В, житель А сказал «Я оруженосец», что можно считать одной из версий парадокса лжеца: «Я всегда лгу». Следовательно, существует единственный непротиворечивый выход из этой ситуации: когда В говорил об А, он солгал, следовательно, В — оруженосец. Таким образом, когда С предупреждал логика, он говорил правду, из чего следует, что С — рыцарь. Чтобы узнать, кем на самом деле является А, нам потребуется задать дополнительные вопросы.
* * *
В разные эпохи парадокс лжеца трактовался по-разному. Сервантес, например, упоминает его в главе LI второй части «Дон Кихота» — «О том, как Санчо Панса губернаторствовал далее, а равно и о других поистине славных происшествиях» в качестве примера того, сколь трудные решения приходилось принимать Санчо Пансе на острове Баратария. До этого, в главе XVIII, дон Кихот объясняет, что к наукам, которые должен знать странствующий рыцарь, принадлежит математика, «ибо необходимость в математике может возникнуть в любую минуту». Именно это про
исходит с Санчо Пансой, когда ему сообщают о деле хозяина поместья, разделенного рекой, который обязывал всякого, кто хотел переправиться через нее, сначала сообщить, куда он направляется. Если путник говорил правду, ему разрешалось переправиться через реку, но если он лгал, его ждала казнь. После вступления закона в силу судьи беспрепятственно пропускали почти всех, пока в один прекрасный день перед ними не предстал человек, который заявил, что направляется на виселицу, чтобы быть повешенным. Посовещавшись, судьи вынесли вердикт: «Если позволить этому человеку беспрепятственно следовать дальше, то это будет значить, что он нарушил клятву и согласно закону повинен смерти; если же мы его повесим, то ведь он клялся, что пришел только затем, чтобы его вздернули на эту виселицу, следственно, клятва его, выходит, не ложна, и на основании того же самого закона надлежит пропустить его»[2].
В шедевре Мигеля Сервантеса Дон Кихот предлагает разрешить парадокс своему оруженосцу.
В контексте нашего обсуждения этот пример не слишком полезен, так как, увидев, что причин повесить путника столько же, сколько и отпустить его на свободу, Санчо Панса посоветовал отпустить его, поскольку «делать добро всегда правильнее, нежели зло». Здесь интересным будет добавить, что два самых известных парадокса в истории — парадокс Ахиллеса и черепахи и парадокс лжеца — в действительности очень отличаются. С одной стороны, рассуждения Зенона, доказывающие невозможность победы Ахиллеса над черепахой, основаны на ошибочном представлении о бесконечности. Предположив, что изначально фора черепахи равняется одному метру, Зенон указывал, что Ахиллес должен преодолеть расстояние
(1/2) + (1/4) + (1/8) + (1/16) + (1/32) и т. д.
чтобы догнать черепаху. При этом сначала ему нужно преодолеть его половину (1/2), затем — половину половины, то есть одну четверть (1/4), затем — половину половины половины, то есть одну восьмую (1/8) и т. д. Так как число слагаемых бесконечно велико, то расстояние, которое должен преодолеть Ахиллес, обязательно равняется бесконечности, таким образом Ахиллесу не хватит всей жизни, чтобы преодолеть его и догнать черепаху. Ошибка Зенона состояла в том, что сумма бесконечного числового ряда необязательно равна бесконечности, при условии что члены ряда убывают с достаточной быстротой. Николай Орезмский (1323–1382) привел красивое геометрическое решение этого парадокса, в котором показал, что сумма ряда Зенона равна не бесконечности, а в точности единице — именно такую фору Ахиллес дал черепахе. Следовательно, парадокс Зенона есть не более чем ошибочное представление о бесконечных рядах.
Схема, с помощью которой Николай Орезмский в XIV веке показал, что сумма ряда из парадокса об Ахиллесе и черепахе не равна бесконечности.
С парадоксом лжеца дело обстоит иначе. «Эта фраза ложна» — об этом высказывании нельзя сказать, истинно оно или ложно, так как любой ответ неизменно ведет к противоположному. Как заметил греческий логик Хрисипп из Сол, те, кто сформулировал парадокс лжеца, «совершенно отклонились от изначального значения слов — они произвели лишь звуки, ничего не выразив». Первой естественной реакцией будет объяснить противоречие тем, что высказывание ссылается на само себя, однако этого недостаточно — высказывания «эта фраза истинна» или «эта фраза относится к книге «Сон разума. Математическая логика и ее парадоксы» также ссылаются сами на себя, однако не вызывают никаких затруднений.
Другим, несколько хитроумным решением, будет поставить вопрос: не принадлежит ли понятие истинности, подобно понятию множества, к числу тех, которые просто использовать, но трудно определить. Этой точки зрения придерживался Альфред Тарский (1902–1983), который в 1933 году опубликовал статью объемом свыше двухсот страниц на польском языке, где впервые формально определил истину. Несмотря на значительный объем статьи, Тарский не предложил придать понятию «истинность» новое значение, а вместо этого всего лишь описал на языке математики аристотелево определение истины как соответствие между тем, что говорится о реальности, и самой реальностью. Подобно тому как высказывание «снег белый» истинно тогда и только тогда, когда снег в самом деле белый, высказывание Р является истинным в некоторой теории тогда и только тогда, когда при интерпретации Р в рамках структуры, которую описывает эта теория, Р является истинным. В какой структуре следует интерпретировать фразу вида «эта фраза ложна»?
Как вы увидите в главе 4, ответить на этот вопрос удалось лишь Курту Геделю.
В конечном итоге парадокс Рассела, парадокс Ахиллеса и черепахи и парадокс лжеца были решены, однако попутно родилось множество других вопросов.
В 1905 году преподаватель института Дижона Жюль Ришар открыл парадокс, связанный с диагональным методом Кантора. Годом позже юный библиотекарь Бодлианской библиотеки Оксфордского университета (необязательно тот, который проводил дни и ночи, составляя каталог всех каталогов, не содержащих ссылки на самих себя) упростил парадокс Ришара, представив, что произойдет, если для описания любого натурального числа можно использовать только пятнадцать слов. Так как число выражений, состоящих из пятнадцати слов, является конечным, то с их помощью мы можем описать лишь конечное множество чисел. Среди всех чисел, которые мы не сможем описать пятнадцатью словами, одно будет наименьшим. Обозначим его через n. Однако в этом случае n будет «наименьшим числом, которое нельзя описать менее чем пятнадцатью словами» — это описание содержит всего девять слов!
Как мы можем быть уверены, что парадоксы не будут и дальше распространяться, подобно вирусам? Источниками противоречий служили бесконечность, самоотносимость и не вполне точно определенные понятия. Однако не все высказывания, которые ссылаются сами на себя, порождают парадоксы, полностью исключить бесконечность из математики нельзя, и у нас нет инструмента, который безошибочно укажет на недостаточно четко определенные понятия. В следующей главе мы расскажем о стратегии, с помощью которой наиболее выдающийся математик своего поколения, Давид Гильберт, хотел полностью избавиться от парадоксов.
Глава 3Программа Гильберта
Бог существует потому, что математика непротиворечива, а дьявол существует потому, что мы не можем доказать это.
Приписывается Андре Вейлю
«Кто из нас не обрадовался бы, если бы мог поднять завесу, за которой скрывается будущее, окинув взором перспективы нашей науки и ее секреты?»
Начинался новый век, и тысячи посетителей Всемирной выставки в Париже наводнили ее павильоны, озаряемые ярким августовским солнцем. В это же время в Париже проходил II Международный математический конгресс, и Давид Гильберт выступал в амфитеатре Сорбонны на заседании своих секций. Его целью было впервые рассказать не о том, что уже доказано, а о том, что еще предстоит открыть.
Никто не сомневался, что Гильберт был лучшим математиком своего поколения, однако его выступление было отодвинуто на второй план — наряду с исследованиями, посвященными древним японским геометрам, и предложениями ввести во всех странах единый научный язык. Разумеется, ученого пригласили выступить и на общем заседании конгресса в день открытия, но он слишком долго не мог определиться с темой выступления, и организаторам пришлось исключить его доклад из программы.
Наблюдая, как Гильберт в своих очках поднимался на кафедру, зрители спрашивали друг у друга, о чем же он все это время размышлял.
«История учит, что развитие науки протекает непрерывно. Мы знаем, что каждый век имеет свои проблемы, которые последующая эпоха или решает, или отодвигает в сторону как неразрешимые, чтобы заменить их новыми». Гильберт был убежден, что единственным двигателем прогресса в математике является решение задач. Поэтому, обращаясь к собравшимся в зале Сорбонны, лидер Гёттингенской математической школы подчеркивал, что решить задачу означает сформулировать рассуждения, с помощью которых, исходя из конечного числа гипотез, выраженных точными терминами, можно прийти к выводу за конечное число этапов посредством строгих логических правил вывода. Чтобы проиллюстрировать свои идеи, Гильберт выбрал двадцать три задачи, которые, по его мнению, должны были указать направления исследований математикам XX века, однако ему не хватило времени, чтобы прокомментировать все эти задачи. Благодаря свидетельствам его друзей — математиков Германа Минковского (1864–1909) и Адольфа Гурвица (1859–1919) — нам известно, каких трудов стоило Гильберту выбрать задачи, упомянутые в парижском докладе. И однако он ни на секунду не усомнился в своем выборе. Вторая задача из списка звучала, казалось, совершенно невинно: являются ли аксиомы арифметики непротиворечивыми?