесс), внешнее трение, внутреннее трение частиц тела друг о друга отсутствуют.
4. В рабочем веществе не проходят никакие химические изменения.
Процессы, не удовлетворяющие свойству обратимости, являются необратимыми.
Любой реальный процесс, в котором рабочее тело изменяет свое состояние, является необратимым.
Любой реальный процесс является также неравновесным. Это объясняется тем, что процесс имеет конечную скорость и равновесное состояние в рабочем веществе установиться просто не успевает. Реальные процессы могут приближаться к области равновесия, но не совпадать с равновесными процессами, они могут проходить только в прямом направлении, а в обратном – только при воздействии извне.
34. Основные положения второго закона термодинамики
Второй закон термодинамики позволяет ответить на вопросы: возможно или нет развитие рассматриваемого процесса, какое направление процесса будет преобладающим, когда в термодинамической системе установится равновесие. А также этот закон помогает определить условия, при которых система совершит максимальное количество работы.
Сущность этого закона впервые выразил французский ученый и инженер Сади Карно (1824 г.). Он писал, что везде, где только есть разность температур, возможно появление движущей силы. Причем она зависит только от температур взаимодействующих тел и не зависит от вида этих тел. Для получения больших величин такой движущей силы первоначальная температура рабочего тела должна быть значительной, и соответственно охлаждение также велико. Кроме того, никогда не будет возможно использовать на практике движущую силу (энергию) топлива в полном виде.
Эти утверждения ученого определяют условия преобразования теплоты двигателей в полезную работу и от каких параметров зависит качество этого преобразования. Исходя из установленных положений следует говорить о необходимости протекания в тепловых устройствах одновременно двух процессов – основного, при котором теплота превращается в работу, и дополнительного – сопутствующего процесса перехода тепла к холодному источнику.