Ткань космоса. Пространство, время и текстура реальности — страница 6 из 19

Имеет ли время направление?

Даже если время не течёт, всё же можно спросить, имеет ли оно направление — имеется ли направление пути, на котором события разворачиваются во времени, имеется ли такое направление, которое можно разглядеть в законах физики. Имеется ли некоторый внутренний порядок в том, как события разбросаны вдоль пространства-времени, и имеется ли существенное научное отличие между таким упорядочением событий и обратным упорядочением? Как каждому известно, огромное различие такого рода определённо имеется; это то, что придаёт жизни перспективу и делает острыми переживания. Но, как мы увидим, объяснение различия между прошлым и будущим труднее, чем вы думали. Замечательно, что ответ, который мы установим, окажется тесно связанным с точными условиями в начале Вселенной.

Загадка

Тысячу раз в день наш опыт обнаруживает различие между прямым и обратным ходом времени. Очень горячая пицца остывает по дороге от пиццерии, но мы никогда не найдём пиццы ещё горячее, чем в момент, когда она была вынута из духовки. Сливки, размешанные в кофе, образуют однородную желтовато-коричневую жидкость, но мы никогда не увидим чашку кофе со сливками, размешанного «назад» и разделённого на белые сливки и чёрный кофе. Яйца падают, разбиваясь и разбрызгиваясь, но мы никогда не увидим расплескавшиеся желток с белком и скорлупки, собирающиеся вместе и объединяющиеся в целое яйцо. Сжатый в бутылке колы углекислый газ вырывается наружу, когда мы откручиваем крышку, но мы никогда не найдём рассеявшийся углекислый газ собравшимся воедино и втянувшимся обратно в бутылку.

Кубик льда, брошенный в стакан воды комнатной температуры, тает, но мы никогда не увидим молекулы в стакане воды комнатной температуры, объединившиеся в твёрдый кубик льда. Эти общие последовательности событий, как и бесчисленные другие, происходят только в одном временно́м порядке. Они никогда не происходят в обратном порядке, поэтому они обеспечивают представление о до и после — они дают нам непротиворечивую и кажущуюся универсальной концепцию прошлого и будущего. Эти наблюдения убеждают нас, что если бы мы исследовали всё пространство-время, находясь снаружи (как на рис. 5.1), мы бы увидели существенную асимметрию вдоль оси времени. Разбившиеся яйца во всём мире будут лежать с одной стороны — стороны, которую мы обычно называем будущим, — по отношению к их целым предкам.

Возможно, наиболее поучительный вывод из всех этих примеров состоит в том, что наш разум имеет доступ к собранию событий, которые мы называем прошлым, — к нашей памяти, — но никто из нас не способен вспомнить набор событий, который мы называем будущим. Очевидно, существует большая разница между прошлым и будущим. Кажется, что наблюдается явное направление в том, как огромное разнообразие вещей разворачивается во времени. Кажется, что есть явное различие между вещами, которые мы можем вспомнить (прошлое), и вещами, которые мы вспомнить не можем (будущее). Это и есть то, что мы подразумеваем под наличием у времени ориентации, направления или стрелы.{66}

Физика, как и наука в целом, основывается на регулярности. Учёные изучают природу, ищут повторяющиеся образцы и кодируют эти образцы в законах природы. Вы могли бы поэтому подумать, что совершенно исключительная регулярность, которая с очевидностью приводит нас к ощущению стрелы времени, будет иметь отражение в фундаментальном законе природы. Наивный способ формулировки такого закона будет заключаться во введении Закона разливающегося молока, согласно которому чашки молока разливаются, но не «сливаются» назад, или Закона разбивающихся яиц, согласно которому яйца разбиваются, но никогда не собираются обратно. Но законы такого рода нам ничего не дают: это просто описание, оно не предлагает никакого объяснения кроме простого наблюдения за тем, что происходит. Мы же ожидаем, что где-то в глубинах физики должен быть менее наивный закон, описывающий движение и свойства частиц, который увязывает пиццу, молоко, яйца, кофе, людей и звёзды — фундаментальные составляющие всего — и который показывает, почему события развиваются в определённом порядке, но никогда в обратном. Такой закон дал бы фундаментальное объяснение наблюдаемой стреле времени.

В полное недоумение приводит то, что никто не открыл такого закона. Более того, законы физики, которые были сформулированы Ньютоном, затем Максвеллом и Эйнштейном и до сегодняшних дней, демонстрируют полную симметрию между прошлым и будущим.[35] Ни в одном из этих законов мы не найдём оговорки, что они применимы в одном направлении во времени, но не в другом. Нигде нет никакого различия между тем, как законы выглядят или ведут себя, когда они применяются к тому или иному направлению времени. Законы рассматривают то, что мы называем прошлым и будущим, совершенно одинаково. Хотя опыт снова и снова выявляет направление, в котором события разворачиваются во времени, эта стрела, кажется, не находит отражения в фундаментальных законах физики.

Прошлое, будущее и фундаментальные законы физики

Как такое может быть? Неужели законы физики не объясняют, чем прошлое отличается от будущего? Как может быть, что нет закона физики, который объяснял бы, почему события разворачиваются в этом порядке, но никогда не в обратном?

Ситуация более чем загадочна. Известные законы физики на самом деле декларируют — в отличие от нашего жизненного опыта, — что кофе со сливками можно разделить на чёрный кофе и белые сливки; растёкшийся желток и мелкие осколки скорлупы могут собраться месте и воссоздать совершенно целое яйцо; растаявший в стакане воды лёд при комнатной температуре может превратиться в кубик льда; газ, выделившийся при открытии колы, может вернуться назад в бутылку. Все физические законы, которые мы бережно храним, полностью поддерживают симметрию по отношению к обращению времени. Это означает, что если некоторая последовательность событий может разворачиваться в одном временном порядке (сливки и кофе смешиваются, яйца разбиваются, газ улетучивается), то эти события могут разворачиваться и в обратном порядке (сливки и кофе разделяются, яйца восстанавливаются, газ втягивается назад). В дальнейшем я это конкретизирую, но обобщение одной фразой таково: известные законы не только не способны сказать нам, почему мы видим события развивающимися только в одном порядке, они также говорят нам, что теоретически события могут разворачиваться и в обратном порядке.[36]

Животрепещущий вопрос таков: почему мы никогда этого не видим? Я думаю, можно смело заключать пари, что никто никогда на самом деле не был свидетелем восстановления разбитого яйца.

Но если законы физики допускают это, и более того, если эти законы рассматривают разбивание и восстановление яйца одинаково, то почему одно никогда не происходит, в то время как другое имеет место?

Симметрия по отношению к обращению времени

В качестве первого шага к решению этой головоломки нам надо понять в более конкретных терминах, что означает для известных законов физики быть симметричными по отношению к обращению времени. С этой целью представьте, что идёт XXV в. и вы играете в теннис в новой межпланетной лиге с вашим партнёром по имени Вильямс «Мощный удар». Немного не привыкший к уменьшенной гравитации Венеры, «Мощный удар» делает сильнейший удар слева и запускает мяч в глубокую темноту пространства. Пересекающий пространство космический шаттл производит киносъёмку мяча, когда тот пролетает рядом, и посылает ленту в CNN (Celestial News Network — небесная сеть новостей) для телевещания. Возникает вопрос: если техники CNN сделали ошибку и запустили плёнку о теннисном мяче в обратном направлении, есть ли какой-нибудь способ это определить? Если вы знали направление и ориентацию камеры во время съёмок, то вы будете в состоянии распознать их ошибку. Но смогли бы вы распознать ошибку, просмотрев только саму плёнку без дополнительной информации? Ответ: нет. Если в правильном направлении времени (вперёд) плёнка показывает мяч летящим слева направо, то в обратном направлении он будет показан летящим справа налево. И, конечно, законы классической физики позволяют теннисным мячам двигаться как налево, так и направо. Так что движение, которое вы видите, когда плёнка прокручивается как в прямом, так и в обратном направлении, превосходно согласуется с законами физики.

Пока мы считали, что на теннисный мяч не действуют никакие силы, поэтому он двигается с постоянной скоростью. Рассмотрим теперь более общую ситуацию, включив силы. Согласно Ньютону, влияние силы заключается в изменении скорости объекта: силы сообщают ускорения. Представим, что после некоторого времени плавания в пространстве мяч попадает под влияние гравитационного притяжения Юпитера, что заставляет его двигаться с возрастающей скоростью по нисходящей дуге, развёрнутой направо к поверхности Юпитера, как показано на рис. 6.1а и б. Если вы проигрываете плёнку с этим движением в обратном направлении, теннисный мяч будет двигаться по дуге, которая развёрнута вверх и налево от Юпитера, как на рис. 6.1в.

Рис. 6.1. (а) Теннисный мяч, летящий от Венеры к Юпитеру. (б) Окончание полёта. (в) Движение теннисного мяча, если его скорость изменена на противоположную прямо перед столкновением с Юпитером

Возникает новый вопрос: является ли движение, демонстрируемое на плёнке, которая проигрывается в обратном направлении, — движение, обратное во времени по отношению к движению, в действительности снятому на плёнку, — допустимым по классическим законам физики? Может ли такое движение произойти в реальном мире? На первый взгляд, ответ «да» кажется очевидным: теннисные мячи могут двигаться по нисходящим дугам направо, или по восходящим дугам налево, или по бесконечному количеству других траекторий. Тогда в чём трудность? Хотя ответ, несомненно, «да», наши рассуждения поверхностны и упускают реальную суть вопроса.

Когда вы начинаете прокручивать плёнку в обратном направлении, вы видите, как теннисный мяч отскакивает от поверхности Юпитера и начинает двигаться вверх и налево в точности с той же скоростью (но в точности в противоположном направлении), с которой он падал на планету.

Начальная часть плёнки определённо согласуется с законами физики: например, мы можем представить, что кто-то запустил теннисный мяч с поверхности Юпитера с точно такой же скоростью. Существенный вопрос состоит в том, будет ли и оставшаяся часть обратного движения также согласовываться с законами физики. Будет ли мяч, запущенный с этой начальной скоростью и подвергающийся воздействию притягивающей вниз гравитации Юпитера, действительно двигаться вдоль траектории, изображённой на оставшейся части прокручиваемой в обратном направлении плёнки? Будет ли он в точности очерчивать его оригинальную нисходящую траекторию, но в обратном направлении?

Ответ на этот уточнённый вопрос — да. Во избежание путаницы, разберёмся более детально. На рис. 6.1а, перед тем, как гравитация Юпитера оказала существенное влияние, мяч двигался точно вправо. Далее, на рис. 6.1б мощная гравитационная сила захватила мяч и притянула его к центру планеты — притяжение, которое в большей степени направлено вниз, но, как вы можете видеть на рисунке, частично вправо. Это означает, что когда мяч приблизился к поверхности Юпитера, его ориентированная вправо скорость немного увеличилась, а компонента скорости, направленная вниз, значительно увеличилась. Следовательно, в прокручиваемой назад плёнке взлёт мяча с поверхности Юпитера будет происходить в направлении немного влево и преимущественно вверх, как показано на рис. 6.1 в.

При этой стартовой скорости гравитация Юпитера будет оказывать максимальное влияние на скорость мяча, направленную вверх, делая её всё меньше и меньше, тогда как скорость мяча, направленная влево, тоже будет уменьшаться, но в меньшей степени. И с быстро уменьшающейся компонентой скорости, направленной вверх, движение мяча будет становиться преимущественно таким, при котором преобладает скорость, направленная влево, что вынудит мяч следовать влево по выгнутой вверх траектории. Вблизи окончания этой дуги гравитация истощит всё направленное вверх движение, также как и добавочную скорость, направленную вправо, которую гравитация Юпитера добавила мячу во время его пути вниз, оставив движение мяча в направлении влево в точности с той же скоростью, которую он имел при его первоначальном приближении к Юпитеру.

Всё это можно просчитать, но суть в том, что эта траектория в точности совпадает с обратным начальным движением мяча. Просто изменив скорость мяча на противоположную, как на рис. 6.1в, — отправив его в путь с той же скоростью, но в противоположном направлении, — его можно заставить пройти полностью свою исходную траекторию, но в обратном направлении. Возвращаясь к плёнке, мы видим, что выгнутая вверх траектория, направленная влево, — траектория, которую мы просто сконструировали, основываясь на ньютоновских законах движения, — в точности совпадает с той, что мы видели при прокручивании плёнки назад. Так что движение мяча с обращением времени, как изображено на прокручиваемой назад плёнке, согласуется с законами физики так же хорошо, как и его движение в прямом времени. Движение, которое мы видели, прокручивая плёнку в обратном направлении, есть движение, которое на самом деле может происходить в реальном мире.

Хотя имеется несколько тонкостей, которые я переношу в примечания, этот вывод является общим.{67} Все известные и признанные законы, относящиеся к движению, — от уже обсуждавшейся выше ньютоновской механики до электромагнитной теории Максвелла и специальной и общей теории относительности Эйнштейна (вспомним, что мы исключили из рассмотрения квантовую механику до следующей главы) — заключают в себе симметрию по отношению к обращению времени: движение, которое может происходить в обычном направлении, соответствующем прямому ходу во времени, может так же происходить и в обратном направлении. Поскольку терминология несколько запутанная, позвольте ещё раз подчеркнуть, что мы не изменяем направление самого времени. Время действует так же, как и всегда. Наши выводы таковы, что мы можем заставить объект пройти его траекторию в обратном направлении путём простой процедуры обращения его скорости в любой точке на его пути. Иными словами, обращение скорости объекта в некоторой точке его пути заставит объект совершить движение, которое мы видели на прокручиваемой назад плёнке.

Теннисные мячи и разбивающиеся яйца

Наблюдение за теннисным мячом, проносящимся между Венерой и Юпитером — в том или другом направлении, — не является особенно интересным. Но поскольку вывод, к которому мы пришли, широко применим, отправимся теперь в более интересное место: на вашу кухню. Положите яйцо на кухонный стол, подтолкните его к краю и позвольте ему упасть на пол и разбиться. Несомненно, в этой последовательности событий имеется много разных движений. Яйцо падает. Скорлупа трескается. Желток разливается. Половицы вибрируют. Формируются вихри в окружающем воздухе. Трение вызывает нагревание, влияющее на атомы и молекулы яйца, пола и воздуха, заставляя их дрожать немного быстрее. И точно так же, как законы физики показывают нам, что мы можем отправить теннисный мяч очерчивать его собственный путь точно в обратном направлении, те же самые законы показывают, что мы можем заставить каждый кусочек яичной скорлупы, каждую каплю желтка, каждую половицу и каждый пузырёк воздуха точно проделать его движение в обратном направлении. «Всё», что нам необходимо сделать, это поменять направление скорости всех и каждой из составляющих процесса разбивания яйца на обратное. Более точно, рассуждения, использованные в примере с теннисным мячом, означают, что если гипотетически мы были бы в состоянии одновременно поменять на обратную скорость каждого атома и молекулы, вовлечённых прямо или косвенно в процесс разбивания яйца, все движения в процессе разбивания яйца будут происходить в обратном направлении.

Опять-таки, точно как с теннисным мячом, если мы сумеем обратить все эти скорости, то, что мы увидим, будет похоже на плёнку, прокручиваемую в обратном направлении. Но, в отличие от теннисного мяча, обращение движения разбивающегося яйца будет чрезвычайно впечатляющим. Волна колеблющихся молекул воздуха и мельчайшие сотрясения пола соберутся в месте падения яйца со всех частей кухни, заставив переместиться кусочки скорлупы и капли желтка к месту удара. Каждый ингредиент будет двигаться в точности с той же скоростью, которую он имел в исходном процессе разбивания яйца, но каждый будет теперь двигаться в противоположном направлении. Капли желтка будут лететь назад и собираться в шарик, как и зазубренные края осколков скорлупы будут точно встраиваться друг в друга для соединения в гладкий яйцевидный контейнер. Колебания пола и воздуха будут точно состыкованы с движениями бесчисленных соединяющихся капель желтка и кусочков скорлупы, чтобы дать заново сформированное яйцо, которое одним толчком подпрыгнет с пола в виде одного целого, взлетит на кухонный стол, мягко приземлится на его край с достаточным вращательным движением, чтобы откатиться на несколько дюймов и элегантно вернуться к начальному состоянию покоя. Это всё будет происходить, если мы решим задачу тотального и точного обращения скоростей всего, что было задействовано в процессе.{68}

Так что, является ли событие простым, вроде полёта теннисного мяча по дуге, или чем-то более сложным, вроде разбивания яйца, законы физики показывают — то, что происходит в одном временно́м направлении, может, по крайней мере в принципе, происходить также и в обратном.

Принцип и практика

Истории о теннисном мяче и яйце не просто иллюстрируют симметрию по отношению к обращению времени в законах природы. Они также наводят на мысль, почему в реальном мире многие вещи происходят одним способом, но никогда не происходят в обратном направлении. Нетрудно было заставить теннисный мяч повторить свой путь назад. Мы просто схватили его и направили с той же самой скоростью, но в обратном направлении. Вот и всё. Но заставить все хаотические остатки яйца воспроизвести их пути назад будет куда сложнее. Мы должны схватить каждый кусочек разбитого яйца и одновременно направить его с той же скоростью, но в противоположном направлении. Ясно, что это находится за пределами того, что мы (или вся королевская конница и вся королевская рать) реально можем сделать.

Нашли ли мы ответ, который искали? Связана ли причина того, почему яйца разбиваются, но не собираются обратно, хотя оба действия допускаются законами физики, с тем, что осуществимо, а что не осуществимо на практике? Не состоит ли ответ на вопрос просто в том, что яйцо легко разбить — катнуть его по столу, — но чрезвычайно трудно заставить его собраться обратно?

Но если бы это был ответ, поверьте мне, я не стал бы делать из этого большой проблемы. Противопоставление простоты и сложности является существенной частью ответа, но вся история намного более тонка и удивительна. В своё время мы вернёмся к ней, но сначала необходимо придать всему обсуждению в этой главе бо́льшую строгость. Это приводит нас к концепции энтропии.

Энтропия

На могильном камне Центрального кладбища в Вене, рядом с могилами Бетховена, Брамса, Шуберта и Штрауса, выгравировано простое уравнение S = k logW которое выражает математическую формулировку важного понятия, известного как энтропия. На могильном камне начертано имя Людвига Больцмана, одного из наиболее проницательных физиков, работавших на рубеже XIX и XX столетий. В 1906 г., с подорванным здоровьем и страдая от депрессии, Больцман совершил самоубийство, находясь на отдыхе со своей женой и дочерью в Италии. По иронии судьбы, всего несколькими месяцами позже эксперименты, начатые для подтверждения идей Больцмана, пылко отстаивая которые, он растратил свою жизнь, оказались успешными.

Понятие энтропии впервые было введено во время промышленной революции учёными, исследовавшими работу печей и паровых двигателей. Эти исследования послужили началом новой науки — термодинамики. После многих лет исследований основополагающие идеи термодинамики были предельно уточнены, получив окончательную формулировку в подходе Больцмана. Его интерпретация энтропии, лаконично выраженная в уравнении на его надгробии, использует статистический подход для установления связи между огромным числом отдельных компонентов, составляющих физическую систему, и общими свойствами, которые имеет эта система.{69}

Чтобы почувствовать эти идеи, представим себе непереплетённое издание романа «Война и мир», на отдельных 693 листах. Подбросим их высоко в воздух, а затем соберём аккуратно в стопку.{70} Когда вы проверите собранную пачку, то с огромной вероятностью обнаружите, что страницы расположены не по порядку. Причина очевидна. Имеется множество вариантов, в которых порядок страниц будет перепутан, но существует лишь один вариант, при котором порядок правильный. Конечно, по порядку — это значит, что страницы должны быть расположены в точности 1, 2; 3, 4; 5, 6 и т. д., вплоть до 1385, 1386. Любое другое расположение будет не по порядку. Простое, но существенное наблюдение заключается в том, что чем большим числом равноправных способов что-то может произойти, тем более вероятно, что оно произойдёт. А если нечто может произойти огромным числом способов, вроде как для страниц приземлиться в неправильном порядке, то в огромной степени более вероятно, что именно так и произойдёт. Интуитивно мы все это знаем. Если вы покупаете один лотерейный билет, есть только один способ выиграть. Если вы купите миллион билетов, каждый со своим номером, то будет миллион способов выиграть, так что ваши шансы разбогатеть будут в миллион раз выше.

Энтропия — это понятие, которое придаёт точность этой идее путём подсчёта количества способов, согласующихся с законами физики, которыми может быть реализована данная физическая ситуация. Высокая энтропия означает, что имеется много способов; низкая энтропия означает, что имеется мало способов. Если страницы книги расположены в правильном числовом порядке — это низкоэнтропийная конфигурация, поскольку имеется одно и только одно расположение, удовлетворяющее этому критерию. Если страницы находятся не в правильном порядке — это высокоэнтропийная ситуация, поскольку небольшой расчёт показывает, что имеется

1245521984537783433660029353704988291633611012463890451368876912646868955918529845043773940692947439507941893387518765276567140592866271513670747391295713823538000161081264653018234205620571473206172029382902912502131702278211913473582655881541071360143119322157534159733855428467298691398151599251190858672609934810561430341343830563771367151105704786941333912934192440961051428879847790853609508954014012593285063290603410951314946638983905267676104278041667301549455228188610250246338662603601508886647010142970854584815141598392546876231295293347829518681237077459652243214888735167928448340300078717063668462384353624245167362286109198539391815030760468904664912978940625033265186858373227136370247390401891094064988139838026545111487686489581649140342644411087191184416428090275713773809067258708430215795015899162320458130129508343865379081918237777385214375363122531641598589268105976528144801387748697026525462643937189392730592179674716916697815519856976926924946738364227822733457767180733162404336369527711836741042844934722347792234027225630721193853912472880929072034271692377936207650190457109788774453544358680331916095924987744319498699770033324946307324375535322906744817657953956218403295168144271042227608124289048716428664872403070364864934832509996672897344642531034930062662201460431205110109328239624925119689782833061921508282708143936599873268490479941668396577478902124562796195600187060805768778947870098610692265944872693410000872699876339900302559168582063973485103562967646116002251592001137227412733180748295472481928076532664070230832754286312646671501355905966429773337131834654748547607012423301287213532123732873272187482526403991104970017214756470049929226458643522650111999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999

— приблизительно 101878 — различных неупорядоченных расстановок страниц.{71} Если вы подбросили страницы в воздух, а затем собрали их в аккуратную стопку, практически всегда они будут сложены беспорядочно, поскольку такие конфигурации имеют более высокую энтропию — имеется намного больше способов получить неупорядоченный результат, чем исключительное расположение, в котором страницы находятся в правильном числовом порядке.

В принципе, мы могли бы воспользоваться законами классической физики, чтобы точно определить, где приземлится каждая страница после того, как целая пачка была подброшена в воздух. Тогда, снова в принципе, мы могли бы точно предсказать итоговое расположение страниц{72} и поэтому (в отличие от квантовой механики, которую мы игнорируем до следующей главы) могло бы показаться, что нет необходимости полагаться на вероятностные понятия, вроде того, какой результат является более или менее вероятным по сравнению с другими. Но статистические понятия являются как мощными, так и полезными. Если бы «Война и мир» была памфлетом из пары страниц, мы могли бы успешно завершить необходимые вычисления, но это будет невозможно сделать для настоящей книги «Война и мир».{73} Отслеживание точного движения 693 гибких листов бумаги, когда они подхватываются воздушными потоками, соприкасаются, скользят и толкают друг друга, будет монументальной задачей, далеко лежащей за пределами возможностей даже самых мощных суперкомпьютеров.

Более того — и это существенно — точный ответ не так уж важен. Когда вы исследуете окончательную стопку страниц, вы гораздо меньше интересуетесь подробностями, какая страница где оказалась, чем главным вопросом, расположились ли страницы в правильном порядке. Если расположились — прекрасно. Вы сможете, как обычно, сесть и продолжить чтение про Анну Павловну и Николая Ильича Ростовых. Но если вы обнаружили, что страницы в неправильном порядке, точные детали расположения страниц, вероятно, будут заботить вас меньше всего. Если вам попалось одно неупорядоченное расположение страниц, вы в значительной степени имеете представление обо всех. За исключением случаев, когда по некоторым странным причинам вы погрязли в мелочах, выясняя, каким страницам пришлось появиться в стопке здесь или там, вы едва ли заметите, что кто-то внёс ещё дополнительную путаницу в то неправильное расположение страниц, которое вы имели в начале. Начальная стопка будет выглядеть неупорядоченной, и ещё раз перемешанная стопка тоже будет выглядеть неупорядоченной. Так что обсуждение на статистическом уровне не только значительно легче провести, но и ответ, который оно даёт, — упорядоченное против неупорядоченного, — более важен по сути, более важен по отношению к тому, на что мы обычно обращаем внимание.

Такая разновидность укрупнённого мышления является центральной для статистических оснований энтропийных рассуждений. Точно так же, как любой лотерейный билет имеет те же шансы на выигрыш, что и любой другой, после многих подбрасываний страниц книги любое частное расположение страниц столь же вероятно, что и любое другое. Что делает статистические рассуждения уместными, так это то, что имеется два представляющих интерес класса конфигураций страниц: упорядоченные и неупорядоченные. Первый класс имеет одно представление (правильное расположение страниц 1, 2; 3, 4 и т. д.), тогда как второй класс имеет гигантское число представлений (любое другое возможное расположение страниц). Эти два класса составляют разумный набор для использования, поскольку, как сказано выше, они дают адекватную макроскопическую оценку, которую можно сделать, рассматривая любое данное расположение страниц.

Вы можете предложить сделать более тонкое разграничение между этими двумя классами, рассматривая расположения с несколькими выпадающими из правильного порядка страницами, с неупорядоченными страницами только из первой главы и т. д. Фактически, иногда может оказаться полезным рассмотрение таких промежуточных классов. Однако число возможных расположений страниц в каждом из этих новых подклассов всё ещё крайне мало по сравнению с числом расположений во всём неупорядоченном классе. Например, полное число неупорядоченных расположений, включающих только страницы из первой части романа «Война и мир», составляет 10–178 от одного процента от полного числа неупорядоченных расположений, включающих все страницы. Так, хотя при начальном подбрасывании непереплетённой книги итоговое расположение страниц будет, вероятнее всего, частью одного из промежуточных, не полностью разупорядоченных классов, но если вы повторите процедуру подбрасывания много раз, почти наверняка порядок страниц в конечном счёте не будет демонстрировать каких-либо очевидных закономерностей. Порядок страниц эволюционирует в направлении к полностью неупорядоченному классу, поскольку имеется очень много расположений страниц, которые удовлетворяют данному требованию.

Пример с романом «Война и мир» выявляет две существенные особенности энтропии. Первая особенность: энтропия есть мера количества беспорядка в физической системе. Высокая энтропия означает, что имеется много перестановок составляющих частей системы, которые пройдут незамеченными. С другой стороны, это означает, что система сильно неупорядочена (когда страницы романа все перемешаны, любое дальнейшее их перепутывание будет едва ли заметно, поскольку просто оставляет страницы в перемешанном состоянии). Низкая энтропия означает, что очень немного перестановок пройдут незамеченными. С другой стороны, это означает, что система высокоупорядочена (когда страницы романа находятся в правильном порядке, вы легко обнаружите любую перестановку). Вторая особенность состоит в том, что в физических системах с большим числом составных частей (например, в книгах со многими страницами, подбрасываемых в воздух) имеется естественная эволюция по направлению к большему беспорядку, поскольку беспорядок может возникнуть гораздо большим числом способов, чем порядок. На языке энтропии это утверждение означает, что физические системы имеют тенденцию развиваться по направлению к состояниям с более высокой энтропией.

Конечно, делая понятие энтропии точным и универсальным, физическое определение энтропии не имеет дела с подсчётом числа перестановок страниц той или иной книги, которые оставляют её упорядоченной или неупорядоченной. Вместо этого подсчитывается число перестановок фундаментальных составляющих — атомов, субатомных частиц и т. д., — которое оставляет макроскопические, крупномасштабные свойства данной физической системы неизменными. Как и в примере с романом «Война и мир», низкая энтропия означает, что только незначительное число перестановок останутся незамеченными, так что система высокоупорядочена, тогда как высокая энтропия означает, что много перестановок не будут замечены, что означает, что система сильно неупорядочена.[37]

В качестве физического примера, причём такого, который можно легко проверить, подумаем об упомянутой ранее бутылке колы. Когда углекислый газ, изначально находящийся в бутылке, в конечном счёте распространяется по комнате, имеется множество перестановок отдельных молекул этого газа, которые не будут иметь заметного эффекта. Например, если вы машете руками, молекулы углекислого газа будут двигаться туда-сюда, быстро изменяя положения и скорости. Но в целом не будет никакого качественного влияния на их расположение. Молекулы были распределены однородно до того, как вы взмахнули руками, и они останутся однородно распределёнными после того, как вы это сделали. Конфигурация однородно распределённого газа нечувствительна к огромному числу перестановок молекулярных составляющих, поэтому газ находится в состоянии с высокой энтропией. Напротив, если газ распределён в меньшем пространстве, как это было в бутылке, или удерживается заслонкой в углу комнаты, он будет иметь существенно более низкую энтропию. Причина проста. Точно так же, как более тонкая книга имеет меньше способов перестановки страниц, меньшее пространство обеспечивает меньше мест, где молекулы могут размещаться, и, следовательно, допускает меньше перестановок молекул.

Но когда вы откручиваете крышку бутылки или удаляете заслонку, вы открываете целую новую Вселенную для молекул газа, и через столкновения и соударения они быстро рассеиваются, чтобы эту Вселенную «исследовать». Почему? По тем же самым статистическим причинам, как и в случае страниц романа «Война и мир». Нет сомнений, что некоторые из соударений будут толкать молекулы в сторону исходного плотного облака газа. Но, поскольку объём комнаты превышает объём исходного облака газа, имеется гораздо больше перестановок, доступных молекулам, когда они уходят из облака, чем для случая, когда они остаются в облаке. Тогда в среднем молекулы газа будут разбегаться из исходного облака и постепенно достигнут состояния однородного распределения по комнате. Так что относительно низкоэнтропийная исходная конфигурация, в которой весь газ собран в малой области, естественным образом эволюционирует в направлении относительно высокоэнтропийной конфигурации, в которой газ однородно распределён в большем пространстве. И однажды достигнув такой однородности, газ будет иметь тенденцию поддерживать это состояние высокой энтропии: столкновения и соударения всё ещё заставляют молекулы двигаться туда-сюда, вызывая замену одной перестановки на другую, но сильно превалируют такие перестановки, которые не влияют на макроскопические свойства газа. Вот что означает иметь высокую энтропию.{74}

В принципе, как и со страницами романа «Война и мир», мы можем использовать законы классической физики, чтобы точно определить, где в данный момент времени будет находиться каждая молекула углекислого газа. Но вследствие огромного числа молекул CO2 — около 1024 в бутылке колы — в действительности провести такие вычисления практически невозможно. И даже если каким-то образом мы были бы в состоянии сделать это, обладание списком из миллионов миллиардов миллиардов положений и скоростей частиц мало дало бы для понимания того, как распределены молекулы. Концентрация внимания на крупномасштабных статистических свойствах — рассеялся газ или сжался, т. е. имеет ли он высокую или низкую энтропию — намного более информативна.

Энтропия, второй закон и стрела времени

Тенденция физической системы эволюционировать в направлении состояния с более высокой энтропией известна как второй закон термодинамики. (Первый закон — это привычный закон сохранения энергии.) Как отмечалось выше, основанием для закона является простое статистическое рассуждение: для системы имеется больше способов иметь более высокую энтропию, и «больше способов» означает, что более вероятным является то, что система будет эволюционировать в одну из этих высокоэнтропийных конфигураций. Хотя отметим, что это не есть закон в обычном смысле, поскольку что-то может перейти из состояния с высокой энтропией в состояние с низкой. Однако такие случаи маловероятны и встречаются редко. Когда вы подбрасываете в воздух перепутанную пачку страниц, а затем собираете её в аккуратную стопку, может произойти возврат к правильному числовому порядку. Вы не захотите заключить пари на большую сумму, что это произойдёт, но это возможно. Также возможно, что столкновения и соударения приведут к тому, что весь рассеянный углекислый газ будет двигаться согласованно и втянется назад в вашу открытую бутылку колы. Не надо, затаив дыхание, ожидать такого исхода, но такое может произойти.{75}

Большое число страниц романа «Война и мир» и большое число молекул газа в комнате являются тем, что делает разницу энтропий между неупорядоченными и упорядоченными расположениями настолько огромной, что приводит к чрезвычайно малой вероятности низкоэнтропийных исходов того или иного процесса. Если вы неоднократно подбрасываете в воздух только два двусторонних листа, вы обнаружите, что они опустятся в правильном порядке примерно в 12,5% случаев. С тремя листами эта величина упадёт примерно до 2%, с четырьмя листами — примерно до 0,3%, с пятью листами — примерно до 0,03%, с шестью листами — примерно до 0,002%, с десятью листами — до 0,000000027%. С 693 листами процент подбрасываний, которые будут приводить к правильному порядку, настолько мал (он содержит так много нулей после запятой), что издатель убедил меня не использовать полстраницы, чтобы записать его явно. Аналогично, если вы запустили две молекулы газа бок о бок в пустую бутылку из-под колы, вы обнаружите, что при комнатной температуре хаотическое движение молекул будет сводить их вместе обратно (на расстоянии миллиметра друг от друга) в среднем примерно каждые несколько секунд. Для группы из трёх молекул вы будете ждать день, для четырёх молекул вы будете ждать год, а для исходного плотного сгустка из миллиона миллиардов миллиардов молекул потребуется время, намного превышающее текущий возраст Вселенной, чтобы их хаотическое движение свело их вместе назад в маленький упорядоченный сгусток. С большей уверенностью, чем в неизбежности смерти и налогов, мы можем считать, что системы с большим числом составляющих эволюционируют к беспорядку.

Хотя это может быть не сразу очевидно, но мы подошли к интригующему моменту. Второй закон термодинамики, кажется, дал нам стрелу времени, которая появляется, когда физические системы имеют большое число составляющих. Если вы посмотрите плёнку о двух молекулах углекислого газа, которые разместились в малом объёме (с подсветкой траекторий, показывающей движения каждой из них), вам будет трудно сказать, прокручивалась ли плёнка в прямом или в обратном направлении. Две молекулы будут летать там и сям, временами собираясь вместе, временами удаляясь, но они не будут представлять макроскопическое поведение, различающее одно направление во времени от обратного. Однако если вы увидите плёнку, на которой 1024 молекул углекислого газа собрались вместе в малом объёме (скажем, в виде маленького плотного облака молекул), вы легко определите, прокручивалась ли плёнка в прямом или обратном направлении. Наиболее вероятно, что прямое направление времени — это когда молекулы газа становятся более и более однородно распределёнными, достигая всё большей и большей энтропии. Если вместо этого плёнка показывает однородный рассеянный газ молекул, который стягивается вместе в тесную группу, вы немедленно поймёте, что смотрите плёнку в обратном направлении.

По существу, те же рассуждения годятся для всех явлений, с которыми мы сталкиваемся в повседневной жизни — для явлений, которые имеют большое число составляющих, стрела времени указывает в направлении роста энтропии. Если вы смотрите фильм о стакане воды со льдом на столе, вы можете определить, какое направление является прямым во времени, отметив, что лёд тает, — молекулы H2O льда распределяются по всему стакану, следовательно, достигают более высокой энтропии. Если вы смотрите фильм о разбивающемся яйце, вы можете определить, какое направление является прямым во времени, проверив, что составляющие яйца становятся всё более и более разупорядоченными, — что яйцо скорее разбивается, чем собирается обратно, следовательно, также стремясь к более высокой энтропии.

Как вы видите, понятие энтропии даёт точную версию заключения «простота против сложности», которую мы нашли раньше. Страницам романа «Война и мир» легко нарушить правильный порядок, так как имеется очень много неупорядоченных расположений. Для страниц трудно попасть в совершенный порядок, поскольку сотни страниц должны будут двигаться очень специальным способом, чтобы упасть в уникальной последовательности, которую задумывал Л. Н. Толстой. Яйцу легко разбиться, так как существует много способов разбиться. Яйцу трудно собраться воедино, поскольку огромное число разбрызганных составляющих должны будут двигаться в совершенной координации, чтобы воспроизвести уникальный результат в виде неповреждённого яйца, покоящегося на столе. Для тел с большим числом составляющих легко переходить от низкой энтропии к высокой — от порядка к беспорядку, — что всегда и происходит. Двигаться от высокой энтропии к низкой — от беспорядка к порядку — труднее, поэтому такое происходит в лучшем случае редко.

Отметим также, что энтропийная стрела не является совершенно жёсткой; не утверждается, что это определение направления времени надёжно на все 100%. Напротив, этот подход имеет достаточно гибкости, чтобы позволить тем или иным процессам иногда идти в обратном направлении. Поскольку второй закон декларирует, что рост энтропии является только статистически вероятным, но не непременным свойством природы, он допускает с малой вероятностью, что страницы могут выпасть в правильном числовом порядке, что молекулы газа могут влезть обратно в бутылку, а яйца могут восстанавливаться. Используя математику энтропии, второй закон в точности выражает, насколько статистически невероятны такие события (вспомните гигантское число в предыдущем разделе, показывающее, насколько более вероятно, что страницы романа «Война и мир» лягут в беспорядке), но он признаёт, что они могут происходить.

Это выглядит довольно убедительно. Статистические и вероятностные аргументы дают нам второй закон термодинамики. В свою очередь, второй закон обеспечивает нас интуитивным различием между тем, что мы называем прошлым, и тем, что мы называем будущим. Он даёт нам практическое объяснение, почему явления повседневной жизни, которые обычно состоят из огромного числа составляющих, начинаются так, а заканчиваются эдак, в то время как мы никогда не видим их начинающимися эдак, а заканчивающимися так. Но по прошествии многих лет — и благодаря огромному вкладу таких физиков, как лорд Кельвин, Джозеф Лошмидт, Анри Пуанкаре, С. X. Бербери, Эрнст Цермело и Вильярд Гиббс, — Людвиг Больцман пришёл к пониманию, что история стрелы времени ещё более удивительна. Больцман понял, что, хотя энтропия и проясняет важные аспекты головоломки, она не отвечает на вопрос, почему прошлое и будущее кажутся столь различными. Вместо этого энтропия переопределяет сам вопрос столь существенным способом, что это ведёт к неожиданным заключениям.

Энтропия: прошлое и будущее

Ранее мы ввели дилемму прошлого и будущего путём сравнения наших повседневных наблюдений со свойствами ньютоновских законов классической физики. Мы подчеркнули, что постоянно ощущаем очевидную направленность пути, по которому всё развивается во времени, но сами законы трактуют то, что мы называем прямым и обратным направлением во времени, совершенно одинаковым способом. Так как в рамках законов физики нет стрелы, которая обозначает направление во времени, нет указания, требующего: «Используйте этот закон в данной временной ориентации, но не в обратной», мы приходим к вопросу: если законы, лежащие в основе опыта, трактуют обе ориентации времени симметрично, почему сам опыт (ощущения) так односторонен во времени, всегда происходя в одном направлении, но никогда в обратном? Откуда возникает наблюдаемая и ощущаемая направленность времени?

В последнем разделе нам казалось, что мы добились определённого прогресса, используя второй закон термодинамики, который явно выделяет будущее как направление, в котором энтропия возрастает. Но после дальнейших размышлений всё оказывается не так просто. Отметим, что в нашем обсуждении энтропии и второго закона мы никаким способом не меняли законы классической физики. Всё, что мы сделали, — это использовали законы в «крупномасштабных» статистических рамках: мы проигнорировали тонкие детали (точный порядок непереплетённых страниц романа «Война и мир», точные положения и скорости составляющих яйца, точные положения и скорости молекул CO2 в бутылке колы), а, напротив, сконцентрировали наше внимание на макроскопических, обобщающих свойствах (страницы упорядочены или нет, яйцо разбито или нет, молекулы газа рассеяны или не рассеяны). Мы выяснили, что в достаточно сложных физических системах (книги с большим числом страниц, хрупкие объекты, которые могут разбиться на множество осколков, газ с большим числом молекул) имеется огромное отличие в энтропии между упорядоченными и неупорядоченными конфигурациями. А это значит, что имеется огромная вероятность того, что системы будут эволюционировать от более низкой к более высокой энтропии, что, грубо говоря, и является утверждением второго закона термодинамики. Но ключевым фактом, на который надо обратить внимание, является то, что второй закон — производный: он просто является следствием вероятностных рассуждений, применённых к ньютоновским законам движения.

Это приводит нас к простому, но поразительному выводу: поскольку ньютоновские законы физики не имеют встроенной временной ориентации, все аргументы, которые мы использовали для обоснования, что системы будут развиваться от более низкой к более высокой энтропии по направлению в будущее, работают одинаково хорошо, если их применить в направлении прошлого. Ещё раз, так как фундаментальные законы физики имеют симметрию по отношению к обращению времени, для них нет способа даже отличить то, что мы называем прошлым, от того, что мы называем будущим. Точно так же, как нет указательного столба в глубокой темноте пустого пространства, который объявляет, что это направление — вверх, а то — вниз, в законах классической физики нет ничего, что называло бы одно направление во времени будущим, а другое направление во времени прошлым. Законы не предлагают временно́й ориентации; это отличие, к которому они полностью нечувствительны. А поскольку законы движения ответственны за то, как изменяются вещи, — как в направлении, которое мы называем будущим, так и в направлении, которое мы называем прошлым, — статистические/вероятностные рассуждения, стоящие за вторым законом термодинамики, применимы в равной степени к обоим временны́м направлениям. Следовательно, имеется не только подавляющая вероятность того, что энтропия физической системы будет больше в том направлении, что мы называем будущим, но имеется такая же подавляющая вероятность, что она будет больше в направлении, которое мы называем прошлым. Мы показали это на рис. 6.2.

Рис. 6.2. (а) Как обычно пишут, второй закон термодинамики подразумевает, что энтропия возрастает по направлению в будущее от любого заданного момента. (б) Поскольку известные законы природы рассматривают направления вперёд и назад во времени как совершенно равноправные, второй закон в действительности означает, что энтропия возрастает как в направлении будущего, так и в направлении прошлого от любого заданного момента

Это ключевой момент для всего, что последует дальше, но он также обманчиво прост. Обычное неправильное понимание второго закона состоит в том, что если, в соответствии со вторым законом термодинамики, энтропия возрастает по направлению в будущее, тогда энтропия неизбежно уменьшается по направлению в прошлое. Но это не так. Второй закон в действительности говорит, что если в некоторый данный момент времени, которым мы интересуемся, физическая система ещё не достигла максимально возможной энтропии, то чрезвычайно вероятно, что физическая система будет впоследствии иметь и раньше имела больше энтропии. Это суть рис. 6.2б. С законами, которые не видят различия прошлого от будущего, такая симметрия времени неизбежна.

Это важный урок. Он говорит нам, что энтропийная стрела времени двунаправлена. От любого заданного момента стрела энтропии демонстрирует рост в направлении будущего и в направлении прошлого. В связи с этим явно затруднительно предлагать энтропию в качестве объяснения однонаправленной стрелы ощущаемого времени.

Подумаем о том, что двунаправленная энтропийная стрела времени означает в конкретных случаях. Если сегодня тёплый день и вы видите частично растаявший кубик льда в стакане воды, вы совершенно уверены, что на полчаса позже кубик будет ещё более растаявшим, поскольку чем больше он растаял, тем большей энтропией он обладает.{76} Но вы будете иметь точно такую же уверенность, что на полчаса раньше он был также более растаявший, поскольку точно такие же статистические рассуждения подразумевают, что энтропия должна возрастать по направлению в прошлое. И такое же заключение применимо к бесчисленному множеству других примеров, с которыми мы сталкиваемся каждый день. Ваше убеждение, что энтропия возрастает по направлению в будущее, — что частично рассеявшийся газ будет рассеивается и дальше, что частично перепутанный порядок страниц будет перепутываться ещё больше, — должно соответствовать точно такой же уверенности, что энтропия была также выше и в прошлом.

Неприятность состоит в том, что половина из этих заключений кажется совершенно неверной. Энтропийные рассуждения дают точные и осмысленные заключения, когда они применяются в одном направлении времени, а именно в направлении того, что мы называем будущим, но дают, очевидно, ошибочные и кажущиеся нелепыми заключения, когда они применяются в направлении того, что мы называем прошлым. Стакан воды при комнатной температуре с частично растаявшими кубиками льда обычно не начинает свою эволюцию как стакан воды без льда, так что молекулы сами по себе начинают сначала охлаждаться и собираться вместе в кубик льда, чтобы в момент наблюдения начать таять снова. Разрозненные страницы романа «Война и мир» обычно не начинают перегруппировываться от полного числового беспорядка, чтобы через последовательность подбрасываний стать менее перепутанными и лишь затем начать снова перепутываться больше. И, возвращаясь на кухню, когда разбивается яйцо, мы обычно не наблюдаем, что сначала осколки собираются в целое яйцо, чтобы оно снова разбилось чуть позже.

Или такое бывает?

Следуя за математикой

Столетия научных исследований показали, что математика даёт мощный и точный язык для анализа Вселенной. И действительно, история современной науки насыщена примерами, в которых математика делала предсказания, которые казались противоречащими как интуиции, так и ощущениям (Вселенная содержит чёрные дыры, во Вселенной есть антиматерия, удалённые частицы могут быть запутаны и т. д.), но которые, в конце концов, были подтверждены наблюдениями и экспериментами. Такие разработки сами по себе оставили глубокий след в культуре теоретической физики. Физики пришли к пониманию, что математика, использованная с должной аккуратностью, является проверенной дорогой к истине.

Поэтому, когда математический анализ законов природы показал, что энтропия должна возрастать как по направлению в будущее, так и по направлению в прошлое от любого данного момента времени, физики не выбросили это из головы. Нечто, похожее на клятву Гиппократа в физике, побуждает исследователей сохранять глубокий и здравый скептицизм относительно обманчивой истинности человеческого опыта и с тем же скептическим отношением старательно следовать за математикой и смотреть, куда она приведёт. Только тогда мы можем правильно оценить и интерпретировать любые остающиеся противоречия между физическими законами и здравым смыслом.

С этой целью представим, что сейчас 10:30 вечера и последние полчаса вы сидите, уставившись на стакан воды со льдом (в баре спокойный вечер), наблюдая, как кубики медленно тают, превращаясь в маленькие бесформенные кусочки. Вы абсолютно не сомневаетесь, что полчаса назад бармен положил в стакан совершенно правильные кубики льда; вы не сомневаетесь, потому что вы доверяете своей памяти. И если в силу каких-то обстоятельств ваше убеждение относительно того, что произошло за последние полчаса, будет поколеблено, вы можете спросить парня напротив, который также наблюдал за кубиками льда (в баре действительно спокойный вечер), или вообще исследовать запись, снятую камерой наблюдения бара. Оба источника подтвердят, что ваша память в порядке. И если вы спросите себя, что, как вы ожидаете, произойдёт с кубиками льда в течение следующей половины часа, вы, вероятно, придёте к заключению, что они будут продолжать таять. А если вы достаточно знакомы с понятием энтропии, вы объясните ваше предсказание, обратив внимание на то, что с подавляющей вероятностью энтропия будет возрастать от того значения, которое она имеет прямо сейчас, в 10:30 вечера, по направлению в будущее. Всё это вполне осмысленно и совпадает с нашей интуицией и ощущениями.

Но, как мы видели, такие энтропийные рассуждения — рассуждения, из которых попросту следует, что вещи скорее всего будут разупорядочиваться, так как для беспорядка существует больше возможностей, чем для порядка; рассуждения, которые убедительны и сильны при объяснении того, как события разворачиваются по направлению к будущему, — эти рассуждения декларируют, что энтропия так же вероятно будет больше и в прошлом. Это должно означать, что частично растаявшие кубики льда, которые вы видите в 10:30 вечера, были на самом деле ещё более растаявшими в более ранние времена; это должно означать, что в 10:00 вечера они не начали с твёрдых кубиков льда, а, напротив, медленно собрались из воды с комнатной температурой к 10:30 вечера, и так же верно они медленно растают до воды комнатной температуры к 11:00 вечера.

Нет сомнений, это звучит странно — или даже вы скажете «ненормально». По большому счёту, не только молекулы H2O в стакане воды при комнатной температуре должны спонтанно собраться в частично сформированные кубики льда, но и цифровым сигналам в камере наблюдения, а также нейронам в вашем мозге и в мозге парня напротив, всем им надо будет спонтанно выстроиться к 10:30 так, чтобы подтвердить, что имелось собрание сформированных кубиков льда, которые таяли, даже если этого никогда не было. К тому же, этот необычный вывод возник там, где добросовестное применение энтропийных рассуждений — тех же рассуждений, которые вы принимали без колебаний для объяснения, почему частично растаявший лёд, который вы видели в 10:30 вечера, продолжит таять до 11:00 вечера, — проведено симметричным во времени образом, требуемым законами физики. Эта неприятность возникает, когда мы имеем дело с фундаментальными законами движения, которые не имеют встроенного различия между прошлым и будущим, с законами, математика которых трактует будущее и прошлое от любого данного момента в точности одним и тем же способом.{77}

Остаётся надеяться, что мы скоро найдём выход из того странного положения, в которое нас поставило равноправное использование энтропийных рассуждений; я не пытаюсь убедить вас, что ваша память и записи содержат прошлое, которого никогда не было (извиняюсь перед фанатами «Матрицы»). Но такой подход будет очень полезен для точного разделения интуиции и математических законов. Итак, двигаемся дальше.

Затруднительное положение

Ваша интуиция отказывает прошлому с более высокой энтропией, поскольку при разворачивании событий в обычном направлении во времени требуется спонтанное возрастание порядка: молекулы воды спонтанно замерзают до 0°C и переходят в лёд, рассудок спонтанно обзаводится воспоминаниями о событиях, которые не происходили, видеокамеры спонтанно производят образы вещей, которых никогда не было, и т. д. — всё это кажется чрезвычайно маловероятным — предполагаемое объяснение прошлого, над которым посмеялся бы даже Оливер Стоун[38]. Здесь физические законы и математика энтропии полностью согласуются с вашей интуицией. Такая последовательность событий, которая была бы видна в прямом направлении времени с 10:00 до 10:30 вечера, шла бы против сути второго закона термодинамики — что привело бы к уменьшению энтропии, — а это, хотя и не невозможно, но очень маловероятно.

Напротив, ваша интуиция и ощущения говорят вам, что намного более вероятна такая последовательность событий, в которой кубики льда, которые были полностью сформированы в 10:00 вечера, частично растаяли до того состояния, которое вы наблюдаете в своём стакане прямо сейчас в 10:30 вечера. Но на этом этапе физические законы и математика энтропии только отчасти согласуются с вашими ожиданиями. Математика и интуиция сходятся в том, что если на самом деле в 10:00 вечера полностью сформировались кубики льда, тогда наиболее вероятная последовательность событий будет для них состоять в том, что они частично растают к 10:30 вечера: результирующий рост энтропии соответствует как второму закону термодинамики, так и ощущениям. Но в чём математика и интуиция расходятся, так это в том, что наша интуиция, в отличие от математики, не может дать или даёт неверную оценку вероятности того, что в 10:00 вечера кубики действительно были полностью сформированы, исходя из единственного наблюдения, которое мы принимаем как неоспоримое и вполне надёжное, что прямо сейчас в 10:30 вечера вы видите частично растаявшие кубики.

Это центральный момент, так что позвольте мне объяснить. Главный урок второго закона термодинамики состоит в том, что физические системы имеют подавляющую тенденцию находиться в конфигурациях с высокой энтропией, поскольку имеется много способов, которыми такие состояния могут реализоваться. И однажды попав в такие высокоэнтропийные состояния, физические системы имеют подавляющую тенденцию оставаться в них. Высокая энтропия является естественным состоянием системы. Вам никогда не придётся удивляться или чувствовать необходимость объяснения, почему некоторая физическая система находится в высокоэнтропийном состоянии. Такие состояния являются нормой. Наоборот, нужно объяснять, почему физическая система находится в состоянии порядка, в состоянии с низкой энтропией. Такие состояния ненормальны, хотя определённо они могут возникать. Но с точки зрения энтропии такие упорядоченные состояния являются редкими отклонениями, которые требуют объяснения. Так что один факт в нашем эпизоде, который мы принимаем как неоспоримо правильный, — ваше наблюдение в 10:30 вечера низкоэнтропийных частично сформированных кубиков льда, — фактически нуждается в объяснении.

С точки зрения вероятности абсурдно объяснять это низкоэнтропийное состояние, призывая ещё менее энтропийное состояние, ещё менее вероятное состояние, в котором в 10:00 вечера наблюдались ещё более упорядоченные, ещё лучше сформированные кубики льда. Вместо этого значительно более вероятно, что всё начинается с обыкновенного, вполне нормального высокоэнтропийного состояния: стакан однородной жидкой воды абсолютно без какого бы то ни было льда. Затем, через маловероятную статистическую флуктуацию, стакан воды идёт против требований второго закона термодинамики и эволюционирует в состояние с низкой энтропией, в котором появляются частично сформированные кубики льда. Эта эволюция, хотя и требует редких и необычных процессов, избегает состояний с ещё меньшей энтропией, ещё менее вероятного, ещё более редкого состояния, в котором кубики льда полностью сформированы. В любой момент между 10:00 и 10:30 вечера этой странно выглядящей эволюции соответствует более высокая энтропия, чем при нормальном сценарии таяния льда, как вы можете видеть на рис. 6.3. Так что она реализует полученное в 10:30 вечера наблюдение способом, который более вероятен (намного более вероятен), чем сценарий, в котором тают полностью сформированные кубики льда.{78} Вот в чём загадка.[39]

Рис. 6.3. Сравнение двух возможных вариантов того, как кубики льда приходят к частично растаявшему состоянию в 10:30 вечера. Вариант 1 (нижняя кривая) соответствует вашей памяти о тающем льде, но требует относительно низкой энтропии в начальной точке в 10:00 вечера. Вариант 2 (верхняя кривая) противоречит вашей памяти, описывая частично растаявший лёд, который вы видите в 10:30 вечера, как самопроизвольно собравшийся из стакана воды. Сценарий 2 стартует в 10:00 вечера из состояния с высокой энтропией, т. е. из сильно разупорядоченного состояния с высокой вероятностью реализации. Каждый этап пути по направлению к 10:30 вечера согласно варианту 2 включает состояния, которые более вероятны, чем аналогичные состояния варианта 1, — поскольку, как вы можете видеть на графике, они имеют более высокую энтропию, — так что вариант 2 статистически более предпочтителен

Больцману оставался маленький шаг, чтобы осознать, что такому же анализу может быть подвергнута Вселенная целиком. Когда вы сейчас обозреваете Вселенную, то, что вы видите, отражает великий результат биологической организации, химического структурирования и физического упорядочения. Хотя Вселенная могла бы быть совершенно беспорядочным хаосом, но это не так. Почему? Откуда происходит такой порядок? Так же, как с кубиком льда, с точки зрения вероятности, крайне маловероятно, что Вселенная, которую мы видим, эволюционирует из ещё более упорядоченного — ещё менее вероятного — состояния в далёком прошлом, которое медленно развилось до его текущей формы. Поскольку космос имеет очень много составляющих, масштабы упорядоченного по сравнению с неупорядоченным интенсивно увеличиваются. Итак, что правильно для бара, тем более должно быть правильно для всей Вселенной: намного более вероятно — настолько, что захватывает дух, — что вся Вселенная, которую мы видим, появилась как редкая статистическая флуктуация из нормальной, обыкновенной, высокоэнтропийной, совершенно неупорядоченной конфигурации.

Подумаем об этом таким образом: если вы снова и снова подбрасываете горсть монет, рано или поздно они все лягут вверх «орлом». Если вы обладаете почти бесконечным терпением, необходимым для подбрасывания снова и снова перепутанных страниц романа «Война и мир» в воздух, рано или поздно они лягут в правильном порядке номеров. Если вы подождёте с вашей открытой бутылкой колы, рано или поздно хаотические столкновения молекул углекислого газа заставят их залезть назад в бутылку. И, к удовлетворению Больцмана, если Вселенная ожидает достаточно долго — может быть, близко к бесконечности, — её обычное, высокоэнтропийное, высоковероятное, полностью разупорядоченное состояние из-за собственных столкновений, соударений и хаотических течений частиц и радиации рано или поздно просто соберётся в конфигурацию, которую мы наблюдаем сейчас. Наши тела и мозги должны были появиться полностью сформированными из хаоса — с запасом памяти, знаний и умений, — хотя прошлое, которое всё это отражает, никогда в действительности не имело место. Всё, что мы знаем, всё, что мы ценим, будет итогом ничего иного, как редкой статистической флуктуации, на мгновение возмутившей почти бесконечный беспорядок. Это схематически показано на рис. 6.4.

Рис. 6.4. Схематический график полной энтропии Вселенной по времени. График показывает Вселенную, проводящую большую часть своего времени в состоянии полного разупорядочения — состоянии высокой энтропии, — и редкие флуктуации до состояний с различной степенью порядка и более низкой энтропией. Чем больше энтропийный провал, тем менее вероятна флуктуация. Существенные провалы в энтропии, вроде той упорядоченности, которую мы видим в сегодняшней Вселенной, экстремально маловероятны и могут возникать крайне редко

Делая шаг назад

Я был несколько шокирован, когда впервые столкнулся с этой идеей много лет назад. Вплоть до того момента я думал, что довольно хорошо понимаю концепцию энтропии, но дело в том, что, следуя учебникам, которые я изучал, я всегда рассматривал приложения энтропии только для будущего. Но, как мы только что видели, в то время как рост энтропии в приложении к будущему подкрепляет нашу интуицию и ощущения, рост энтропии в приложении к прошлому совершенно противоречит им. Может быть это и не настолько плохо, как если бы вы вдруг узнали, что вас предал старый друг, но для меня это было похоже.

Тем не менее иногда хорошо проводить судебное разбирательство не слишком быстро, и очевидная неспособность энтропии соответствовать ожиданиям представляет как раз тот самый случай. Как вы, вероятно, думаете, мысль о том, что всё, с чем мы знакомы, просто вдруг появилось, настолько же привлекательна, сколь и тяжела для принятия. И это не «просто потому», что такое объяснение Вселенной оспаривает достоверность всего, что мы считаем реальным и важным. Без ответа остаются и критические вопросы. Например, чем более упорядоченной Вселенная является сегодня — чем больше провал на рис. 6.4, — тем более удивительным и невероятным является статистическое отклонение, которое требуется, чтобы привести к его возникновению. Так что если бы Вселенная могла срезать углы, делая сразу так, чтобы вещи более или менее выглядели похожими на то, что мы сейчас видим, одновременно экономя на реальном количестве порядка, то вероятностные рассуждения приводили бы нас к уверенности, что она так и делает. Но когда мы исследуем Вселенную, то кажется, что имеется большое количество потерянных возможностей, поскольку имеется много вещей, которые более упорядочены, чем должны быть. Если бы Майкл Джексон не записал песню «Триллер», и многие миллионы копий этого альбома, которые распространились по всему миру, стали частью аномальной флуктуации в направлении более низкой энтропии, то отклонение было бы намного менее экстремальным, если бы были сформированы только миллион, или полмиллиона или только несколько альбомов. Если эволюция никогда не происходила, и мы, люди, возникли здесь благодаря аномальному скачку в направлении более низкой энтропии, отклонение было бы намного менее экстремальным, если бы не существовало такой последовательной и упорядоченной записи эволюции в окаменелостях. Если Большой взрыв никогда не происходил и более чем 100 млрд галактик, которые мы видим сегодня, возникли как аномальный скачок в сторону более низкой энтропии, отклонение было бы менее экстремальным, если бы было 50 млрд, или 5000, или только несколько, или только одна галактика. Итак, если идея, что наша Вселенная является статистической флуктуацией — счастливой случайностью, — имеет хотя бы некоторые основания, необходимо обратиться к вопросу, как и почему Вселенная зашла так далеко и достигла состояния такой низкой энтропии.

Ещё более тягостно, если вы в самом деле не можете доверять памяти и записям, тогда вы также не можете доверять и законам физики. Их применимость основывается на многочисленных экспериментах, положительные результаты которых проверяются только теми же самыми памятью и записями. Так что все без исключения рассуждения, основанные на симметрии законов физики относительно обращения времени, должны быть поставлены под вопрос, подрывая при этом наше понимание энтропии и все основы настоящего обсуждения. Принимая вывод, что Вселенная — это редкая статистическая флуктуация из конфигурации полного беспорядка, мы быстро попадём в затруднительное положение, в котором теряется всякое понимание, включая ту самую цепочку рассуждений, которая и привела нас к рассмотрению такого эксцентричного объяснения.[40]

Итак, отбросив сомнения и усердно следуя математике энтропии и законам физики — концепциям, которые вместе говорят нам, что с подавляющей вероятностью беспорядок будет возрастать как в будущее, так и в прошлое от любого заданного момента времени, — мы по шею погружаемся в зыбучий песок. И хотя это может звучать не слишком приятно, но это очень хорошая вещь по двум причинам. Во-первых, это с определённостью показывает, что недоверие к памяти и записям — нечто, над чем мы интуитивно насмехаемся, — не имеет оснований. Во-вторых, достигнув точки, где все наши аналитические построения оказались на грани обвала, мы понимаем, что должно быть что-то критически важное, что осталось за пределами наших рассуждений.

Следовательно, чтобы избежать пучины объяснений, мы спросим себя: какие новые идеи или концепции помимо энтропии и помимо симметрии законов природы относительно обращения времени нам нужны, чтобы вернуть доверие к нашей памяти и нашим записям — нашим ощущениям, что кубик льда при комнатной температуре тает, но не кристаллизуется, что сливки и кофе смешиваются, но не разделяются, что яйца разбиваются, но не восстанавливаются? Короче говоря, куда нас приведёт попытка объяснить асимметричное разворачивание событий в пространстве-времени с энтропией, которая растёт по направлению в будущее, но уменьшается по направлению в прошлое? Возможно ли это?

Да, возможно. Но только если имелось весьма специфическое прошлое.{79}

Яйцо, курица и Большой взрыв

Чтобы увидеть, что это означает, выберем в качестве примера изначально низкоэнтропийное, полностью сформированное яйцо. Как возникла такая низкоэнтропийная физическая система? Понятно, что, вернув доверие к нашей памяти и записям, мы все знаем ответ: яйцо появилось из курицы. Также знаем, что курица появляется из яйца, которое появляется из курицы, которая появляется из яйца, и т. д. Но, как настойчиво подчёркивал английский математик Роджер Пенроуз,{80} история куриц и яиц на самом деле учит нас кое-чему глубокому и приводит к некоторой определённости.

Курица или любой живой организм есть физическая система с поразительно высокой упорядоченностью. Откуда возникла такая организация и как она поддерживается? Курица остаётся живой, причём достаточно долго, чтобы произвести яйца, питаясь и дыша. Пища и кислород обеспечивают материалы, из которых живой организм извлекает необходимую энергию. Но имеется критически важное свойство этой энергии, которое необходимо подчеркнуть, если вы действительно хотите понять, что происходит. По ходу своей жизни курица, которая остаётся здоровой, принимает как раз примерно столько энергии в виде пищи, сколько она возвращает в окружающую среду, главным образом в форме тепла и других отходов, генерируемых её метаболическими процессами и ежедневной деятельностью. Если бы не было такого баланса между приходящей и уходящей энергией, курица становилась бы всё больше и больше.

Важный момент состоит в том, что не все формы энергии эквивалентны. Энергия, которую курица отдаёт окружающей среде в форме тепла, в высшей степени неупорядочена — она часто приводит к тому, что некоторые молекулы воздуха, теснящиеся тут и там, сталкиваются более интенсивно, чем если бы этой энергии не было. Такая энергия имеет высокую энтропию — она распылена и перемешана с окружающей средой — и поэтому не может быть легко приспособлена для каких-либо полезных целей. Напротив, энергия, которую курица получает из пищи, имеет низкую энтропию и готова к использованию для поддержания жизни. Так курица и, фактически, любая форма жизни является каналом, собирающим низкоэнтропийную энергию, и выдающим наружу высокоэнтропийную энергию.

Это понимание сдвигает вопрос о том, откуда возникла низкая энтропия яйца, на один шаг назад. Как получается, что источник энергии для курицы, пища, имеет столь низкую энтропию?

Как мы объясним этот аномальный источник порядка? Если пища имеет животное происхождение, мы снова приходим к исходному вопросу: почему животные имеют такую низкую энтропию? Но если мы проследуем по пищевой цепочке, мы в конечном счёте придём к животным (вроде меня), которые едят только растения. Как растения и производимые ими продукты в виде фруктов, овощей и зелени поддерживают низкую энтропию? С помощью фотосинтеза растения используют солнечный свет, чтобы разделить углекислый газ на кислород, который возвращается назад в окружающую среду, и углерод, который растения используют, чтобы расти и цвести. Так мы можем проследить за низкоэнтропийными источниками энергии неживотного происхождения вплоть до Солнца.

Это отодвигает вопрос объяснения низкой энтропии ещё на шаг назад: откуда взялось наше высокоупорядоченное Солнце? Солнце сформировалось около 5 млрд лет назад из первичного рассеянного облака газа, которое начало вращаться и сгущаться под воздействием взаимного гравитационного притяжения всех его составляющих частей. По мере того как газовое облако становилось плотнее, гравитационное притяжение между частями становилось сильнее, заставляя облако всё больше коллапсировать в себя. И по мере того как гравитация сжимала облако всё сильнее, оно разогревалось. В конечном счёте оно разогрелось достаточно, чтобы начались ядерные процессы, которые сгенерировали выходящее наружу излучение, достаточное для того, чтобы помешать дальнейшему гравитационному сжатию газа. Родилась горячая, стабильная, ярко сияющая звезда.

Тогда откуда возникло рассеянное облако газа? Вероятно, оно сформировалось из остатков старых звёзд, которые достигли конца своей жизни, став сверхновыми, и исторгли своё содержимое в пространство. Откуда взялся рассеянный газ, отвечающий за появление этих ранних звёзд? Мы думаем, что газ сформировался как последствие Большого взрыва. Наши наиболее разработанные теории возникновения Вселенной — наши самые разработанные космологические теории — говорят, что в момент, когда Вселенная была пару минут отроду, она была заполнена почти однородным горячим газом, состоящим примерно на 75% из водорода, на 23% из гелия и из небольшого количества дейтерия и лития. Существенным моментом является то, что этот газ, заполняя Вселенную, имел крайне низкую энтропию. Большой взрыв дал старт Вселенной в состоянии низкой энтропии, и это состояние явилось источником упорядоченности, которую мы видим в настоящее время. Иными словами, текущий порядок является космологическим реликтом. Теперь рассмотрим это важное объяснение немного более детально.

Энтропия и гравитация

Поскольку теория и наблюдения показывают, что в течение нескольких минут после Большого взрыва изначальный газ был однородно распределён по юной Вселенной, вы можете подумать, обратившись к нашей ранней дискуссии о бутылке колы и её молекулах углекислого газа, что изначальный газ был в высокоэнтропийном, неупорядоченном состоянии. Но, оказывается, это неверно. Наша прежнее обсуждение энтропии, полностью игнорирующее гравитацию, имело смысл, поскольку гравитация почти не играет роли в поведении минимального количества газа, выходящего из бутылки колы. И в этом предположении мы выяснили, что однородно распределённый газ имеет высокую энтропию. Но когда гравитация имеет значение, всё становится по-другому. Гравитация есть универсальная сила притяжения; поэтому, если вы имеете достаточно большую массу газа, каждая область газа будет притягиваться к каждой другой, и это заставит газ распасться на сгустки, что напоминает фрагментацию воды на капли на листе вощёной бумаги, вызываемую поверхностным натяжением. Когда гравитация имеет значение, как это было в высокоплотной ранней Вселенной, нормой является скопление в кучу, а не однородность; это и есть состояние, в направлении которого газ будет стремиться эволюционировать, как показано на рис. 6.5.

Рис. 6.5. Для гигантских объёмов газа, когда гравитация имеет существенное значение, атомы и молекулы эволюционируют из однородной равномерно распределённой конфигурации в конфигурацию, включающую всё бо́льшие и более плотные сгущения

Хотя сгущения являются более упорядоченными, чем исходный рассеянный газ, — примерно как игровая комната с игрушками, которые аккуратно разложены по шкафам и ящикам, более упорядочена, чем комната, в которой игрушки разбросаны по полу, — в расчёте энтропии надо рассчитывать вклад от всех источников. Для игровой комнаты уменьшение энтропии в процессе перехода от беспорядочно разбросанных игрушек к игрушкам, разложенным по шкафам и ящикам, более чем компенсируется ростом энтропии от сгорающих жиров и выделяемого тепла телами родителей, которые потратили часы, чтобы всё вычистить и привести в порядок. Аналогично, в первичном рассеянном газовом облаке вы обнаружите, что уменьшение энтропии при формировании упорядоченных сгустков более чем компенсируется за счёт выделения тепла при сжатии газа и, в конце концов, за счёт огромного количества тепла и света, высвобождающегося при возникновении ядерных процессов.

Это важный момент, который временами упускается из вида. Подавляющее стремление в направлении беспорядка не означает, что не могут формироваться организованные структуры, вроде звёзд и планет, или организованные формы жизни, вроде растений и животных. Конечно, могут. И, очевидно, формируются. Что определяет второй закон термодинамики, так это то, что при формировании порядка всегда имеется более чем компенсирующий генератор беспорядка. Итог энтропийного баланса всё равно находится в плюсе, энтропия растёт, хотя определённые составляющие системы становятся более упорядоченными. И из фундаментальных сил природы гравитация — единственная, которая использует это свойство энтропии во всей полноте. Поскольку гравитация действует через громадные расстояния и является универсально притягивающей силой, она подстёгивает формирование упорядоченных сгустков газа — звёзд, испускающих свет, который мы видим на чистом ночном небе, в полном соответствии с итоговым балансом в пользу роста энтропии.

Чем более сжаты, плотны и массивны сгущения газа, тем больше общая энтропия. Чёрные дыры — наиболее экстремальная форма гравитационного сгущения и сжатия во Вселенной, дошедшая до предела. Гравитационное притяжение чёрной дыры настолько сильно, что ничто, даже свет, не может вырваться, что объясняет, почему чёрные дыры являются чёрными. Поэтому, в отличие от обычных звёзд, чёрные дыры упрямо удерживают всю энтропию, которую они произвели: ничто не может вырваться из мощнейшей гравитационной хватки чёрной дыры.{81} Фактически, как мы будем обсуждать в главе 16, ничто во Вселенной не содержит больше беспорядка (больше энтропии), чем чёрная дыра.[41] Это имеет простое интуитивное объяснение: высокая энтропия означает, что огромное количество перестановок составляющих частей объекта останутся незамеченными. Поскольку мы не можем видеть внутренность чёрной дыры, невозможно отследить любую перегруппировку её составляющих, какими бы ни были эти составляющие, и поэтому чёрная дыра имеет максимальную энтропию. Когда гравитация напрягает свои мускулы до предела, она становится самым эффективным генератором энтропии в известной Вселенной.

Теперь добрались до последней инстанции. Исходным источником порядка, низкой энтропии, должен быть сам Большой взрыв. На своей самой ранней стадии, вместо того чтобы быть заполненной чудовищными контейнерами энтропии, вроде чёрных дыр, как мы могли бы ожидать на основе вероятностного рассмотрения, по некоторым причинам рождающаяся Вселенная была заполнена горячей и однородной газовой смесью водорода и гелия. Хотя при плотностях настолько низких, что можно игнорировать гравитацию, такая конфигурация имела бы высокую энтропию, ситуация становится совершенно иной, когда гравитацией нельзя пренебречь; тогда однородный газ имеет крайне низкую энтропию. По сравнению с чёрными дырами, рассеянный, почти однородный газ пребывал в состоянии с крайне низкой энтропией. С тех пор, в соответствии со вторым законом термодинамики, общая энтропия Вселенной постоянно растёт; постепенно возрастает общее итоговое количество беспорядка. Спустя примерно миллиард лет или около того после Большого взрыва гравитация заставила изначальный газ собраться в сгущения, и эти сгустки, в конце концов, сформировали звёзды, галактики и некоторые более мелкие сгущения, которые стали планетами. По меньшей мере у одной такой планеты была рядом звезда, обеспечивающая относительно низкоэнтропийный источник энергии, который позволил развиться низкоэнтропийным формам жизни. Среди таких форм жизни со временем возникла курица, которая отложила яйцо, которое нашло свой путь к вашему кухонному столу и, к вашему огорчению, это яйцо продолжило неотвратимую траекторию к состоянию с более высокой энтропией, скатившись со стола и разбившись об пол. Яйцо разбивается скорее, чем восстанавливается, поскольку это отражает стремление вперёд к более высокой энтропии, которое было инициировано состоянием с необычайно низкой энтропией, с которого началась Вселенная. Невероятный порядок в начале — это то, с чего всё началось, и мы живём в процессе последовательного перехода ко всё большему беспорядку.

В этом состоит та самая ошеломляющая связь, которую мы пытались найти на протяжении всей этой главы. Разбивающееся яйцо говорит нам нечто глубокое о Большом взрыве. Оно говорит нам, что Большой взрыв дал начало необычайно упорядоченному рождающемуся космосу.

Та же идея применима ко всем другим примерам. Причина, по которой вновь подбрасываемые в воздух нескреплённые страницы романа «Война и мир» приходят в состояние с более высокой энтропией, в том, что они начинали с высокоупорядоченной низкоэнтропийной формы. Начальная упорядоченная форма пачки страниц подготовила их к росту энтропии. Наоборот, если страницы изначально были совершенно вне числового порядка, подбрасывание их в воздух вряд ли изменит энтропию. Так что вопрос снова состоит в том, как они стали с самого начала такими упорядоченными? Ясно, что Толстой написал и представил их в таком порядке, а наборщик текста и переплётчик следовали его инструкциям. А высокоупорядоченные тело и ум Толстого, а также и издателей книги, которые позволили им, каждому в свою очередь, создать том такого высокого порядка, могут быть объяснены, следуя той же цепочке рассуждений, которую мы уже прошли для яйца, которая снова приведёт нас назад к Большому взрыву. А как насчёт наполовину растаявших кубиков льда, которые вы видели в 10:30 вечера? Теперь, раз уж мы доверяем памяти и записям, вы вспомните, что ещё до 10:00 вечера бармен кинул сформированные кубики льда в ваш стакан. Он взял кубики льда из морозильника, который был разработан умелым инженером и изготовлен талантливым механиком, которые способны создавать нечто такого высокого порядка потому, что они сами являются высоко организованными формами жизни. И снова мы последовательно сводим их высокую организацию к высокоупорядоченному началу Вселенной.

Важное утверждение

Откровение, к которому мы пришли, заключается в том, что мы можем доверять нашей памяти о прошлом с более низкой, а не более высокой энтропией, только если Большой взрыв — процесс, событие или явление, которое привело Вселенную к существованию, — дал старт Вселенной в очень специфическом, высокоупорядоченном состоянии с низкой энтропией. Без этого важного добавления наши ранние рассуждения, что энтропия должна расти как в будущее, так и в прошлое от любого заданного момента, приводят к заключению, что весь порядок, который мы видим, возник из случайной флуктуации обыкновенного неупорядоченного состояния высокой энтропии, а это заключение, как мы уже видели, подрывает сами рассуждения, на которых оно основано. Но, включая в наш анализ маловероятную низкоэнтропийную начальную точку Вселенной, мы теперь видим, что правильное заключение состоит в том, что энтропия растёт по направлению в будущее, поскольку вероятностные рассуждения полностью и без ограничений работают в этом направлении; но энтропия не растёт в прошлое, поскольку такое использование вероятностного обоснования находится в противоречии с нашим новым пониманием, что Вселенная начиналась с состояния с очень низкой, а не высокой, энтропией.{82} Так что условия рождения Вселенной оказываются решающими для направления стрелы времени. Направление в будущее есть в действительности направление возрастания энтропии. Стрела времени — факт, что события начинаются так и заканчиваются эдак, но никогда не начинаются эдак и заканчиваются так, — начинает свой полёт из высокоупорядоченного, низкоэнтропийного состояния Вселенной в её начале.{83}

Последняя загадка

То, что ранняя Вселенная задаёт направление стреле времени, является чудесным заключением, вызывающим глубокое удовлетворение, но мы ещё не закончили. Одна огромная загадка осталась. Как получилось, что Вселенная началась с такой высокоупорядоченной конфигурации, что она организовала вещи так, что на протяжении миллиардов лет, через конфигурации с постоянно уменьшающимся порядком, всё эволюционировало в направлении к более и более высокой энтропии? Заметьте, насколько это поразительно. Как мы отмечали, с точки зрения вероятности намного более естественным было бы, что частично растаявшие кубики льда, которые вы видели в 10:30 вечера, стали такими в результате статистической флуктуации, возникшей в стакане жидкой воды, а не начались с ещё менее вероятного состояния полностью сформированных кубиков льда. А что верно для кубиков льда, то в несметное количество раз ещё более верно для целой Вселенной. Говоря на языке вероятности, в захватывающей дух степени более вероятно, что всё, что мы сейчас видим во Вселенной, возникло из редкого статистического отклонения от полного беспорядка, а не медленно эволюционировало из ещё более маловероятной, неправдоподобно более упорядоченной, поразительно низкоэнтропийной стартовой точки, которую требует Большой взрыв.{84}

И ещё, когда мы разбирались со случайностями и представляли, что всё скачком возникло за счёт статистической флуктуации, мы оказались в затруднительном положении: такой подход ставит под сомнение сами законы физики. Так мы решили не полагаться на случайность и пришли к низкоэнтропийному Большому взрыву как к объяснению стрелы времени. Теперь загадка состоит в том, как объяснить, почему Вселенная началась с такой маловероятной, высокоупорядоченной конфигурации. Это и есть тот вопрос, на который указывает стрела времени. Всё это приводит к космологии.{85}

Мы будем заниматься детальным обсуждением космологии в главах с 8 по 11, но сначала отметим, что в нашем обсуждении времени имеется серьёзный недостаток: всё, что мы говорили, основывалось исключительно на классической физике. Теперь рассмотрим, как квантовая механика влияет на понимание времени и на наши поиски его стрелы.

Глава 7. Время и кванты