Как царство квантов помогает понять суть времени
Когда мы думаем о чём-то, подобном времени, о чём-то, внутри чего мы находимся, о чём-то, что полностью входит в наше повседневное существование, о чём-то настолько всепроникающем, что невозможно изъять — даже на мгновение — из общепринятого языка, то наши рассуждения формируются под определяющим влиянием наших ощущений. Эти повседневные ощущения являются классическими; с высокой степенью точности они соответствуют законам физики, установленным Ньютоном более чем три столетия назад. Но из всех открытий в физике за последнюю сотню лет квантовая механика является самым поразительным, поскольку она подрывает всю концептуальную схему классической физики.
Так что стоит расширить наши классические представления и рассмотреть некоторые эксперименты, которые обнаруживают удивительные особенности того, как разворачиваются во времени квантовые процессы. Мы продолжим обсуждать темы предыдущей главы в этом более широком контексте и зададимся вопросом, имеется ли стрела времени в квантово-механическом описании природы. Мы получим ответ, который вызывает споры даже среди физиков. И он снова вернёт нас к вопросу о происхождении Вселенной.
Прошлое согласно квантовой теории
В предыдущей главе вероятность играла центральную роль, однако я несколько раз акцентировал внимание на том, что она возникает только вследствие практического удобства и полезности предоставляемой ею информации. Отслеживание точного движения 1024 молекул H2O в стакане воды выходит далеко за рамки наших вычислительных возможностей, и, даже если бы это было возможно, что мы стали бы делать с итоговой горой данных? Определить по списку, содержащему 1024 положений и скоростей, присутствовали ли кубики льда в стакане, — это непомерно сложная задача. Так что вместо этого мы обращаемся к вероятностным рассуждениям, доступным для вычислений и, более того, имеющим дело с макроскопическими свойствами (порядок против беспорядка; например, лёд против воды), которыми мы обычно и интересуемся. Но имейте в виду, при этом не подразумевается, что вероятность фундаментально вшита в ткань классической физики. В принципе, если бы мы точно знали, как вещи ведут себя в настоящий момент, — знали бы положения и скорости каждой отдельной частицы, составляющей Вселенную, — то классическая физика говорит, что мы могли бы использовать эту информацию для предсказания, как вещи будут себя вести в любой заданный момент в будущем или как они себя вели в любой заданный момент в прошлом. Будете вы на самом деле следить за их развитием момент за моментом или нет, но в соответствии с классической физикой вы можете говорить о прошлом и будущем, в принципе, с уверенностью, которая определяется скрупулёзностью и точностью ваших наблюдений настоящего момента.{86}
В этой главе вероятность также будет играть центральную роль. Но, поскольку вероятность является неизбежным элементом квантовой механики, это фундаментально меняет наше представление о прошлом и будущем. Мы уже видели, что квантовая неопределённость не допускает одновременного знания точных положений и точных скоростей. Мы также видели, что квантовая физика предсказывает только вероятность реализации того или иного будущего. Мы уверены в этих вероятностях, но, поскольку это всё же вероятности, ясно, что имеется неизбежный элемент случайности при попытке предсказать будущее.
Когда приходится описывать прошлое, между классической и квантовой физикой также имеется важное отличие. В классической физике, в связи с её равноправным рассмотрением всех моментов времени, события, приводящие к чему-нибудь, что мы наблюдаем, описываются с использованием в точности того же языка, с применением в точности тех же характерных свойств, которые мы используем для описания самого наблюдения. Если мы видим огненный метеор в ночном небе, мы говорим о его положении и скорости; если мы воссоздаём картину его появления там, мы также говорим об однозначной последовательности положений и скоростей, когда метеор нёсся через пространство к Земле. В квантовой физике, когда мы что-то наблюдаем, мы входим в особое царство, где что-то может быть известно со 100%-й определённостью (игнорируя проблемы, связанные с точностью приборов, и подобные им). Но прошлое — под которым мы конкретно понимаем «ненаблюдаемое» прошлое, т. е. время перед тем, как мы, или кто-нибудь, или что-нибудь проводит данное наблюдение, — остаётся в обычном царстве квантовой неопределённости, в царстве вероятностей. Даже если мы прямо здесь и прямо сейчас зафиксировали положение электрона, то моментом раньше всё, что он имел, — это вероятность быть здесь, или там, или вообще где-то далеко.
Как мы видели, это не значит, что электрон (или любая частица) на самом деле находился только в одном из этих возможных положений, но мы просто не знаем, в каком.{87} Скорее, есть основания полагать, что электрон был во всех положениях, поскольку каждая из вероятностей — каждая из возможных историй — вносит вклад в то, что мы наблюдаем в настоящий момент. Вспомним, это доказывалось экспериментом, описанном в главе 4, в котором электроны пролетали через две щели. Классическая физика, которая опирается на широко разделяемое убеждение, что события имеют однозначные истории, говорит, что каждый электрон, попавший на экран детектора, прошёл либо через левую щель, либо через правую щель. Но такое представление о прошлом вводит в заблуждение: оно предсказывает результаты, показанные на рис. 4.3а, которые не согласуются с тем, что происходит на самом деле (что показано на рис. 4.3б). Наблюдаемая интерференционная картина может быть объяснена только чем-то, проходящим через обе щели.
Квантовая физика обеспечивает именно такое объяснение, но при этом радикально меняет наши взгляды на прошлое — наше описание того, как отдельные события, которые мы наблюдаем, стали такими, какие есть. В соответствии с квантовой механикой вероятностная волна каждого электрона проходит через обе щели, и, поскольку части волны, выходящие из каждой щели, смешиваются, итоговое распределение вероятности и, следовательно, места попадания электронов на экран демонстрируют интерференционную картину.
По сравнению с повседневным опытом, описание прошлого электрона в терминах накладывающихся волн вероятности совершенно необычно. Но, отбросив осторожность, вы можете предложить продвинуть это квантово-механическое описание ещё на один шаг дальше, что приведёт к ещё более причудливой возможности. Может быть, каждый отдельный электрон сам по себе на пути к экрану действительно проходит через обе щели, и итоговая картина является результатом интерференции этих двух классов историй. То есть имеется соблазн думать о волнах, выходящих из двух щелей, как о представляющих две возможные истории для индивидуального электрона — проходящего через левую щель или проходящего через правую щель, — и поскольку обе волны вносят вклад в то, что мы наблюдаем на экране, возможно, квантовая механика говорит нам, что обе потенциальные истории электрона вносят вклад в результат.
Удивительно, эта странная и чудесная идея — дитя разума нобелевского лауреата Ричарда Фейнмана, одного из самых оригинальных физиков XX в., — открывает весьма жизнеспособный путь размышлений о квантовой механике. Согласно Фейнману, если имеются альтернативные пути, по которым может быть достигнут заданный результат, — например, электрон попадает в некоторую точку на экране детектора, пролетев через левую щель, или попадает в ту же точку, но пролетев через правую щель, — тогда, в некотором смысле, все альтернативные варианты событий имеют место и происходят одновременно. Фейнман показал, что каждая такая история будет вносить вклад в вероятность того, что будет реализован их общий результат, и если эти вклады аккуратно сложить друг с другом, результат будет совпадать с полной вероятностью, которую предсказывает квантовая механика.
Фейнман назвал этот подход к квантовой механике суммированием по историям[42]; этот подход показывает, что вероятностная волна объединяет все возможные варианты прошлого, которые могли предшествовать данному наблюдению, и хорошо иллюстрирует, что, для того чтобы достичь успеха там, где классическая физика терпит неудачу, квантовой механике приходится существенно расширять горизонты истории.{88}
В страну Оз
Существует другой вариант эксперимента с двойной щелью, в котором интерференция между альтернативными историями становится ещё более явной, поскольку два пути к экрану детектора разделены сильнее. Немного проще описывать эксперимент, используя фотоны вместо электронов, так что мы начинаем с источника фотонов — лазера — и выпускаем из него луч в направлении так называемого светоделителя. Этот прибор выполнен из полупрозрачного зеркала, типа такого, какие используются для скрытого наблюдения. Такое зеркало отражает половину падающего на него света, а другая половина проходит насквозь. Таким образом, исходный одиночный луч света расщепляется на два, левый и правый лучи, аналогично тому, что происходит с лучом света, который сталкивается с двумя щелями в двухщелевом опыте. Используя полностью отражающие зеркала, расположенные как показано на рис. 7.1, два луча снова собираются вместе и далее направляются к детектору. Рассматривая свет в виде волны, как в описании Максвелла, мы ожидаем увидеть — и, несомненно, видим — на экране интерференционную картину. Длина пути немного отличается для левого и правого маршрута, так что в то время как левый луч может достичь пика в заданной точке экрана детектора, правый луч может достичь пика, впадины или некоторого промежуточного состояния. Детектор записывает сумму интенсивностей двух волн, и поэтому мы получаем характерную интерференционную картину.
Рис. 7.1. (а) В эксперименте со светоделителем лазерный свет разделяется на два луча, которые идут двумя раздельными путями к экрану детектора. (б) Интенсивность излучения лазера может быть снижена настолько, что он будет испускать отдельные фотоны; фотоны попадают на экран, со временем выстраивая интерференционную картину
Различие между классическим и квантовым станет очевидным, если мы значительно понизим интенсивность пучка лазера, так что он станет испускать одиночные фотоны, скажем, один в несколько секунд. Когда отдельный фотон попадает в светоделитель, классическая интуиция говорит, что он либо пройдёт насквозь, либо будет отражён. Классические рассуждения не допускают даже намёка на интерференцию, поскольку тут нечему интерферировать: всё, что мы имеем, это отдельные фотоны, проходящие от источника к детектору, один за другим, некоторые по левому пути, некоторые по правому. Но когда эксперимент завершён, то отдельные фотоны, регистрируемые всё это время (примерно как на рис. 4.4), дают интерференционную картину, как на рис. 7.1б. В соответствии с квантовой физикой причина этого состоит в том, что каждый зарегистрированный детектором фотон может дойти до детектора, двигаясь либо по левому пути, либо по правому. Так что мы обязаны объединить эти две возможные истории при определении вероятности того, что фотон попадёт на экран в ту или иную точку. Когда левая и правая вероятностные волны для каждого индивидуального фотона объединяются, они дают волнообразную вероятностную картину интерференции волн. Так что в отличие от Дороти, которая была сбита с толку, когда Страшила указал сразу налево и направо, показывая ей направление в страну Оз, результаты эксперимента с расщеплением пучка фотонов можно объяснить тем, что каждый фотон, направляясь к детектору, идёт сразу и левым, и правым путём.
Свобода выбора
Хотя мы описали объединение возможных историй только на двух специальных примерах, такой ход размышлений о квантовой механике является общим. В то время как классическая физика описывает настоящее как имеющее единственное прошлое, вероятностные волны квантовой механики расширяют арену истории: в формулировке Фейнмана наблюдаемое настоящее представляет смесь — особый вид усреднения — всех возможных прошлых, совместимых с тем, что мы сейчас наблюдаем.
В случае экспериментов с двумя щелями и светоделителем электрон или фотон имеют два пути от источника до экрана детектора — налево или направо — и только при комбинировании возможных историй мы приходим к объяснению того, что наблюдаем. Если барьер имеет три щели, мы должны принять во внимание три вида событий; с 300 щелями нам необходимо учитывать всё множество возможных результирующих событий. В крайнем случае, если мы представим, что прорезано гигантское количество щелей, — фактически так много, что барьер исчезает, — квантовая физика говорит, что каждый электрон будет двигаться по любой возможной траектории к выделенной точке на экране, и только объединяя вероятности, связанные с каждой такой историей, мы можем объяснить итоговые данные. Это может звучать странно. (Это и есть странно.) Но такое причудливое рассмотрение прошедшего времени объясняет данные на рис. 4.4, 7.1б и любой другой эксперимент, проводимый с микромиром.
Насколько буквально нужно принимать описание через сумму по историям? Электрон, который попадает на экран детектора, действительно проходит вдоль всех возможных путей, или рецепт Фейнмана есть просто хитрая математическая выдумка, дающая правильный ответ? Этот вопрос находится среди ключевых для оценки истинной природы квантовой реальности, так что я хотел бы дать вам определённый ответ. Но не могу. Физики считают такой подход очень удобным для представления огромного числа объединяемых историй; я использую его в собственных исследованиях настолько часто, что он ощущается реальным. Но мы не говорим, что это действительно реально. Суть в том, что квантовые вычисления дают нам вероятность попадания электрона в ту или иную точку экрана, и эти предсказания согласуются с данными опыта, с пятнами на экране. Поскольку речь идёт о проверке теории и её предсказательной силы, не так уж существенно, как именно электрон достигает данной точки на экране.
Но, продолжаете настаивать вы, мы можем выяснить, что же происходит на самом деле, изменив экспериментальные условия так, чтобы мы смогли теперь наблюдать и предполагаемую размытую смесь возможных прошлых, вливающихся в наблюдаемое настоящее. Это хорошее предложение, но нам уже известно, что имеется препятствие. В главе 4 мы узнали, что волны вероятности непосредственно ненаблюдаемы; а поскольку объединяющиеся истории Фейнмана есть ничто иное, как особый способ размышлений о вероятностных волнах, они тоже должны ускользать от прямых наблюдений. И они ускользают. Наблюдения не могут выхватить отдельные индивидуальные истории; скорее наблюдения отражают среднее по всем возможным историям. Поэтому если вы измените условия опыта так, чтобы наблюдать электроны в полёте, то обнаружите, что каждый электрон проходит через ваш дополнительный детектор в том или ином месте; но вы никогда не увидите какую-то размытую множественную историю. Когда вы используете квантовую механику для объяснения, почему вы видели электрон в том или ином месте, ответ будет включать усреднение по всем возможным историям, которые могут привести к этому промежуточному наблюдению. Но само наблюдение имеет доступ только к историям, которые уже соединены. Наблюдая за электроном в полёте, вы просто сдвигаете назад обозначение того, что вы считаете историей. Квантовая механика жёстко операциональна: она объясняет, что вы видите, но не позволяет вам видеть объяснение.
Вы можете спросить далее: почему тогда классическая физика — физика здравого смысла, — которая описывает движение в терминах единственной истории и траектории, вообще имеет отношение к Вселенной? Почему она так хорошо работает в объяснениях и предсказаниях движения чего угодно, от бейсбольного мяча до планет и комет? Почему в каждодневной жизни нет подтверждений того странного пути, по которому прошлое, по-видимому, разворачивается в настоящее? Причина, уже коротко обсуждавшаяся в главе 4, и которую мы вскоре изучим более подробно, состоит в том, что бейсбольные мячи, планеты и кометы относительно велики, как минимум по сравнению с частицами вроде электрона. А в квантовой механике чем больше что-то, тем более неравноправным становится усреднение: все возможные траектории дают вклад в движение бейсбольного мяча в полёте, но обычный путь — один единственный путь, предсказываемый законами Ньютона, — даёт намного больший вклад, чем все остальные пути. Для больших объектов классические пути дают в огромной степени больший вклад в процесс усреднения, так что они и являются единственными, к которым мы привыкли. Но когда объекты малы, подобно электронам, кваркам и фотонам, многие различные истории вносят вклад ориентировочно одного порядка, следовательно, все они играют важную роль в процессе усреднения.
Наконец, вы можете спросить: что такого особенного в акте наблюдения или измерения, что он может вынудить все возможные истории соединиться вместе и дать единственный результат? Как акт наблюдения говорит частице, что пора подвести итог историям, усреднить их и зафиксировать определённый итог? Почему люди и сделанное ими оборудование имеют такую особую силу? Особая ли она? Или, может быть, акт наблюдения является специальным случаем некоторого более общего влияния внешней среды, и мы, квантово-механически говоря, не такие уж особые, в конце концов? Мы будем обсуждать эти трудные и спорные вопросы во второй половине этой главы, поскольку они не только являются центральными для понимания природы квантовой реальности, но они дают хорошую основу для размышлений о квантовой механике и стреле времени.
Вычисление квантово-механических средних требует хорошей технической подготовки. Полное понимание того, как, когда и где подсчитываются средние, требует концепций, над формулировками которых физики интенсивно работают до сих пор. Но один ключевой урок может быть извлечён легко: квантовая механика представляет собой арену предельно свободного выбора: каждый возможный «выбор», который может быть сделан при переходе объекта отсюда туда, включён в квантово-механическую вероятность, связанную с соответствующим переходом.
Классическая и квантовая физика трактуют прошлое очень по-разному.
Усечение истории
С нашим классическим восприятием чрезвычайно трудно представить один неделимый объект — электрон или фотон — одновременно двигающимся вдоль более чем одного пути. Даже те из нас, кто имеет высочайший самоконтроль, с трудом бы справились с соблазном взглянуть украдкой: по какой траектории на самом деле следует по пути к детектору электрон или фотон, проходя через экран с двойной щелью или светоделитель. Почему не установить маленькие детекторы перед каждой щелью в эксперименте с двумя щелями, чтобы сказать точно, пролетает электрон через одно отверстие, через другое или через оба (в то же время оставляя электрону возможность проследовать в направлении главного детектора)? В эксперименте со светоделителем почему не поставить на каждом пути от светоделителя маленький детектор, который определит, какой путь выбрал фотон, левый, правый или оба (опять-таки, позволяя фотону сохранить движение к детектору)?
Ответ таков — вы можете ввести эти дополнительные детекторы, но если вы это сделаете, вы обнаружите два обстоятельства. Первое: каждый электрон и каждый фотон всегда будут обнаружены только одним из детекторов; так что вы можете определить, по какому пути следует каждый электрон или фотон, и вы увидите, что он всегда двигается по одному или другому пути и никогда по обоим. Второе: итоговые результаты, записанные главным детектором, изменились. Вместо того чтобы получить интерференционную картину, как на рис. 4.3б и 7.1б, вы получите результаты, ожидавшиеся классической физикой, как на рис. 4.3а. Введя новые элементы — новые детекторы, — вы непреднамеренно изменили эксперимент. И изменения таковы, что парадокс, который вы вот-вот готовы были разгадать, — пропал. Теперь вы знаете, какой путь выбрала каждая частица, откуда же взяться интерференции с другим путём, который частица демонстративно не выбрала? Причина следует немедленно из результатов последнего раздела. Ваше новое наблюдение выделило те истории, которые могли предшествовать всему, что бы могло обнаружить ваше новое наблюдение. И поскольку это наблюдение определило, какой путь выбрал фотон, мы рассматриваем только те истории, которые соответствуют прохождению по этому пути, что приводит к уничтожению возможности интерференции.
Нильс Бор обобщил это, используя свой принцип дополнительности. Каждый электрон, каждый фотон, всё, что угодно, имеет как свойства частицы, так и волновую природу. Это дополняющие друг друга свойства. Размышление только в рамках концепции обычной частицы — в которых частица движется вдоль одной-единственной траектории — неполно, поскольку оно отбрасывает волновые свойства, демонстрируемые интерференционными эффектами.[43] Размышление только в волновых рамках неполно, поскольку оно отбрасывает корпускулярные стороны явления, демонстрируемые измерениями, в которых обнаруживаются локализованные частицы, что может быть зафиксировано, например, в виде отдельной точки на экране (см. рис. 4.4). Для воссоздания полной картины явления необходимо принимать во внимание обе взаимнодополнительные стороны. В любой данной ситуации вы можете сделать одну сторону более заметной, в зависимости о того, какие вы выберете взаимодействия. Если вы позволяете электронам проходить от источника к экрану без наблюдения, могут проявиться их волновые свойства, в результате получится интерференция. Но если вы наблюдаете электрон в пути и вы знаете, какой путь он выбрал, тогда вы будете не в состоянии объяснить интерференцию. Реальность приходит на помощь. Ваше наблюдение отсекает ветви квантовой истории. Оно заставляет электрон вести себя подобно частице; поскольку частицы двигаются тем или иным путём, интерференционная картина не формируется, так что нечего и объяснять.
Природа делает фантастические вещи. Она ходит по краю. Но старательно лавирует и уклоняется от фатальных ударов логических парадоксов.
Случайность истории
Эти эксперименты поразительны. Они обеспечивают простое, но мощное доказательство того, что наш мир управляется квантовыми законами, найденными физиками в XX в., а не классическими законами, найденными Ньютоном, Максвеллом и Эйнштейном, — законами, которые мы сегодня признаём как эффективные и успешные для приблизительного описания событий в достаточно больших масштабах. Мы уже видели, что квантовые законы бросают вызов обычным представлениям о том, что происходило в прошлом, — о ненаблюдаемых событиях, которые ответственны за то, что мы видим в настоящее время. Некоторые простые вариации упомянутых экспериментов выводят наше интуитивное представление о том, как события разворачиваются во времени, на ещё более высокий, ещё более удивительный уровень.
Первый вариант называется экспериментом с отложенным выбором, и был предложен в 1980 г. выдающимся физиком Джоном Уилером. Эксперимент неожиданно наталкивает на странно звучащий вопрос: зависит ли прошлое от будущего? Отметим, что это отличается от вопроса, можем ли мы вернуться назад и изменить прошлое (это мы обсудим в главе 15). Эксперимент Уилера, который был проведён и детально проанализирован, вскрывает удивительное переплетение, взаимосвязь между событиями, которые, как мы считаем, имели место в прошлом, даже в удалённом прошлом, и событиями, которые мы рассматриваем как происходящие прямо сейчас.
Чтобы почувствовать физику, представьте, что вы коллекционер произведений искусства, и что мистер Смитерс, председатель нового Общества распространения красоты и искусств Спрингфилда, пришёл взглянуть на различные произведения, которые вы выставили на продажу. Однако вы знаете, что на самом деле его интересует «Дородный Монти», картина в вашей коллекции, которую вы никогда не считали стоящей, но которая является одной из картин, доставшихся вам по завещанию вашего любимого дядюшки Монти Бернса, так что решение продать её требует некоторых эмоциональных усилий. После прихода мистера Смитерса вы беседуете о вашей коллекции, прошедших аукционах, текущем шоу в Метрополитен; и вдруг вы узнаёте, что когда-то Смитерс был главным помощником вашего дядюшки. К концу разговора вы решаете, что хотите расстаться с «Дородным Монти»: имеется так много произведений, которые вы хотели бы иметь, и вы должны немного ограничивать себя, иначе ваша коллекция станет бесформенной. В отношении коллекционирования произведений искусства вы всегда говорили себе, что иногда качество важнее количества.
Когда вы размышляете об этом решении ретроспективно, кажется, что вы на самом деле уже решились на продажу до прихода мистера Смитерса. Хотя вы всегда имели определённую привязанность к «Дородному Монти», вы долго осторожничали в сборе всё разрастающейся коллекции, а эротически-ядерный реализм конца XX в. является устрашающей областью для любого, даже самого закалённого коллекционера. Хотя вы помните, что перед приходом вашего посетителя вы думали, что не знаете, что делать, но с вашей текущей точки зрения кажется, как если бы вы на самом деле знали. Не то чтобы будущие события повлияли на прошлые, но ваша совместная встреча с мистером Смитерсом и ваше последующее выражение желания продать картину освещают прошлое так, что возникают определённые мысли, кажущиеся со временем бесспорными. Это как если бы встреча и ваше выражение желания помогли вам признать решение, которое уже было принято и только ожидало своего выхода на сцену. Будущее помогло вам рассказать более полную историю о том, что произошло в прошлом.
Конечно, в этом примере будущие события влияют только на ваше восприятие или интерпретацию прошлого, так что события не являются ни головоломными, ни удивительными. Но эксперимент с отложенным выбором Уилера переносит это психологическое переплетение будущего и прошлого в квантовую область, где оно обретает точный смысл, но не становится от этого менее поразительным. Мы начнём с эксперимента на рис. 7.1а, изменённого путём настройки лазера так, что он испускает отдельный фотон за один раз, как на рис. 7.1б, а также путём присоединения нового детектора фотонов сразу за светоделителем. Если новый детектор выключен (см. рис. 7.2б), мы возвращаемся к исходным настройкам эксперимента и фотоны на фотографическом экране дают интерференционную картину. Но если новый детектор включён (рис. 7.2а), он указывает нам, каким путём движется каждый фотон: если он обнаруживает фотон, значит, фотон выбрал этот путь, если он не обнаруживает фотон, значит, фотон выбрал другой путь. Такая информация о выборе пути, как уже говорилось, вынуждает фотон вести себя подобно частице, так что волновая интерференционная картина больше не создаётся.
Рис. 7.2. (а) Включая детектор, определяющий выбор пути фотоном, мы разрушаем интерференционную картину. (б) Когда новый детектор выключен, мы возвращаемся к ситуации рис. 7.1 и снова выстраивается интерференционная картина
Теперь, следуя Уилеру, изменим ситуацию, переместив новый детектор фотонов далеко от светоделителя вдоль одного из двух путей. В принципе, путь может быть настолько длинным, насколько вы захотите, так что новый детектор может быть существенно удалён от светоделителя. Снова, если этот новый детектор фотонов выключен, мы находимся в обычной ситуации и фотоны дают на экране интерференционную картину. Если он включён, то обеспечивает информацию о выборе пути и поэтому препятствует возникновению интерференционной картины.
Новые странности возникают из того факта, что измерение выбора пути может быть произведено намного позже того, как фотон в светоделителе «решил», будет ли он вести себя как волна и двигаться по обоим путям или он будет вести себя как частица и двигаться только по одному пути. Когда фотон проходит через светоделитель, он не может «знать», включён новый детектор или нет, — в действительности эксперимент может быть устроен так, что выключатель детектора будет установлен в то или иное положение после того, как фотон прошёл через делитель. Чтобы быть готовой к возможности, что детектор выключен, квантовая волна фотона, скорее всего, разделилась и двигается по обоим путям, так что смесь обоих путей может дать наблюдаемую интерференционную картину. Но если новый детектор был включён — или если он включается после того, как фотон полностью покинул делитель, — то кажется, что фотон сталкивается с кризисом идентичности: пройдя через делитель, он уже зафиксировал свою волновую природу, двигаясь по обоим путям; но теперь, через некоторое время после осуществления этого выбора, он «осознаёт», что ему необходимо стать частицей, которая путешествует по одному и только по одному пути.
Однако каким-то образом фотон всегда делает это правильно. Когда бы детектор ни был включён — опять-таки, даже если решение включить его принимается после того, как данный фотон прошёл через светоделитель, — фотон ведёт себя совершенно как частица. Он находится на одном и только на одном пути к экрану (если вы поставили детекторы фотонов на оба пути, каждый эмитированный лазером фотон будет обнаружен одним и только одним детектором, но никогда обоими); итоговые данные не показывают интерференционной картины. Когда бы детектор ни был выключен — даже если это было сделано спустя много времени после того, как фотон прошёл через делитель, — фотоны ведут себя совершенно как волны, создавая замечательную интерференционную картину и показывая, что они шли обоими путями. Это похоже на то, как если бы фотоны приспосабливали своё поведение в прошлом к будущему выбору, включён ли новый детектор; как будто фотоны имеют «предчувствие» экспериментальной ситуации, с которой они столкнутся дальше на пути, и ведут себя соответственно. Как будто согласованная и определённая история становится проявленной только после того, как будет полностью фиксировано будущее, к которому оно ведёт.{89}
Есть нечто схожее с вашими ощущениями от решения о продаже «Дородного Монти». Перед встречей с мистером Смитерсом вы были в двусмысленном, нерешительном, размытом, смешанном состоянии, желая и продать, и не продавать картину. Но совместные разговоры о мире искусства и получение информации о влиянии Смитерса на вашего дядюшку сделали для вас идею о продаже более комфортной. Разговор привёл к твёрдому решению, которое ретроспективно позволило решению выкристаллизоваться из первоначальной неопределённости. Ретроспективно ощущается, будто решимость на самом деле была всегда. Но если бы вы не поговорили так хорошо с мистером Смитерсом, если бы он не придал вам уверенности, что «Дородный Монти» будет в надёжных руках, очень даже вероятно, что вы могли принять решение не продавать картину. А история прошлого, которую вы могли бы рассказать в этом случае, легко могла бы содержать признание, что вы на самом деле очень давно решили не продавать картину, будучи глубоко уверенным, что ваша сентиментальность слишком глубока, чтобы пойти на это. Реальное прошлое, конечно, не изменилось ни на йоту. Однако разные ощущения теперь заставляют вас описывать разную историю.
В области психологии переписывание или реинтерпретация прошлого является обычным делом;[44] наша история прошлого часто лишь информирует о наших переживаниях в настоящем. Но в области физики — которую мы обычно рассматриваем как объективную и высеченную в камне дисциплину — зависимость истории от случайностей будущего несколько кружит голову. Чтобы голова закружилась ещё сильнее, Уилер представил космическую версию эксперимента с отложенным выбором, в которой источником света является не лабораторный лазер, а мощный квазар в глубине пространства. Светоделитель представляет собой не лабораторный прибор, а находящуюся на пути света галактику, гравитационное поле которой может действовать подобно линзе, фокусирующей проходящие фотоны и направляющей их к Земле, как на рис. 7.3. Хотя никто на данный момент не проделал указанный эксперимент, в принципе, если собрать достаточно фотонов от квазара, они должны заполнить интерференционную картину на фотопластинке с длительным экспонированием, точно так же, как и в эксперименте с лабораторным светоделителем. Но если в конце одного или другого пути ввести дополнительный детектор фотонов, он обеспечит информацию о выборе пути фотоном, благодаря этому разрушая интерференционную картину.
Рис. 7.3. Свет от удалённого квазара, расщеплённый и сфокусированный промежуточной галактикой, в принципе, будет давать интерференционную картину. Если добавочный детектор, который позволяет определить путь для каждого фотона, включён, достигающие Земли фотоны больше не будут давать интерференционную картину
Что поражает в этой версии эксперимента, так это то, что с нашей точки зрения фотоны могли путешествовать многие миллиарды лет. Их решение двигаться вокруг галактики-линзы одним путём, как частица, или обоими путями сразу, как волна, кажется принятым задолго до того, как возник детектор, любой из нас или даже сама Земля. Однако миллиарды лет спустя детектор был построен, установлен на одном из путей фотонов, достигающих Земли, и включён. И эти недавние действия каким-то образом гарантируют, что рассматриваемые фотоны ведут себя как частицы. Это работает так, будто бы они путешествовали к Земле строго вдоль одного или другого пути. Но если через несколько минут мы выключим детектор, то фотоны, которые после этого достигают фотопластинки, начинают выстраивать интерференционную картину, свидетельствуя о том, что миллиарды лет назад они путешествовали в тандеме со своим призрачным партнёром одновременно по противоположным путям вокруг галактики.
Включение или выключение детектора в двадцать первом столетии влияет на движение фотонов несколько миллиардов лет назад? Нет, конечно. Квантовая механика не отрицает, что прошлое произошло и произошло окончательно. Недоразумение возникает потому, что концепция прошлого в соответствии с квантовой механикой отличается от концепции прошлого в соответствии с классической интуицией. Классическое воспитание долго заставляло нас говорить, что данный фотон поступил так или поступил эдак. Но в квантовом мире, нашем мире, это утверждение, применённое к реальным фотонам, оказывается слишком ограниченным. Как мы видели, в квантовой механике нормой является неопределённая, размытая, смешанная реальность, состоящая из многих нитей, которые кристаллизуются в более обычную, определённую реальность только после проведения подходящего наблюдения. Фотон не решал миллиарды лет назад, пойти ему по одному пути вокруг галактики, или по другому пути, или по обоим путям. Вместо этого на протяжении миллиардов лет он пребывал в том состоянии, которое является нормой в квантовом мире, — в смеси всех возможностей.
Акт наблюдения связывает эту необычную квантовую реальность с повседневным классическим опытом. Наблюдения, которые мы проводим сегодня, вынуждают одну из нитей квантовой истории выделиться в нашем изложении прошлого. В этом смысле, хотя квантовая эволюция от прошлого к настоящему не подвергается влиянию чего-либо, что мы делаем сегодня, история, которую мы называем прошлым, может нести на себе следы сегодняшних действий. Если мы устанавливаем детекторы фотонов вдоль двух путей, по которым свет следует к экрану, тогда наш рассказ о прошлом будет включать описание того, какой путь выбрал каждый фотон; устанавливая детекторы фотонов, мы обеспечиваем, что информация выбора пути является существенной и определённой частью нашей истории. Но если мы не устанавливаем детекторы фотонов, описание прошлого будет неизбежно другим. Без детекторов фотонов невозможно сказать что-либо о том, каким путём следует фотон; без детекторов фотонов подробности выбора пути фундаментально недоступны. Оба образа действий (с детектированием путей и без) допустимы. Оба интересны. Они просто описывают разные ситуации.
Наблюдение сегодня может, следовательно, помочь завершить историю, которую мы рассказываем о процессе, который начался вчера, позавчера или вообще миллиард лет назад. Сегодняшние наблюдения могут очертить детали, которые мы можем и должны включить в сегодняшнее ви́дение прошлого.
Стирая прошлое
Нужно отметить, что в этих экспериментах прошлое никоим образом не изменяется сегодняшними действиями и что никакая хитрая модификация экспериментов не достигнет этой цели. Тогда возникает вопрос: если вы не можете изменить нечто, что уже произошло, можете ли вы сделать кое-что другое, а именно, стереть влияние прошлого на настоящее? В той или иной степени временами такая фантазия может быть реализована. Игрок в бейсбол, который после двух аутов в конце девятого иннинга[45] упускает простой мяч, позволяя команде противника завершить розыгрыш очка в одну пробежку, может исправить влияние этой ошибки впечатляющим захватом трудного мяча, посланного следующим отбивающим игроком. И конечно, такой пример ни в малейшей степени не загадочен. Когда событие в прошлом выглядит определённо предотвращающим наступление другого события в будущем (как пропущенный летящий мяч определённо предотвращает безупречную игру), мы могли бы подумать, что здесь что-то не так, только в том случае, если бы нам потом сказали, что предотвращённое событие на самом деле произошло. Квантовый ластик, впервые предложенный в 1982 г. Марлен Скалли и Каем Дрюлем, намекает на этот вид странностей в квантовой механике.
Простейшая версия эксперимента с квантовым ластиком использует двухщелевую установку, модифицированную следующим образом. Прибор, фиксирующий прохождение фотона, располагается перед каждой щелью; он помечает каждый проходящий фотон так, что когда фотон исследуется позже, вы можете сказать, через какую щель он прошёл. Вопрос о том, как вы можете обеспечить маркировку фотона — как вы можете сделать эквивалент нанесения «Л» на фотон, который проходит через левую щель и «П» на фотон, который проходит через правую щель, — хороший вопрос, но детали не особенно важны. Грубо говоря, процесс осуществляется с использованием прибора, который позволяет фотону свободно пройти через щель, но заставляет его спин сориентироваться определённым образом. Если приборы у левой и правой щели ориентируют спины фотонов каждый своим способом, то более совершенный детекторный экран, который не только регистрирует точку в месте попадания фотона, но также и содержит запись об ориентации его спина, будет показывать, через какую щель пролетел данный фотон на своём пути к детектору.
Когда проводится такой двухщелевой эксперимент с маркировкой, фотоны не дают интерференционную картину, как это показано на рис. 7.4а. Теперь уже объяснение должно быть привычным: новый маркирующий прибор позволяет собрать информацию о выборе пути, а информация о выборе пути означает выбор той или иной истории; результаты показывают, что любой данный фотон проходит либо через левую щель, либо через правую щель. А без комбинации левощелевых и правощелевых траекторий нет перекрытия вероятностных волн, так что интерференционная картина не создаётся.
Теперь идея Скалли и Дрюля. Что если сразу после падения фотона на детекторный экран вы уничтожите возможность определения, через какую щель он прошёл, путём разрушения отметки, зафиксированной маркирующим прибором? Без возможности, даже в принципе, выделить информацию о выборе пути из детектируемого фотона, когда оба класса историй опять возвращаются в игру, заставляя снова появляться интерференционную картину. Да, этот вид «отмены» прошлого впечатляет куда больше, чем эффектный захват бейсболиста в конце девятого иннинга. Когда маркирующий прибор включён, фотон послушно ведёт себя как частица, проходя через левую щель или через правую щель. Если как-нибудь сразу перед его попаданием в экран мы разрушим метку выбора пути, отмечающую его движение, то кажется, слишком поздно позволять формироваться интерференционной картине. Для интерференции нам надо, чтобы фотон вёл себя как волна. Он должен проходить через обе щели, так чтобы он смог перемешиваться сам с собой на пути к экрану детектора. Но наша исходная маркировка фотона, кажется, должна гарантировать, что он ведёт себя как частица и проходит либо через левую, либо через правую щель, предотвращая появление интерференционной картины.
В эксперименте, проведённом Раймондом Чиао, Полом Квиатом и Эфраимом Штайнбергом, установка была такой, как схематично показано на рис. 7.4, с новым устройством для стирания, поставленным прямо перед экраном детектора. Опять детали не существенны, но коротко уточним, что ластик работает так, что независимо от того, прошёл ли фотон через левую или через правую щель, его спин указывает на одно и то же фиксированное направление. Последующая проверка его спина, следовательно, не даёт информации о том, через какую щель он прошёл, так что метка выбора пути стёрта. Замечательно, что фотоны, обнаруженные на экране после этого стирания, дают интерференционную картину. Когда ластик установлен прямо перед детекторным экраном, он отменяет — стирает — влияние маркировки фотонов, когда они проходили через щели. Как и в эксперименте с отложенным выбором, в принципе, такой вид стирания мог произойти через миллиарды лет после того влияния, которое он нарушил, фактически отменив прошлое, отменив даже древнее прошлое.
Рис. 7.4. В эксперименте с квантовым ластиком оборудование, располагаемое перед двумя щелями, маркирует фотоны, так что последующее измерение может выявить, через какую щель прошёл каждый фотон. (а) Показано, что эта информация о выборе пути портит интерференционную картину. (б) Сразу перед детекторным экраном ставится прибор, который стирает маркировку фотонов. Поскольку информация о выборе пути уничтожается, снова возникает интерфернционная картина
Как можно придать этому смысл? Будем помнить, что результаты полностью согласуются с теоретическими предсказаниями квантовой механики. Скалли и Дрюль предложили этот эксперимент, потому что квантово-механические вычисления убедили их, что это будет работать. Так и произошло. Как и обычно с квантовой механикой, головоломка не противопоставила теорию и эксперимент. Она противопоставила теорию, согласующуюся с экспериментом, нашим интуитивным представлениям о времени и реальности. Чтобы снять напряжение, отметим, что если бы вы поставили детекторы фотонов перед каждой щелью, то показания детекторов точно бы определили, прошёл ли фотон через левую щель или через правую щель, и тогда не будет способа стереть такую информацию — тогда не будет и способа снова получить интерференционную картину. Но маркирующие приборы тем и отличаются, что они обеспечивают только потенциальную возможность определения информации о выборе пути — а потенциальные возможности являются как раз такими вещами, которые могут быть разрушены. Маркирующий прибор модифицирует прохождение фотона таким образом, что, грубо говоря, он всё ещё идёт обоими путями, но левая часть его волны вероятности размыта относительно правой или правая часть его волны вероятности размыта относительно левой. Из-за этого упорядоченная последовательность пиков и впадин, которая обычно появляется от каждой щели, — как на рис. 4.2б — также размывается, так что интерференционная картина на детекторном экране не формируется. Хотя решающим для понимания является то, что обе волны, и левая, и правая, всё ещё существуют. Ластик работает, потому что он снова фокусирует волны. Подобно паре зеркал он компенсирует размытие, возвращая обе волны к резкому фокусу и позволяя им снова создать интерференционную картину. Как если бы после того, как маркирующие устройства выполнили свою задачу, интерференционная картина исчезла из вида, но терпеливо находилась бы в ожидании, пока кто-нибудь или что-нибудь не воскресило её.
Это объяснение могло бы сделать квантовый ластик немного менее удивительным, но тут имеется финал — ошеломляющий вариант эксперимента с квантовым ластиком, который ещё более сотрясает привычные представления о пространстве и времени.
Формируя прошлое[46]
Этот эксперимент, квантовый ластик с отложенным выбором, также был предложен Скалли и Дрюлем. Он начинается с эксперимента со светоделителем, показанным на рис. 7.1, изменённым путём введения двух так называемых даун-конверторов[47], по одному на каждый путь. Даун-конвертор — это прибор, который получает один фотон на входе и производит два фотона на выходе, каждый с половиной энергии («даун-преобразование») от исходного. Один из двух фотонов (так называемый сигнальный фотон) направляется вдоль пути, по которому к детекторному экрану следовал исходный фотон. Другой фотон, произведённый даун-конвертором (именуемый холостым фотоном), посылается в совершенно другом направлении, как показано на рис. 7.5а. В каждом эксперименте мы можем определить, какой путь к экрану выбрал сигнальный фотон, путём наблюдения, который из даун-конверторов испустил холостой фотон-партнёр. И снова возможность получить информацию о выборе пути сигнального фотона — даже хотя она является полностью косвенной, поскольку мы не взаимодействуем ни с одним сигнальным фотоном, — вызывает предотвращение возникновения интерференционной картины.
Рис. 7.5. (а) Эксперимент со светоделителем луча, дополненный даун-конверторами, не даёт интерференционной картины, поскольку холостые фотоны сообщают информацию выбора пути. (б) Если холостые фотоны не детектируются непосредственно, а вместо этого посылаются через изображённый лабиринт, тогда из результатов эксперимента может быть выделена интерференционная картина. Холостые фотоны, которые регистрируются детекторами 2 или 3, не дают информации о выборе пути и, следовательно, их сигнальные фотоны дают интерференционную картину
Приступим к самой таинственной части. Что если мы преобразуем эксперимент так, чтобы стало невозможно определить, из какого даун-конвертора был испущен холостой фотон? Что если мы сотрём информацию о выборе пути, заключённую в холостом фотоне? Произойдёт нечто поразительное: хотя мы ничего не делаем непосредственно с сигнальным фотоном, путём уничтожения информации о выборе пути, переносимой его холостым партнёром, мы можем восстановить интерференционную картину из сигнальных фотонов. Позвольте мне показать вам, как это происходит, поскольку это действительно примечательно.
Взгляните на рис. 7.5б, в который включены все существенные идеи. Но не пугайтесь. Он проще, чем кажется, и теперь мы разберём его поэтапно. Установка, изображённая на рис. 7.5б, отличается от установки на рис. 7.5а принципом детектирования холостых фотонов после их испускания. На рис. 7.5а мы детектировали их непосредственно и могли немедленно определить, из какого даун-конвертора вылетел каждый, и значит определить, какой путь выбрал сигнальный фотон. В новом эксперименте каждый холостой фотон посылается через лабиринт, который делает невозможным такое определение. Представим, что холостой фотон выпущен из даун-конвертора, отмеченного «L». Вместо того чтобы немедленно попасть в детектор (как на рис. 7.5а), этот фотон попадает на светоделитель (отмеченный «a»), так что имеется одинаковая вероятность пойти по пути A или B. Если он пойдёт вдоль пути A, он попадёт в детектор фотонов (отмеченный «1»), и его прибытие будет зарегистрировано. Но если холостой фотон пойдёт вдоль пути B, то будет подвержен следующим манипуляциям. Он будет направлен на другой светоделитель (отмеченный «c»), так что будет иметь 50%-ю вероятность быть направленным вдоль пути E к детектору, отмеченному «2», и 50%-ю вероятность пойти вдоль пути F к детектору, отмеченному «3». Теперь — следите за мной, так как здесь вся суть, — те же самые рассуждения, применённые к холостому фотону, эмитированному из другого даун-конвертора, отмеченного «R», говорят, что если вспомогательный фотон пойдёт по пути D, он будет записан детектором «4», но если он пойдёт по пути C, то будет обнаружен или детектором «3», или детектором «2», в зависимости от пути, по которому он следовал после прохождения через светоделитель «c».
Разберёмся, для чего нужны все эти усложнения. Заметьте, что если холостой фотон обнаружен детектором 1, мы знаем, что соответствующий сигнальный фотон выбрал левый путь,[48] поскольку для холостого фотона, который был эмитирован из даун-конвертора R, нет способа найти путь к этому детектору. Аналогично, если холостой фотон обнаружен детектором 4, мы знаем, что его сигнальный фотон-партнёр выбрал правый путь. Но если холостой фотон попал в детектор 2, мы не можем определить, какой путь выбрал его сигнальный фотон-партнёр, поскольку имеются равные шансы, что он эмитирован даун-конвертором L и следует пути B–E или что он эмитирован даун-конвертором R и следует пути C–E. Аналогично, если вспомогательный фотон обнаружен детектором 3, он может быть эмитирован даун-конвертором L и путешествовать по пути B–F или даун-конвертором R и путешествовать по пути C–F.
Итак, для сигнальных фотонов, холостые партнёры которых обнаружены детектором 1 или 4, мы имеем информацию о выбранном пути, но для сигнальных фотонов, холостые партнёры которых обнаружены детектором 2 или 3, информация о выборе пути стёрта.
Означает ли это стирание части информации о выборе пути — хотя мы ничего не делаем с сигнальными фотонами непосредственно — что интерференционные эффекты восстанавливаются? Это действительно так, но только для тех сигнальных фотонов, чьи холостые партнёры попали в детектор 2 или детектор 3. Именно, места попадания всех сигнальных фотонов на экран будут давать картинку, похожую на данные для рис. 7.5а, не показывающего даже самого слабого намёка на интерференционную картину, что характерно для фотонов, которые идут либо одним, либо другим путём. Но если мы рассмотрим лишь подмножество результирующих точек — например, от тех сигнальных фотонов, для которых холостые фотоны попали в детектор 2, — то это подмножество точек будет давать интерференционную картину! Эти сигнальные фотоны — холостые партнёры которых, по случайности, не дали информации о выборе пути — ведут себя, как будто они путешествовали обоими путями! Если мы настроим оборудование так, что экран будет показывать красную точку для положения каждого сигнального фотона, холостой фотон которого был обнаружен детектором 2, и зелёную точку для всех остальных, то те, у кого нарушено восприятие цвета, не будут видеть интерференционную картину, но все остальные будут видеть, что красные точки упорядочены в яркие и тёмные полосы — в интерференционную картину. То же самое останется верно и для детектора 3 вместо детектора 2. Но такой интерференционной картины не будет, если мы выделим сигнальные фотоны, холостые фотоны которых обнаружены детектором 1 или детектором 4, поскольку эти холостые фотоны дают информацию о выбранном пути своих сигнальных партнёров.
Эти результаты, которые подтверждены экспериментом,{90} поражают: из-за включения даун-конверторов, которые потенциально могут обеспечить информацию выбора пути, мы теряем интерференционную картину, как на рис. 7.5а. А без интерференции мы, естественно, заключали, что каждый фотон проходил или вдоль правого пути, или вдоль левого. Но теперь мы узнали, что это заключение было поспешным. Путём аккуратного удаления потенциальной информации о выборе пути, переносимой некоторыми из холостых фотонов, мы можем уговорить данные отдать интерференционную картину, и это свидетельствует, что некоторые фотоны на самом деле двигаются обоими путями.
Отметим также самый яркий результат: три дополнительных светоделителя и четыре детектора холостых фотонов могут располагаться на другой стороне лаборатории или даже на другой стороне Вселенной, поскольку ничто в нашем обсуждении не зависело от того, получается ли данный холостой фотон до или после того, как его сигнальный партнёр попадёт на экран. Представим, что все эти приборы удалены на большое расстояние, для определённости — на десять световых лет, и подумаем, к чему это приведёт. Вы сегодня проводите эксперимент на рис. 7.5б, записывая — одно за другим — места падения гигантского числа сигнальных фотонов, и не наблюдаете признаков интерференции. Если кто-нибудь попросит вас объяснить результаты, может возникнуть соблазн сказать, что из-за наличия холостых фотонов имеет место информация о выборе пути, и значит каждый сигнальный фотон определённо шёл или вдоль левого, или вдоль правого пути, исключая любую возможность интерференции. Но, как видно выше, это будет опрометчивое заключение о происходящем; это будет совершенно непродуманное описание прошлого.
Десятью годами позднее вы увидите, что четыре детектора фотонов зарегистрируют — один за другим — холостые фотоны. Если затем вы получите информацию о том, какие холостые фотоны попали, скажем, в детектор 2 (например, первый, седьмой, девятый, двенадцатый... холостые фотоны), и вернётесь к данным, которые собрали годами ранее и выделите положения соответствующих сигнальных фотонов на экране (первого, седьмого, девятого, двенадцатого... сигнальных фотонов), вы обнаружите, что выделенные данные дают интерференционную картину, а это говорит о том, что соответствующие сигнальные фотоны должны описываться как прошедшие по обоим путям. Наоборот, если спустя 9 лет и 364 дня после того, как вы собрали данные по сигнальным фотонам, техник-шутник саботирует эксперимент путём удаления светоделителей «a» и «b» — гарантируя, что когда вспомогательные фотоны прибудут на следующий день, они все попадут в детектор 1 или детектор 4, что сохранит всю информацию о выборе пути, то когда вы получите эту информацию, вы сделаете заключение, что каждый сигнальный фотон двигался вдоль левого пути или вдоль правого пути, и интерференционная картина не может быть извлечена из данных по сигнальным фотонам. Таким образом, как убедительно показывает это обсуждение, история, которую вы пытаетесь рассказать, чтобы объяснить результаты регистрации сигнальных фотонов, существенно зависит от измерений, проведённых десятью годами позже сбора этих данных.
Позвольте мне ещё раз подчеркнуть, что будущие измерения совершенно не изменяют чего-либо из того, что имело место в вашем сегодняшнем эксперименте; будущие измерения никоим образом не изменяют данные, которые вы собрали сегодня. Но будущие измерения влияют на некоторые подробности того, как вы объясняете то, что произошло сегодня. До того как вы получите результаты измерений холостых фотонов, вы на самом деле совсем не можете сказать что-либо об истории выбора пути любого данного сигнального фотона. Однако когда вы получили результаты, вы заключаете, что сигнальные фотоны, холостые партнёры которых успешно использованы для получения информации о выборе пути, могут быть описаны как прошедшие — годы назад — либо слева, либо справа. Вы также придёте к заключению, что сигнальные фотоны, холостые партнёры которых уничтожили информацию выбора пути, не могут быть описаны как определённо прошедшие — годы назад — по одному или по другому пути (заключение, которое вы можете убедительно подтвердить с использованием вновь полученных данных по холостым фотонам, чтобы выявить ранее скрытую интерференционную картину среди этого последнего класса сигнальных фотонов). Таким образом, мы видим, что будущее помогает сформировать историю, которую вы рассказываете о прошлом.
Эти эксперименты конфликтуют с нашими обычными представлениями о пространстве и времени. Нечто, что имеет место намного позже и очень далеко от чего-то другого, тем не менее существенно для нашего описания этого чего-то другого. По любому классическому счёту — по здравому смыслу — это просто сумасшествие. Конечно, дело в этом: здравый смысл неприменим для использования в квантовой Вселенной. Из обсуждения парадокса Эйнштейна–Подольского–Розена мы узнали, что квантовая физика нелокальна в пространстве. Если вы полностью усвоили этот урок, то эксперименты, которые включают в себя запутывание и через пространство, и через время, не будут казаться такими уж странными. Но по стандартам повседневного опыта они определённо таковы.
Квантовая механика и опыт
Я помню своё воодушевление, когда впервые узнал об этих экспериментах. Я чувствовал, что мне дали мельком увидеть скрытую сторону реальности. Здравый смысл — земная, обыкновенная, повседневная деятельность — внезапно оказался частью классической шарады, скрывающей истинную природу нашего квантового мира. Мир повседневности внезапно оказался не чем иным, как вывернутым наизнанку магическим действием, внушившим своим зрителям веру в обычные, привычные концепции пространства и времени, в то время как удивительная истина квантовой реальности, ускользая от взгляда, тщательно защищена природой.
В последние годы физики приложили много усилий в попытках объяснить уловки природы, чтобы точно понять, как фундаментальные законы квантовой физики превращаются в классические законы, которые столь успешны при объяснении повседневного опыта, — в сущности, чтобы разобраться, как атомное и субатомное скидывают магическую таинственность, когда они объединяются, чтобы сформировать макроскопический объект. Исследования продолжаются, но многое уже понято. Посмотрим на некоторые вещи, особенно уместные в связи с вопросом о стреле времени, но теперь с точки зрения квантовой механики.
Классическая механика основывается на уравнениях, которые Ньютон открыл в конце 1600-х гг. Электромагнетизм основывается на уравнениях, которые Максвелл открыл в поздние 1800-е гг. Специальная теория относительности основывается на уравнениях, которые Эйнштейн открыл в 1905 г., а общая теория относительности основывается на уравнениях, которые он открыл в 1915 г. Что общего имеют все эти уравнения, и что является центральным для дилеммы стрелы времени (как объясняется в предыдущей главе), так это совершенно симметричная трактовка прошлого и будущего в них. Нигде, ни в одном из этих уравнений нет чего-либо, что отличает время, направленное «вперёд», от времени, направленного «назад». Прошлое и будущее рассматриваются на одинаковых основаниях.
Квантовая механика основывается на уравнении, которое Эрвин Шрёдингер открыл в 1926 г.{91} Вам не нужно знать подробностей об этом уравнении, кроме того факта, что в качестве входных данных в него входит квантово-механическая вероятностная волна в один момент времени, как на рис. 4.5, и оно позволяет определить, как вероятностная волна будет выглядеть в любой другой момент времени, более ранний или более поздний. Если вероятностная волна ассоциируется с частицей, такой как электрон, вы можете использовать её для предсказания вероятности, с которой в заданное время эксперимент обнаружит электрон в заданном месте. Подобно классическим законам Ньютона, Максвелла и Эйнштейна, квантовый закон Шрёдингера включает в себя равноправное рассмотрение будущего и прошлого. «Фильм», показывающий вероятностную волну стартующей в таком виде и заканчивающей в этаком, может быть запущен в обратном направлении, — показывая вероятностную волну, стартующую в этаком виде, а заканчивающую в таком, — и нет способа сказать, что одна эволюция правильна, а другая ложна. В уравнении Шрёдингера оба решения будут верны. Оба одинаково представляют осмысленные пути, по которым возможно развитие.{92}
Конечно, «фильм», о котором идёт речь, очень отличается от аналогов, использованных в предыдущей главе при анализе движения теннисного мяча или разбивающегося яйца. Мы не можем видеть волны вероятности непосредственно; не существует камеры, которая могла бы зафиксировать вероятностные волны на плёнку. Вместо этого мы можем описать вероятностные волны с использованием математических уравнений и представить себе простейшие из таких волн, имеющие форму как на рис. 4.5 и 4.6. Но единственный способ доступа к самим вероятностным волнам является косвенным, через процесс измерения.
То есть, как объяснялось в главе 4 и как видно в рассмотренных выше экспериментах, стандартная формулировка квантовой механики описывает эволюцию с использованием двух совершенно различных стадий. На первом этапе волна вероятности — или, точнее говоря, волновая функция — некоторого объекта, например электрона, эволюционирует в соответствии с уравнением, открытым Шрёдингером. Это уравнение гарантирует, что форма волновой функции изменяется гладко и постепенно, почти как волна на воде, когда она движется от одного берега озера к другому.[49] В стандартном описании второй стадии путём измерения положения электрона реализуется связь электрона с наблюдаемой реальностью, и когда мы это делаем, форма его волновой функции мелется резко и прерывисто. Волновая функция электрона не похожа на более привычные примеры волн на воде или звуковых волн: когда мы измеряем положение электрона, его волновая функция образует пик, т. е. коллапсирует, падая до нуля везде, где частица не найдена, и вырастает до 100%-й вероятности в единственном месте, где частица найдена измерением (как показано на рис. 4.7).
Первая стадия — эволюция волновой функции в соответствии с уравнением Шрёдингера — является математически строгой, совершенно недвусмысленной и полностью принятой физическим сообществом. Вторая стадия — коллапс волновой функции при измерении — наоборот, является чем-то, что на протяжении последних восьмидесяти лет держит физиков, в лучшем случае, в тихом смущении, а в худшем — провоцирует проблемы, загадки и потенциальные парадоксы, ради которых жертвуют карьерами. Трудность, как отмечалось в конце главы 4, состоит в том, что в соответствии с уравнением Шрёдингера волновые функции не коллапсируют. Коллапс волновой функции представляет собой что-то дополнительное. Оно, это дополнение, было введено после открытия Шрёдингером своего уравнения в попытке описать, что же видят экспериментаторы на самом деле. Хотя исходная, несколлапсированная волновая функция воплощает странную идею, что частица находится и тут, и там, экспериментаторы никогда не видят этого. Они всегда обнаруживают частицу определённо в том положении или другом; они никогда не видят её частично тут, а частично там; стрелка в измерительных приборах никогда не витает в состоянии некоторой призрачной смеси, указывая и на эту, и на ту величину.
То же самое происходит, конечно, при наших собственных повседневных наблюдениях окружающего мира. Мы никогда не видели, чтобы стул был и тут, и там; мы никогда не наблюдаем Луну одновременно в одной части ночного неба, а также и в другой; мы никогда не видим кота, который одновременно и жив, и мёртв. Понятие коллапса волновой функции присоединяется к нашему опыту путём постулирования, что акт измерения заставляет волновую функцию отказаться от квантовой неопределённости и сделать одну из множества потенциальных возможностей (частица здесь или частица там) действительной.
Загадка квантового измерения
Но почему проведение измерения экспериментатором заставляет волновую функцию коллапсировать? Фактически, действительно ли коллапс волновой функции происходит, и если он происходит, что реально происходит на микроскопическом уровне? Вызывает ли коллапс любое и всякое измерение? Когда происходит коллапс и как долго длится? Поскольку в соответствии с уравнением Шрёдингера волновая функция не коллапсирует, какое уравнение описывает вторую стадию квантовой эволюции и как это новое уравнение свергает с престола шрёдиигеровское, узурпируя его обычную нерушимую власть над квантовыми процессами? И, что важно в смысле обсуждения стрелы времени, в то время как уравнение Шрёдингера, которое управляет первой стадией, не делает различий между прямым и обратным направлением во времени, не вводит ли уравнение для второго этапа фундаментальную асимметрию между временем до и временем после измерения? То есть, не вводит ли квантовая механика, включая её связь с повседневным миром через измерения и наблюдения, стрелу времени в основные законы физики? В конце концов, мы обсуждали, как квантовая трактовка прошлого отличается от трактовки прошлого в классической физике, и под прошлым мы понимали то, что происходит перед тем, как имеет место определённое квантовое измерение. Поэтому не устанавливают ли измерения, воплощённые в коллапсе волновой функции, асимметрию между прошлым и будущим: между тем, что было до измерения, и тем, что будет после?
Эти вопросы упорно сопротивляются полному решению, и они остаются источником противоречий. Тем не менее спустя десятилетия успехов предсказательную мощь квантовой теории трудно скомпрометировать. Квантовая теория, включающая две стадии эволюции, хотя вторая стадия и остаётся таинственной и непонятной, правильно предсказывает вероятности результатов измерений. И эти предсказания подтверждаются повторением данного эксперимента снова и снова и проверкой частоты, с которой обнаруживаются те или иные результаты. Фантастический экспериментальный успех этого подхода намного перевешивает дискомфорт от отсутствия точного описания того, что на самом деле происходит на второй стадии.
Но дискомфорт всегда рядом. И это не означает просто, что некоторые детали коллапса волновой функции не вполне определены. Проблема квантового измерения, как она называется, является проблемой, имеющей отношение к пределам и универсальности квантовой механики. Это нетрудно увидеть. Подход с двумя различными стадиями эволюции вводит пропасть между тем, что наблюдается (например, электрон, или протон, или атом), и экспериментатором, проводящим наблюдения. Перед тем как экспериментатор появляется на сцене, волновая функция радостно и спокойно эволюционирует в соответствии с уравнением Шрёдингера. Но когда экспериментатор вмешивается в процесс для проведения измерения, правила игры неожиданно меняются. Уравнение Шрёдингера отбрасывается в сторону и наступает коллапс второй стадии эволюции. Теперь, поскольку нет разницы между атомами, протонами и электронами, которые составляют экспериментатора и оборудование, которое он использует, и атомами, протонами и электронами, которые он изучает, так почему же имеется столь большое различие в том, как их трактует квантовая механика? Если квантовая механика является универсальной теорией, которая применима без ограничений к чему угодно, наблюдаемое и наблюдатель должны рассматриваться в точности одинаковым образом.
Нильс Бор был не согласен. Он утверждал, что экспериментаторы и их оборудование действительно отличаются от элементарных частиц. Хотя они и сделаны из одинаковых частиц, они являются «большими» собраниями элементарных частиц и поэтому управляются законами классической физики. Где-то между мельчайшим миром отдельных атомов и субатомных частиц и привычным миром людей и их оборудования правила меняются, поскольку меняются размеры. Мотивировка для принятия этого разделения ясна: крохотные частицы, в соответствии с квантовой механикой, могут находиться в состоянии размытой смеси тут и там, тогда как мы не видим подобного поведения в большом, повседневном мире. Но где точно находится граница? И, что жизненно важно, как два набора правил согласуются, когда большой повседневный мир сталкивается с очень маленьким миром атомов, как в случае измерения? Бор настойчиво декларировал, что эти вопросы должны быть вынесены за границы обсуждения. Под этим он понимал, по правде говоря, что они находятся за границами того, на что он или кто-либо другой сможет дать ответ. И поскольку даже без ответа на эти вопросы теория даёт поразительно точные предсказания, долгое время такие проблемы находились в самой нижней части списка важнейших вопросов, которые рассматривались физиками.
Но для того чтобы полностью понять квантовую механику, чтобы определить до конца, что она говорит о реальности, и чтобы установить, какую роль она может играть в выборе направления стрелы времени, необходимо полное понимание проблемы квантового измерения.
В следующих двух разделах мы опишем некоторые из наиболее заметных и многообещающих попыток это сделать. Если вы захотите сразу перейти к последнему разделу, посвящённому стреле времени в квантовой механике, то отметим, что ответ таков. Множество хитроумных работ по проблеме квантовых измерений привело к значительным успехам, но принимаемое большинством решение проблемы, по-видимому, всё ещё находится вне пределов нашей досягаемости. Многие рассматривают это как самый важный пробел в формулировке квантовых законов.
Реальность и проблема квантового измерения
За время существования квантовой теории поступило множество предложений для решения проблемы квантового измерения. Ирония заключается в том, что, хотя они влекли за собой различные концепции реальности (некоторые — радикально различные), когда дело касалось предсказаний того, что исследователь будет измерять почти во всех экспериментах, все они были в согласии друг с другом и каждое работало подобно заклинанию. Каждое предложение показывало один и тот же спектакль, хотя, если вы посмотрите за кулисы, то увидите, что их способы действия существенно отличаются.
Когда речь идёт о развлечении, вы обычно не хотите знать, что происходит за кулисами; вы вполне удовлетворяетесь тем, что обращаете внимание исключительно на результат. Но когда речь идёт о понимании Вселенной, имеется непреодолимое желание отдёрнуть все шторы, открыть все двери и полностью обнажить глубинные внутренние механизмы реальности. Бор считал это побуждение безосновательным и вводящим в заблуждение. Для него реальность есть её представление. Как в монологе Сполдинга Грея[50], голые измерения экспериментатора и являются всем спектаклем. Ничего другого нет. Согласно Бору, «за кулисами» ничего нет. Идея попытаться проанализировать, как, когда и почему квантовая волновая функция отбрасывает все возможности, кроме одной, и даёт одно определённое число на измерительном приборе, — ошибочная идея. Измеренное число само по себе является всем, что заслуживает внимания.
Этот взгляд господствовал в течение десятилетий. Однако его успокаивающее действие на ум, пытающийся, несмотря ни на что, понять квантовую теорию, никак не способствует ощущению, что превосходная предсказательная сила квантовой механики означает, что это и есть проход в скрытую реальность, лежащую в основе нашей Вселенной. Успокаивающее действие этого подхода не может помочь идти дальше и понять, как квантовая механика связана с повседневным опытом — как она перекидывает мост через пропасть между волновой функцией и наблюдением, и какая скрытая реальность лежит в основе наблюдений. Многие исследователи приняли этот вызов; ниже приводятся некоторые разработанные ими подходы.
Один подход, исторические корни которого восходят к Гейзенбергу, заключается в отказе от взгляда на волновую функцию как на объективное свойство квантовой реальности и, вместо этого, во взгляде на неё только как на отражение наших знаний о реальности. Перед проведением эксперимента мы не знаем, где находится электрон, и, как предполагает этот взгляд, наше неведение относительно его расположения отражается электронной волновой функцией, описывающей электрон как находящийся, возможно, в ряде различных мест. Однако в момент, когда мы измеряем его положение, наше знание о том, где он находится, внезапно изменяется: теперь мы знаем его положение, в принципе, с абсолютной точностью. (В соответствии с принципом неопределённости, если мы знаем его положение, мы неизбежно оказываемся в неведении относительно его скорости, но это не является предметом текущего обсуждения.) Это резкое изменение наших знаний, в соответствии с данным взглядом, отражается в резком изменении электронной волновой функции: она внезапно коллапсирует и принимает форму резкого пика, как на рис. 4.7, фиксируя наше точное знание положения электрона. В таком подходе резкий коллапс волновой функции совершенно неудивителен: он есть не что иное, как резкое изменение в знании, которое мы все ощущаем, когда узнаём что-либо новое.
Второй подход, предложенный в 1957 г. студентом Джона Уилера Хью Эвереттом, вообще отрицает, что волновая функция коллапсирует. Вместо этого любой и каждый потенциальный результат, включённый в волновую функцию, реализуется; однако происходит это в его собственной отдельной Вселенной. В этом подходе, известном как многомировая интерпретация, понятие «Вселенная» расширяется, чтобы включить бесчисленные «параллельные вселенные» — бесчисленные версии нашей Вселенной, — так что всё, что может произойти в соответствии с предсказаниям квантовой механики, даже с ничтожной вероятностью, действительно происходит, по меньшей мере в одной копии. Если волновая функция говорит, что электрон может быть здесь, там и где-нибудь далеко, тогда в одной вселенной копия вас самих найдёт его здесь; в другой вселенной другая ваша копия найдёт его там; а в третьей вселенной ещё одна ваша копия найдёт электрон очень далеко. Последовательность наблюдений, которую каждый из нас делает каждую секунду, таким образом, отражает реальность, имеющую место только в одной части этой чудовищной, бесконечной сети вселенных, каждая из которых населена копиями вас, меня и любого другого, кто ещё живёт во вселенной, в которой некоторое наблюдение дало определённый результат. В одной такой вселенной вы сейчас читаете эти слова, в другой вы прервались, чтобы походить по Интернету, ещё в другой вы с волнением дожидаетесь, когда поднимется занавес перед вашим дебютом на Бродвее. Это похоже на то, как если бы существовал не единственный блок пространства-времени, изображённый на рис. 5.1, а бесконечное количество, среди которых каждый реализует одну возможную последовательность событий. В многомировой интерпретации, следовательно, ни один потенциальный результат просто не остаётся потенциальным. Волновые функции не коллапсируют. Каждый потенциальный результат проявляется в одной из параллельных вселенных.
Третье предложение, разработанное в 1950-е гг. Дэвидом Бомом, — тем самым физиком, с которым мы сталкивались в главе 4, когда обсуждали парадокс Эйнштейна–Подольского–Розена, — использует совершенно другой подход.{93} Бом утверждал, что частицы, такие как электроны, обладают определёнными положениями и определёнными скоростями, точно как в классической физике и точно так, как надеялся Эйнштейн. Но, в соответствии с принципом неопределённости, эти свойства скрыты от взгляда; они являются примерами скрытых переменных, упоминавшихся в главе 4. Вы не можете определить обе переменные одновременно. По Бому, такая неопределённость представляет предел того, что мы можем знать, но ничего не предполагает о действительных атрибутах самих частиц. Его подход не противоречит результатам Белла, поскольку, как мы обсуждали в конце главы 4, обладание определёнными свойствами, запрещёнными принципом неопределённости, не исключено; исключена только локальность, а подход Бома нелокален.{94} Бом представил, что волновая функция частицы является другим, отдельным элементом реальности, таким, который существует в дополнение к самой частице. Нет частиц или волн, как полагала философия дополнительности Бора; в соответствии с Бомом, есть частицы и волны. Более того, Бом постулировал, что волновая функция частицы взаимодействует с самой частицей — она «направляет» частицу или «толкает» её — таким способом, что это определяет её последующее движение. В то время как этот подход полностью согласуется с правильными предсказаниями стандартной квантовой механики, Бом нашёл, что изменения волновой функции в одном месте могут немедленно сказаться на удалённой частице, что явно обнаруживает нелокальность его подхода. В эксперименте с двумя щелями, например, каждая частица проходит через одну щель или через другую, тогда как их волновая функция проходит через обе щели и допускает интерференцию. Поскольку волновая функция управляет движением частицы, то не столь уж и удивительно, что, как показывают уравнения, частица охотнее окажется там, где величина волновой функции велика, и неохотно там, где мала, объясняя данные на рис. 4.4. В подходе Бома нет отдельной стадии коллапса волновой функции, поскольку, если вы измеряете положение частицы и находите её здесь, то это действительно то место, где она была моментом раньше измерения.
Четвёртый подход, разработанный итальянскими физиками Джанкарло Жирарди, Альберто Римини и Туллио Вебером, смело изменяет уравнение Шрёдингера неким хитрым способом, который почти не сказывается на эволюции волновых функций отдельных частиц, но имеет существенное влияние на квантовую эволюцию, когда применяется к «большим» повседневным объектам. Предложенная модификация полагает, что волновые функции в своей основе нестабильны; даже без всякого вмешательства, предположили эти исследователи, рано или поздно каждая волновая функция коллапсирует к пикообразной форме по своему собственному желанию. Жирарди, Римини и Вебер постулировали, что для индивидуальной частицы коллапс волновой функции происходит спонтанно и хаотично, возникая в среднем только раз в каждый миллиард лет или около того.{95} Это настолько редко, что вносит только очень слабое изменение в обычное квантово-механическое описание отдельной частицы, и это хорошо, поскольку квантовая механика описывает микромир с беспрецедентной точностью. Но для больших объектов, таких как экспериментатор и его оборудование, которые имеют миллиарды и миллиарды частиц, вероятность будет настолько большой, что в мельчайшую долю любой заданной секунды постулированный спонтанный коллапс произойдёт по меньшей мере с одной отдельной частицей, заставив сколлапсировать её волновую функцию. И, как объясняют Жирарди, Римини, Вебер и другие, запутанная природа всех индивидуальных волновых функций в большом объекте обеспечивает, что этот коллапс инициирует разновидность квантового эффекта домино, при котором волновые функции всех составляющих частиц тоже коллапсируют. Так как это происходит в крошечную долю секунды, предлагаемая модификация обеспечивает, что большие объекты, по существу, всегда находятся в одной определённой конфигурации: стрелки на измерительных приборах всегда указывают на одну определённую величину; Луна всегда находится в одном определённом положении в небе; коты всегда или мертвы, или живы.
Каждый из этих подходов, равно как и ряд других, которые мы не хотим обсуждать, имеет своих сторонников и противников. Подход «волновой функции как знания» ловко обходит проблему коллапса волновой функции путём отрицания реальности волновых функций, сводя их вместо этого всего лишь к способу описания того, что мы знаем. Но почему, спросит противник, фундаментальная физика должна быть так тесно связана с человеческим знанием? Если бы здесь не было нас, чтобы наблюдать этот мир, то волновые функции никогда бы не коллапсировали или, может быть, вообще не существовало бы самой концепции волновой функции? Разве Вселенная была совершенно другой до того, как на планете Земля появилось человеческое сознание? Что если вместо экспериментаторов-людей наблюдателями являются только мыши, или муравьи, или амёбы, или компьютеры? Будет ли изменение в их «знании» достаточным, чтобы его можно было связать с коллапсом волновой функции?{96}
Напротив, многомировая интерпретация избегает самого понятия коллапса волновой функции, поскольку в этом подходе волновые функции не коллапсируют. Но ценой этого является чудовищное разрастание Вселенной, что многие противники этой интерпретации считают совершенно недопустимым.{97} Подход Бома также избегает коллапса волновой функции; но, утверждают его противники, допуская независимую реальность как частиц, так и волн, теория теряет экономичность. Более того, справедливо утверждают противники, в формулировке Бома волновые функции могут передавать влияние на частицы, которые они направляют, со скоростью, превышающей скорость света. Сторонники замечают, что первое возражение в лучшем случае субъективно, а последнее согласуется с нелокальностью, которая, как показал Белл, неизбежна, так что критика неубедительна. Тем не менее, может быть незаслуженно, подход Бома никогда не был популярным.{98} Подход Жирарди–Римини–Вебера прямо включает коллапс волновой функции путём добавления к уравнениям нового спонтанного механизма коллапса. Но, отмечают противники, тут всё ещё нет и намёка на экспериментальное подтверждение предложенной модификации уравнения Шрёдингера.
Поиск ясной и прозрачной связи между формализмом квантовой механики и опытом повседневной жизни будет, несомненно, продолжаться до конца, и трудно сказать, который из известных подходов, если среди них такой вообще есть, в конечном счёте будет принят большинством. Если бы физики сегодня проголосовали, я не думаю, что нашёлся бы несомненный фаворит. К несчастью, экспериментальные данные могут оказать ограниченную помощь. Хотя предложение Жирарди–Римини–Вебера даёт предсказания, которые могут в определённых ситуациях отличаться от стандартной квантовой механики с её двумя стадиями эволюции, отклонения слишком малы, чтобы их можно было зафиксировать современной технологией. Ситуация с другими тремя предложениями ещё хуже, поскольку они ещё более решительно препятствуют экспериментальной верификации. Они полностью согласуются со стандартным подходом, так что все они дают одинаковые предсказания для того, что можно было бы наблюдать или измерить. Они отличаются только в отношении того, что происходит за кулисами, если вообще что-то происходит. То есть они отличаются только в отношении того, что квантовая механика предполагает в качестве фундаментальной основы природы реальности.
Хотя проблема квантовых измерений остаётся нерешённой, на протяжении последних нескольких десятилетий был разработан подход, который, хотя ещё неполон, но имеет широкую поддержку как вероятный компонент любого жизнеспособного решения. Он называется декогеренция[51].
Декогеренция и квантовая реальность
Когда вы впервые сталкиваетесь с вероятностным аспектом квантовой механики, естественной реакцией является мысль, что это не более экзотично, чем вероятности, которые возникают при подбрасывании монетки или вращении рулетки. Но при знакомстве с квантовой интерференцией вы осознаёте, что вероятность в квантовой механике намного более фундаментальна. В повседневных примерах различным результатам — орёл против решки, красное против чёрного, один лотерейный номер против другого — присваиваются вероятности на основании понимания, что тот или иной результат определённо произойдёт и что каждый результат является конечным продуктом независимой, определённой истории. Когда монета подбрасывается, иногда вращательное движение таково, что выходит орёл, а временами таково, что выходит решка. Вероятность 50 на 50 мы относим не просто к конечному результату — орёл или решка, — но также к истории, которая привела к каждому результату. Половина возможных способов, которыми вы можете подбросить монету, приведут к орлу, а половина — к решке. Сами события, однако, являются совершенно отдельными, изолированными альтернативами. Нет смысла интересоваться, какие различные движения монеты усиливают друг друга, а какие гасят. Все они независимы.
Но в квантовой механике иная ситуация. Альтернативные пути, по которым электрон может следовать через две щели к детектору, — это не отдельные, изолированные истории. Возможные истории смешиваются, производя наблюдаемый результат. Некоторые пути усиливают друг друга, тогда как другие уничтожают друг друга. Такая квантовая интерференция между различными возможными историями отвечает за картину светлых и тёмных полос на детекторном экране. Так что основное различие между квантовым и классическим понятиями о вероятности заключается в том, что первое подвержено интерференции, а второе — нет.
Декогеренция является широко распространённым явлением, которое наводит мост между квантовой физикой малого и классической физикой не столь уж малого через подавление квантовой интерференции — т. е. путём резкого уменьшения того, что является ключевым различием квантовой и классической вероятности. Важность декогеренции была осознана давно, ещё в ранние времена квантовой теории, но её современное возрождение отсчитывается от плодотворной статьи немецкого физика Дитера Цея в 1970 г.,{99} и с тех пор разрабатывалось многими исследователями, включая Эрика Йоса, тоже из Германии, и Войцеха Цурека из Лос-Аламосской национальной лаборатории в Нью-Мексико.
Идея такова. Когда уравнение Шрёдингера применяется в простой ситуации, такой как прохождение отдельного изолированного фотона через экран с двумя щелями, оно приводит к известной интерференционной картине. Но этот лабораторный пример имеет две весьма специфические особенности, которые не характерны для событий реального мира. Первая состоит в том, что вещи, с которым мы сталкиваемся в повседневной жизни, больше и сложнее, чем отдельный фотон. Вторая — в том, что вещи, с которыми мы сталкиваемся в повседневной жизни, не изолированы: они взаимодействуют с нами и с окружением. Книга, находящаяся сейчас в ваших руках, подвергается контакту с человеком и, вообще, постоянно бомбардируется фотонами и молекулами воздуха. Более того, поскольку сама книга состоит из многих молекул и атомов, эти постоянно дрожащие составляющие непрерывно сталкиваются друг с другом. То же самое справедливо для стрелок измерительных приборов, для котов, для человеческих мозгов и просто для всего, с чем вы сталкиваетесь в повседневной жизни. На астрофизических масштабах Земля, Луна, астероиды и другие планеты непрерывно бомбардируются фотонами Солнца. Даже частичка пыли, плавающая в темноте космического пространства, подвергается непрерывным толчкам низкоэнергетических микроволновых фотонов, которые начали путешествовать по пространству спустя небольшое время после Большого взрыва. Итак, чтобы понять, что квантовая механика говорит о событиях реального мира, — в противоположность рафинированным лабораторным экспериментам, — мы должны применить уравнение Шрёдингера к этим более сложным, более беспорядочным ситуациям.
По существу, это было то, на что обратил внимание Цей. Его работа и работы многих других, кто последовал за ним, открыли нечто действительно удивительное. Хотя фотоны и молекулы воздуха слишком малы, чтобы оказать существенное влияние на движение большого объекта, например книги или кота, но они в состоянии сделать кое-что другое. Они непрерывно «толкают» волновую функцию большого объекта или, говоря на языке физики, они возмущают её когерентность: они размывают упорядоченную последовательность гребней и впадин, следующих друг за другом. Это критично, поскольку упорядоченность волновой функции является центральным свойством для генерирования интерференционных эффектов (см. рис. 4.2). Подобно тому как добавление маркирующих приборов в эксперимент с двумя щелями размазывает результирующую волновую функцию и поэтому размывает интерференционные эффекты, постоянная бомбардировка объектов составными частями окружающей среды также препятствует возникновению интерференционных явлений. С другой стороны, раз квантовая интерференция более невозможна, вероятности, присущие квантовой механике, с любой практической точки зрения ведут себя подобно вероятностям, присущим подбрасываемой монете и вращающейся рулетке. Когда декогеренция, вызванная взаимодействием с окружающей средой, размывает волновую функцию, экзотическая природа квантовых вероятностей растворяется в более привычных вероятностях повседневной жизни.{100} Это может означать решение загадки квантового измерения, которое, если действительно окажется решением, стало бы лучшим, на что мы можем надеяться. Я сначала опишу идею декогеренции в наиболее оптимистичном свете, а затем сделаю акцент на том, что ещё остаётся сделать.
Если волновая функция изолированного электрона показывает, что он имеет, скажем, 50% вероятности находиться здесь и 50% вероятности находиться там, мы должны интерпретировать эти вероятности, используя всю причудливость квантовой механики. Поскольку обе альтернативы могут проявить себя при смешивании и генерировать интерференционную картину, мы должны думать о них как о реальных в равной степени. Проще говоря, кажется, что электрон находится в обоих положениях. Что произойдёт, если мы измерим положение электрона неизолированными лабораторными инструментами обычного размера? Тогда в соответствии с неопределённостью местонахождения электрона стрелка инструмента имеет 50% вероятности указать на одно значение и 50% вероятности — на другое. Но вследствие декогеренции стрелка не будет находиться в призрачной смеси, указывая на обе величины; вследствие декогеренции мы можем интерпретировать эти вероятности в обычном, классическом, повседневном смысле. Как монета имеет 50%-й шанс упасть орлом и 50%-й шанс упасть решкой, но падает или орлом, или решкой, так и стрелка прибора имеет 50%-й шанс указать на одну величину и 50%-й шанс указать на другую величину, но она определённо укажет на одну или на другую.
Сходные рассуждения применимы и для всех других сложных неизолированных объектов. Если квантовые расчёты показывают, что кот, сидя з закрытом ящике, имеет 50% шансов быть мёртвым и 50% шансов быть живым — поскольку имеется 50% шансов, что электрон попадёт в счётчик и запустит устройство, которое отравит кота ядовитым газом, — то декогеренция означает, что кот не будет пребывать в некотором абсурдном смешанном состоянии жизни и смерти. Хотя десятилетия жарких дебатов были посвящены обсуждению проблемы типа: что означает для кота быть одновременно мёртвым и живым? Как открытие ящика и наблюдение кота заставляют его выбирать определённое состояние — смерти или жизни? Декогеренция означает, что задолго до того, как вы откроете ящик, окружающая среда уже завершила миллиарды наблюдений кота, которые почти совсем без затрат времени заменили все мистические квантовые вероятности на их менее мистические классические двойники. Задолго до того, как вы посмотрели внутрь, окружающая среда заставила кота принять одно единственное, определённое состояние. Декогеренция заставляет многие странности квантовой механики «утечь» из больших объектов, так как эти квантовые странности кусочек за кусочком удаляются прочь бесчисленными налетающими частицами окружения.
Трудно было бы представить более удовлетворительное решение проблемы квантового измерения. Будучи более реалистичными и отказываясь от упрощающего предположения, которое игнорирует окружающую среду, — упрощения, которое было критически важным на ранних этапах развития квантовой механики, — мы бы обнаружили, что квантовая механика имеет встроенное решение проблемы измерения. Сознание человека, люди-экспериментаторы и наблюдения людьми не играли бы больше особой роли, поскольку они (мы!) были бы просто элементами окружающей среды, подобными молекулам воздуха и фотонам, которые могут взаимодействовать с данной физической системой. Также больше не было бы пропасти между эволюцией объекта и эволюцией при измерении этого объекта экспериментатором. Всё сущее — наблюдаемое и наблюдатель — существовало бы на одинаковом основании. Всё сущее — наблюдаемое и наблюдатель — подчинялось бы в точности одним и тем же квантово-механическим законам, как установлено уравнением Шрёдингера. Акт измерения больше не являлся бы чем-то специальным; он просто был бы одним из специальных примеров взаимодействия системы с окружающей средой.
Вот оно? Декогеренция разрешила проблему квантового измерения? Декогеренция ответственна за то, что волновая функция закрывает дверь всем, кроме одного потенциального исхода, к которому она может привести? Некоторые так думают. Такие исследователи, как Роберт Гриффитс из Карнеги Меллон, Роланд Омнес из Орси, нобелевский лауреат Мюррей Гелл-Манн из института Санта-Фе и Джим Хартл из Калифорнийского университета в Санта-Барбаре достигли большого прогресса и утверждают, что они развили представление о декогеренции до состояния завершённой концепции (названной декогерентными историями), которая решает проблему измерения. Другие, вроде меня, заинтригованы, но ещё полностью не убеждены. Вы видите, что сила декогеренции в том, что она успешно удаляет искусственный барьер, установленный Бором между большими и малыми физическими системами, делая всё сущее управляемым одними и теми же квантово-механическим формулами. Это большой прогресс и, я думаю, Бор нашёл бы его вызывающим удовлетворение. Хотя нерешённая проблема квантового измерения никогда не мешала физикам проводить теоретические расчёты, согласующиеся с экспериментальными данными, она привела Бора и его коллег к квантово-механической системе взглядов с некоторыми явно неуклюжими свойствами. Многие находят, что система взглядов, нуждающаяся в неясном представлении о коллапсе волновой функции или неточном понятии «больших» систем, принадлежащих классической физике, слаба. Приняв во внимание декогеренцию, исследователи в значительной степени сделали эти смутные идеи необязательными.
Однако ключевая проблема, которую я обошёл в обсуждении, заключается в том, что хотя декогеренция подавляет квантовую интерференцию и поэтому заставляет таинственные квантовые вероятности быть похожими на их привычных классических двойников, каждый потенциальный результат, включённый в волновую функцию, всё ещё соперничает за реализацию. Так что мы всё ещё остаёмся в неведении, какой результат «победит» и куда «уйдут» другие возможности, когда это реально произойдёт. Когда подбрасывается монета, классическая физика даёт ответ на аналогичный вопрос. Она говорит, что если вы исследуете способ, которым подброшена монета, вы можете, в принципе, с адекватной точностью предсказать, упадёт она орлом или решкой. Следовательно, более внимательный анализ показывает, что деталями, которые вы сначала упустили, был определён в точности один результат. В квантовой физике нельзя сказать то же самое. Декогеренция позволяет интерпретировать квантовые вероятности почти как классические, но не даёт точных деталей, которые объясняют, как из множества возможных исходов выбирается один для действительной реализации.
Почти в духе Бора некоторые физики думают, что поиски объяснений таких вещей, как причина возникновения отдельного определённого результата, неконструктивны. Эти физики утверждают, что квантовая механика, дополненная теорией декогеренции, является жёстко сформулированной теорией, предсказания которой описывают поведение лабораторных измерительных приборов. И, в соответствии с этой точкой зрения, это и есть цель науки. Попытки отыскать объяснение, что реально происходит, попытки побороться за понимание, как получился частный результат в опыте, попытки отыскать другой уровень реальности за показаниями детектора и компьютерными распечатками представляются как неоправданная интеллектуальная жадность.
Многие другие, включая меня, придерживаются другого взгляда. Объяснение данных — вот что является предметом науки. Многие физики думают, что наука должна включать в себя также и теории, которые, подтверждая экспериментальные данные, идут дальше к максимальному проникновению в природу реальности. Я сильно подозреваю, что ещё многое предстоит понять, чтобы сдвинуться в направлении полного решения проблемы измерений.
Так что, хотя многие согласны, что вызванная окружающей средой декогеренция является важнейшей частью структуры, перекидывающей мост над пропастью между квантовым и классическим, и в то время как многие надеются, что эти соображения однажды приведут к полной и убедительной связи между этими двумя областями, далеко не каждый убеждён, что мост уже полностью построен.
Квантовая механика и стрела времени
Итак, в каком же состоянии находится проблема измерений и что это означает для стрелы времени? Грубо говоря, имеется два класса предложений, для того чтобы связать здравый смысл с квантовой реальностью. В первом классе (например, волновая функция как знание, многомировая интерпретация, декогеренция) нет ничего, кроме уравнения Шрёдингера; все предложения просто обеспечивают различные способы интерпретации того, что уравнение означает для физической реальности.
Во втором классе (например, Бом, Жирарди–Римини–Вебер) уравнение Шрёдингера должно быть дополнено другими уравнениями (в случае подхода Бома уравнением, которое показывает, как волновая функция направляет частицу в её движении) или должно быть модифицировано (в случае подхода Жирарди–Римини–Вебера путём включения нового явного механизма коллапса). Ключевой вопрос для определения того, как эти предложения влияют на стрелу времени, заключается в том, вводят ли они фундаментальную асимметрию между разными направлениями во времени. Вспомним, что уравнение Шрёдингера, равно как и уравнения Ньютона, Максвелла и Эйнштейна, рассматривает прямое и обратное направления во времени совершенно одинаково. Это не обеспечивает стрелы для эволюции во времени. Меняют ли это положение какие-либо из предложений решения проблемы измерения?
В первом классе предложений шрёдингеровская система взглядов совсем не модифицируется, так что симметрия времени сохраняется. Во втором классе симметрия времени может уцелеть, а может и не уцелеть, в зависимости от деталей. Например, подход Бома, предложившего новое уравнение, трактует будущее и прошлое на равных основаниях, так что не вводит асимметрии. Однако предложение Жирарди–Римини–Вебера вводит механизм коллапса, который выделяет стрелу времени — «расколлапсирование», когда волновая функция изменяется от пикообразной формы, являющейся результатом коллапса, к распределённой форме без резких пиков, не удовлетворяя модифицированным уравнениям Шрёдингера. Так что, в зависимости от конкретного предложения, квантовая механика, вместе с решением загадки квантового измерения, либо трактует каждое направление времени одинаково, либо нет. Рассмотрим следствия каждой возможности.
Если симметрия времени сохраняется (я полагаю, так и будет), все обоснования и все заключения прошлой главы могут быть использованы с минимальными изменениями и для квантовой области. Суть той физики, которая инициировала наше обсуждение стрелы времени, заключалась в симметрии классической физики по отношению к обращению времени. В то время как язык и структура квантовой физики отличаются от классической физики — волновые функции вместо положений и скоростей; уравнение Шрёдингера вместо законов Ньютона, — симметрия по отношению к обращению времени всех квантовых уравнений гарантирует, что трактовка стрелы времени остаётся без изменений. Энтропия в квантовом мире может быть определена в основном так же, как в классической физике при условии, что мы описываем частицы в терминах их волновых функций. И вывод, что энтропия должна всегда возрастать, — как в направлении, которое мы называем будущим, так и в направлении, которое мы называем прошлым, — всё ещё будет действителен.
Так что мы приходим к той же головоломке, с которой мы столкнулись в главе 6. Если мы принимаем наши наблюдения мира прямо сейчас как данные, как неоспоримо реальные, и если энтропия должна возрастать как по направлению в будущее, так и по направлению в прошлое, как мы объясним, что мир имеет вид, который он имеет, и как он будет в последующем разворачиваться во времени? Снова присутствуют те же две возможности: или всё, что мы видим, неожиданно появилось в результате статистической флуктуации, возникновение которой можно ожидать время от времени в вечной Вселенной, которая растрачивает впустую значительную часть своего времени, оставаясь полностью разупорядоченной, или по некоторым причинам энтропия была поразительно низкой сразу после Большого взрыва и поэтому последние 14 млрд лет всё могло медленно развиваться и продолжит развиваться в будущем. Как и в главе 6, чтобы избежать трясины неверия в память и в записи и в законы физики, мы выберем вторую альтернативу — низкоэнтропийный взрыв — и попытаемся найти объяснение, как и почему всё началось в таком особом состоянии.
Если, с другой стороны, симметрия времени потеряна (если решение проблемы измерения, которое однажды станет общепризнанным, покажет фундаментально асимметричное рассмотрение будущего по отношению к прошлому в квантовой механике), это легко может обеспечить самое прямое объяснение стрелы времени. Может оказаться, например, что яйца разбиваются, но не собираются обратно, потому что существует решение квантово-механических уравнений для разбивающегося яйца, а для собирающегося обратно — нет, в отличие от того, что мы имели с использованием законов классической физики. Тогда обратный просмотр фильма о разбивающемся яйце покажет движение, которое не может произойти в реальном мире, что и объяснит, почему мы никогда такого не видим.
Возможно. Но, хотя это и выглядело бы как существенно иное объяснение стрелы времени, на самом деле оно может оказаться не настолько иным, как кажется. Как мы подчёркивали в главе 6, чтобы страницы романа «Война и мир» становились всё более разупорядоченными, они должны сначала быть упорядоченными; яйцо, чтобы стать неупорядоченным, когда оно разбито, должно быть сначала упорядоченным, целым яйцом; энтропия, чтобы возрастать по направлению в будущее, должна быть низкой в прошлом, так что вещи должны иметь потенциал упорядоченности, чтобы стать неупорядоченными. Однако только то, что закон трактует прошлое и будущее по-разному, не даёт гарантии, что закон предсказывает прошлое с более низкой энтропией. Закон всё ещё может подразумевать увеличение энтропии в направлении прошлого (возможно, энтропия будет расти по направлению в прошлое и в будущее асимметрично), и даже возможно, что асимметричный во времени закон будет вовсе неспособен сказать что-либо о прошлом. Последнее верно для предложения Жирарди–Римини–Вебера, одного из существующих предложений, в которых нарушается симметрия времени. Когда предложенный ими механизм коллапса выполняет свой трюк, то нет способа отменить его — нет способа начать от сколлапсировавшей волновой функции и вернуть её к первоначальной форме. Точная форма волновой функции теряется в коллапсе (она превращается в узкий пик), так что невозможно только на основании этого пика реконструировать волновую функцию до коллапса.
Таким образом, хотя асимметричный во времени закон мог бы обеспечить частичное объяснение того, почему вещи разворачиваются в одном временно́м порядке и никогда в обратном, он может потребовать того же ключевого дополнения, которого требуют и симметричные во времени законы: объяснение того, почему энтропия была низкой в удалённом прошлом. Определённо, это верно для асимметричных во времени модификаций квантовой механики, которые были предложены до настоящего времени. Итак, если только какое-то будущее открытие не продемонстрирует две особенности, которые я рассматриваю как маловероятные, — асимметричное во времени решение проблемы квантовых измерений, которое бы дополнительно гарантировало, что энтропия уменьшается по направлению в прошлое, — наши усилия объяснить стрелу времени снова приведут нас к происхождению Вселенной, теме следующей части книги.
Как будет ясно из этих глав, анализ проблем космологии проходит через многие тайны и ведёт к самому сердцу пространства, времени и материи. Так что в путешествии по направлению к современным космологическим представлениям о стреле времени будет полезнее не нестись галопом вперёд, а скорее совершить обстоятельную прогулку по космической истории.