Том 3. Диалектика природы и естествознания — страница 7 из 17

1. Объект химии. Основные внутренние противоречия развития химии

Химия — одна из фундаментальных отраслей знаний. Ее развитию и структуре присущ ряд специфических особенностей. Прежде всего следует отметить тесную связь химии с практикой и производством на всех ступенях ее развития. Способность химиков как бы «самим создавать себе объект» — синтезировать вещества с безграничным разнообразием свойств — обусловила возрастающую роль химии в прогрессе человеческой цивилизации. Во многих случаях современные химические производства достигли такого совершенства, а получаемые вещества — такой сложности, что между наукой и промышленностью в значительной мере стирается существенное различие. Это отражается в современном языке: слово «химия» выражает не только отрасль знания, но и весь комплекс химических производств.

Потребности производства и практики были определяющими в формировании объекта химии[83] и во все периоды развития влияли на ее структуру. Химия издавна была тесно связана, с одной стороны, с медициной через фармацевтическое производство, с другой — с металлургией и горным делом. Однако относительная простота превращений неорганических веществ привела к тому, что первоначальные понятия химической науки были сформулированы на основе изучения превращения соединений металлов, их восстановления из руд, окисления при нагреве и образования сплавов.

Исходным понятием химии является «химический элемент». Первое научное определение его было дано в эпоху формирования основ современного естествознания — в середине XVII в. Р. Бойлем. Формирование понятия о химическом элементе проходило под непосредственным влиянием той эпохи, в которую складывалась основная концепция физической картины мира в целом. «Бойль делает из химии науку»[84], — отмечал Ф. Энгельс.

В дальнейшем в связи с общим развитием материального производства особенно сильно возрастал интерес к исследованию превращений органических веществ. Однако окончательное формирование органической химии как самостоятельной отрасли науки произошло лишь в первой половине XIX в. Бурное развитие капиталистической промышленности потребовало усовершенствования ряда производств, в которых использовались органические вещества (бродильные производства, изготовление красителей). Это подтверждает тезис материалистической диалектики о решающем влиянии производства на развитие науки. К возникновению органической химии как науки вполне приложимо высказывание Ф. Энгельса по поводу других отраслей знания. Об электричестве он писал, что о нем «мы узнали кое-что разумное только с тех пор, как была открыта его техническая применимость»[85].

Дальнейшее развитие отраслей химической промышленности еще более усилило воздействие проблем превращения веществ органической природы на формирование объекта химии. Хотя прогресс промышленности значительно продвинул развитие химии в целом, органические производства имели явный приоритет. В результате процесс дальнейшей дифференциации объекта химии пошел по пути выделения таких важных областей органической химии, как химия высокомолекулярных соединений и биоорганическая химия.

Наряду с этим происходили и интегративные процессы. Отдельные отрасли органической химии начали сливаться с неорганикой — появились такие направления, как элементоорганическая химия и химия координационных соединений. В двух последних отраслях химической науки проблематика, свойственная неорганической и органической химии, слилась. Присоединение сложных органических радикалов к различным элементам позволило выявить неизвестные ранее тончайшие особенности поведения многих элементов системы Менделеева, создать вещества, обладающие рядом уникальных свойств (катализаторы, лекарственные препараты).

Наряду с прогрессом указанных отраслей химии (в особенности химии высокомолекулярных соединений, во многом определившей направление развития материального производства) во второй половине XX в. особое значение приобрели материалы, способные функционировать в экстремальных условиях (при высоких температурах и давлениях, мощных излучениях, в космическом вакууме). Эти обстоятельства стимулировали прогресс химии неорганических соединений. В связи с этим возникли новые отрасли химической науки, изучающие свойства особых систем, такие, как химия плазмы, исследующая состояния вещества при высоких температурах, химия огнеупорных материалов, специальных сплавов. Эти системы, как правило, включают в себя неорганические вещества, однако чаще всего они не являются индивидуальными соединениями, а представляют собой сложные смеси или композиции. Исследование таких систем как новых объектов химии составляет важное направление современной химической науки.

Рассмотренные выше причины, вызвавшие развитие и дифференциацию объекта химии, не исчерпывают всех факторов, определяющих структуру этой науки. Последняя обусловливается воздействием наук о жизни и наук о Земле как непосредственно, так и через практические или промышленные запросы, сочетающиеся с влиянием внутренних факторов.

Внутренние факторы, стимулирующие процесс формирования химии, достаточно сложны. Они начали обнаруживаться тогда, когда химия достигла высокого уровня развития и накопила большой фактический материал. В их основе лежит взаимодействие химии с другими отраслями естествознания, прежде всего с физикой. Хотя исторически химия долгое время считалась отраслью, близкой к биологии, тем не менее именно введение физических понятий и исследование физических параметров формировало теорию химии.

В первую очередь это относится к исследованию двух основных механических параметров вещества — веса и объема. Исследование веса привело к формулировке и экспериментальному обоснованию понятия химического элемента. Действительно, после разработки основ механической картины мира понятие массы и веса открыло возможности для количественного изучения химических превращений. Исследования веса как меры количества материи позволяли прямо устанавливать факт протекания процесса разложения вещества. На основе этого и в результате открытия возможности экспериментального обнаружения газообразных состояний удалось проследить процесс разложения на составные части важнейших веществ природы. При этом были установлены реальные пределы такого разложения — химические элементы или «начала». К концу XVIII в. благодаря трудам М. В. Ломоносова, А. Лавуазье, Дж. Пристли был составлен список этих элементов, включавший несколько десятков наименований.

Химический элемент как эмпирический предел анализа получил теоретическое обоснование в атомистике Дж. Дальтона. Хотя атомистические представления появились в науке еще в эпоху античности, тем не менее только атомистика начала XIX в. позволила подойти к конкретной числовой характеристике веса атома. Он определялся экспериментально на основе химического анализа.

В отличие от веса другой важнейший физический параметр — объем был введен в химию позднее. Это связано со спецификой взаимодействия ньютонианской и картезианской традиций в естествознании. Атомистика Дальтона, построенная на использовании веса и массы, представляла собой продолжение ньютонианской традиции, оставляя в стороне факторы, связанные с объемными или вообще пространственными характеристиками вещества. Такое ограничение было исторически необходимым. Однако уже в первой половине XIX в. открылась возможность использования данных об объеме прежде всего для изучения газообразных тел. Эти данные оказались важными для формирования второго (после атома) фундаментального микроскопического понятия химии — понятия о молекуле.

Атомно-молекулярная теория составила базис теоретической концепции химии. На ее основе происходило дальнейшее развитие теоретических основ химии. Понятие о молекуле связано с пониманием природы химического взаимодействия. Подход к молекуле как системе взаимодействующих атомов, образующих единство, позволил точнее сформулировать еще одно важное понятие — химическое соединение. Дальнейшее развитие внутренней логики химии шло по пути выяснения соотношений между отдельными химическими соединениями и элементами. На этом пути обнаружилась особенность объекта химии, отличающая его от объекта других наук о природе, в том числе и биологии.

В первую очередь это удалось выяснить на примере органических соединений. Успехи органического синтеза, в том числе получение тех веществ, которые возникли в процессе жизнедеятельности организмов, поставили вопрос о классификации химических соединений. Действительно, если органические вещества могут быть синтезированы искусственно из неорганических, то принципы биологической классификации к ним неприменимы (например, нельзя делить вещества на растительные и животные). В частности, детальный анализ взаимных переходов и состава большого числа органических соединений показал, что система их отношений коренным образом отличается от таковой в живой природе.

Уже со времен К. Линнея между видами животных и растений обнаруживались упорядоченные иерархические связи. Объекты живой природы группировались в виды, роды, семейства, классы, типы, которые в той или иной степени отражали генезис живых организмов. Попытка же нахождения такого генетического порядка среди объектов химии — химических соединений — не давала конструктивных результатов. Хотя между химическими соединениями существовали тесные взаимосвязи, они не образовывали последовательные иерархические ступени, отношения между ними были иные. Эти отношения представляли собой более или менее развитые выражения сходства. При этом сходные соединения образовывали ряды, в которых соседние члены были очень близки друг другу, тогда как крайние могли сильно отличаться. Более того, каждый член ряда находился на пересечении нескольких рядов, построенных по разному принципу сходства.

Первоначально считали, что отношения, известные в биологии как гомологические, не имеют прямой связи с происхождением органических соединений, но в середине XIX в. примеры таких гомологических рядов химических структур были описаны в работах многих химиков-органиков. При этом члены гомологического ряда были связаны не только между собой, но обнаруживали параллелизм с аналогичными представителями других соседних рядов (например, ряду углеводородов соответствовали ряды спиртов, кислот). Таким образом, совокупности химических соединений образовывали не генеалогические древа, а скорее систему пересекающихся рядов, своеобразную сетку или таблицу. Эта особенность объекта химии требовала развития совершенно иного теоретического аппарата, отличного от того, которым пользовалась биология. Принцип развития (генетической таксономии) здесь был неприменим или по крайней мере преждевременен.

Для дальнейшего продвижения в области познания объекта химии необходимо было выработать новый концептуальный аппарат. Этим аппаратом стала структурная теория. Современное содержание понятия «структурная теория» (или «теория строения») многопланово. Оно включает широкий круг теоретических концепций и эмпирических описаний структурных особенностей вещества. Структурная теория охватывает проблемы многообразия химических превращений, тесного единства структуры и процесса, взаимосвязи данного вещества с исходными веществами и продуктами разложения и др.

Следует отметить, что решение этих проблем с помощью фундаментальных принципов строгой теории пока невозможно. Хотя в этой области, особенно в связи с применением электронно-вычислительной техники, достигнут большой прогресс, химикам в практической работе приходится часто прибегать к эмпирическим методам. Область эмпирических исследований в химии очень широка и по существу в настоящее время составляет основу теоретических концепций этой науки. Исследование природы эмпирических объектов в химии тесно связано с проблемой моделирования. Можно даже говорить в какой-то степени о единстве эмпирических соотношений и моделей в химии[86].

Рассмотрим кратко некоторые важнейшие типы эмпирических методов и моделей. Исходным моментом эмпирических классификаций является отмеченная ранее особенность химии — наличие сети пересекающихся рядов сходных объектов. На эти ряды опирается большинство эмпирически найденных соединений, которые не являются универсальными, а существуют в пределах группы соединений. Первоначальным эмпирическим описанием, которое можно рассматривать и как математическую модель, является эмпирическое уравнение, связывающее несколько разных свойств или одно и то же свойство в двух сходных рядах. Такие эмпирически открытые соотношения часто объясняются на основе периодической системы элементов (например, связываются температуры разложения и теплоты образования в ряду сульфатов в группе металлов или, наоборот, сравниваются теплоты образования ряда сульфатов и селенатов одних и тех же металлов).

Такое соотношение задается в виде математической функции, в которой в качестве аргумента выступает одно свойство, а функции — другое. Подобное уравнение аналогично математической модели какой-либо системы типа «черного ящика», где в качестве «входа» используется одно свойство, в качестве «выхода» — другое. Часто такие соотношения носят название корреляций. Они широко применяются для оценки свойств неизвестных соединений путем интерполяции в ряду сходных веществ. Фактически на этом же принципе были основаны известные предсказания Д. И. Менделеева о существовании нескольких не открытых еще элементов (галлий, скандий, германий). В этом смысле периодическая система химических элементов может рассматриваться как своего рода модель химических взаимосвязей.

Очень важное место среди методов моделирования занимают аддитивные модели. Хотя химическое соединение нельзя представить как сумму составляющих его элементов, тем не менее при выполнении определенных условий вполне можно составить схему расчета, согласно которой свойства сложного вещества составляются из вкладов входящих в него частей. Такие схемы с успехом используются для расчета рефракции (функции коэффициента преломления), диамагнетизма, энтропии и других явлений. Существуют и широко применяются на практике таблицы инкрементов — вкладов, которые вносят в общее свойство соединений определенные атомы или их группы. По существу перечисленные модели в значительной степени являются эмпирическими. Они лишь отчасти опираются на какие-нибудь теоретические соображения и сводятся к предположению о наличии простейших связей между свойствами химических соединений.

Наряду с этим широко используются модели, которые прямо строятся на основе определенных теоретических положений. Поскольку, однако, реальные химические системы очень далеки от идеальных объектов, которые описываются теорией, в теоретические уравнения вводятся поправки. Последние носят эмпирический характер, в результате чего вместо теоретического уравнения появляется другое, полуэмпирическое, связанное с первым по принципу подобия. Именно так используются, например, уравнения газов и растворов, в которые вместо реальной концентрации вещества вводится активность (концентрация умноженная на поправочный множитель). Аналогичным образом во многих формулах для расчета энергии связи электрона с ядрами используются «эффективные заряды» вместо их точного значения.

В целом совокупность этих методов, сводящаяся к составлению эмпирических уравнений, подобных теоретическим, может быть названа моделированием по методу подобия. К последнему типу моделей непосредственно примыкают чисто теоретические уравнения, опирающиеся на фундаментальную теорию Перечисленные методы могут рассматриваться как случаи системного моделирования. Здесь химические особенности системы задаются ее составом и положением в ряду сходных объектов. Структурные особенности каждой системы принимаются во внимание лишь частично.

Другую группу моделей составляют структурные модели. Их простейшими представителями являются знаковые модели типа химических формул. Кроме обычных строчных формул, отражающих состав и группировку атомов, в последнее время в связи с развитием методов автоматического накопления и поиска информации важное значение приобрело кодирование химических систем. Разнообразные методы кодирования, приспособленные для ввода данных о структуре веществ в электронно-вычислительную машину, могут рассматриваться как важное направление знакового моделирования в химических системах. Многие из существующих в настоящее время систем кодирования хорошо отражают отдельные детали структуры и функции химических соединений.

Вариантом знакового моделирования структуры являются структурные формулы. Ими могут быть и упомянутые выше графические изображения связей атомов (классические структурные формулы), и разнообразные варианты чертежей, отражающих пространственное расположение атомов или ионов. По существу такую же роль могут выполнять и пространственные модели сложных химических соединений (крупные молекулы белка, сложные кристаллы). Такие модели используются в настоящее время не только для демонстрации (в дидактических целях), но и для проверки отдельных возможных вариантов взаимного расположения частиц сложной конфигурации.

Геометрически подобные модели представляют собой варианты физического моделирования, которое не ограничивается отражением только пространственных отношений. Большое место в современных моделях химических систем принадлежит другим типам физического моделирования. Например, можно назвать электростатические модели. Хотя электростатическое взаимодействие нельзя полностью отождествлять с силами, вызывающими химическую связь, тем не менее во многих случаях химические соединения можно с успехом моделировать в виде системы тел с различными зарядами. Принимая во внимание размеры, силы взаимодействия, а также деформацию молекул, можно построить совершенные модели сложных химических объектов и рассчитать с большой точностью энергию связи и частоты колебаний молекул. Такие расчеты широко используются в настоящее время для оценки параметров малоизученных веществ.

Структурное моделирование непосредственно примыкает к фундаментальным теоретическим моделям, в которые вносятся эмпирические параметры. Такой эмпирический метод может рассматриваться как вариант моделирования.

2. Диалектика химических процессов и периодический закон

Понятие структуры существовало давно. Уже корпускулярные представления базировались на структурных концепциях. Плодотворным оказалось применение этого понятия к изучению кристаллов. По существу пространственная структура кристаллической решетки была правильно угадана в трудах кристаллографов задолго до того, как была доказана реальность самих атомов. Однако все эти представления опирались на геометрические соображения и не давали экспериментального обоснования химическим превращениям.

Концепция химического строения возникла в результате изучения химических реакций и может рассматриваться как дальнейшее обобщение понятия об элементе и составе. Это теоретически более высокий уровень познания химических систем. В таком плане следует понимать и известное определение химии, данное Энгельсом:

«Химию можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава»[87].

Если в основе понятия химического состава лежит элемент и реакция соединения-разложения, то понятие о структуре опирается на идею химической связи и на реакцию замещения. Химическая связь представляет собой отношение между атомами в молекуле, которое может выражать прямую или опосредованную связь.

Установление химического строения в классической теории производится с помощью изучения реакций последовательного замещения одних атомов другими. Если в молекуле ряд одинаковых атомов занимают аналогичное структурное положение, их замещение приводит к образованию одного и того же вещества. Если их структурные положения различны, то при замещении образуется столько веществ, сколько различных положений имеют эти атомы. Такой путь является чисто химическим. Поэтому характер отношений атомов, их связи следует рассматривать как химическое строение. Вопрос о том, в какой степени это химическое строение отвечает пространственному расположению, решается с помощью дополнительных средств.

Теория химического строения, созданная А. М. Бутлеровым, Ф. Кекуле, А. Кольбе и др., лежит в основе современной химии. С помощью этой теории можно понять и объяснить взаимные переходы между отдельными веществами, их сходство и различие в рядах. По существу весь комплекс свойств, которыми обладает данное вещество, определяется его химическим строением. При этом учитывается как прямая связь, так и взаимное влияние опосредованно связанных между собой атомов.

Идея химического строения дополняется идеей пространственного строения (стереохимия). Последнее выясняется с помощью исследований отдельных химических реакций, а чаще различных физических свойств вещества. Так, классическая стереохимия органических соединений опирается на данные по изучению вращения плоскости поляризации света. Более детальные сведения о пространственной структуре получают при изучении поглощения рентгеновских лучей (рентгенография кристаллов), с помощью пучков электронов (электронография молекул) и рядом других оптических и магнитных методов.

Однако классическое учение о химическом строении не исчерпывало всего объема взаимодействия атомов. Химическая связь обладает большим разнообразием. Образно говоря, ребра графа структуры как бы окрашены. Кроме того, в большинстве случаев связи носят подвижный характер, перемещаются в молекуле (например, осциллируют двойные связи в бензольном кольце). Эти особенности уже не могут быть выражены классическими представлениями о химическом строении. Для этого необходимо использовать представление об электронном строении. Последнее было введено в результате разработки электронной теории строения атомов, опирающейся на физические принципы квантовой механики.

Введение электронных представлений тесно связано с развитием другой важной концепции химии — периодической системы химических элементов. Разработка этой системы Д. И. Менделеевым по времени почти совпадает с возникновением теории химического строения. Периодическую систему можно рассматривать как следствие изучения той особенности сходства химических систем, которая выражается в пересекающихся рядах.

Периодическая система химических элементов Менделеева переносит идею о сходстве ряда объектов со сложных химических соединений на элементы. Как известно, в таблице Менделеева каждый элемент занимает свое место в системе. Оно определяет его отношение ко всем остальным элементам, а следовательно, все его химические свойства и свойства образуемых им соединений. В конечном счете периодическая система отражает те аналогии, которые существуют в природе между элементами. В основе периодической системы Менделеева и периодического закона лежит представление о единстве всех элементов. В таблице каждый элемент расположен так, что находится в точке пересечения большого числа рядов элементов — аналогов. Это могут быть аналоги по вертикали (главные и дополнительные подгруппы), по горизонтали (ряды), по нескольким диагоналям. Вся система аналогий тесно связана, что позволяет объединить в непрерывную цепь закономерностей любую пару элементов. Таким образом, периодическая система есть реальное отражение идеи единства материального мира[88].

Другой важной диалектической идеей является тесная связь количественных изменений по рядам и группам системы. В зависимости от направления (или сечения) их рассмотрения в таблице характер накопления количественных изменений, приводящий к качественному скачку, будет различен. Однако во всех случаях закон перехода количественных изменений в качественные проявляется со всей определенностью.

Система элементов Менделеева позволила не только предсказать новые элементы и соединения, но и, главное, поставила вопрос о строении самих атомов. Действительно, если положение сложных соединений (например, гомологов) в ряду определяется химическим строением их молекул, то естественно предположить, что место элемента в системе также должно определяться строением атома. Однако знание тех физических свойств веществ, на которые опирается атомно-молекулярная теория, т. е. объема и веса, недостаточно для установления внутреннего строения атома. Здесь теоретическая картина, основывающаяся на механических параметрах, должна быть дополнена данными, заимствованными из других областей физики — электродинамики и квантовой механики.

Сказанное подтверждает известное положение диалектического материализма о разнообразии форм движущейся материи. Возражая против упрощенного, метафизического понимания материализма, В. И. Ленин отмечал: «Это, конечно, сплошной вздор, будто материализм утверждал… обязательно «механическую», а не электромагнитную, не какую-нибудь еще неизмеримо более сложную картину мира, как движущейся материи»[89].

Как известно, первоначально место элемента в системе Менделеева определялось атомным весом. Однако связь этой величины со всем комплексом химических свойств была не ясна, и сам Менделеев, а также его последователи продолжали искать более глубокие свойства атомов, непосредственно определяющие его химические параметры. Эти свойства были найдены при анализе атомных спектров. В начале XX в. частоты колебаний в спектрах атомов были сопоставлены с орбитами электронов, вращающихся вокруг ядра атома. Так возникла первая модель структуры атома Н. Бора, причем заряд ядра был отождествлен с порядковым номером элемента в системе. В дальнейшем квантовая механика позволила уточнить и дополнить теорию строения атома. В результате многообразные отношения, существующие между элементами в системе Менделеева, получили теоретическое обоснование. Сходство или различие свойств удалось связать с числом электронов на определенных орбитах, симметрией орбит, их удаленностью от ядра и энергией связи с ядром. В результате возникла электронная теория строения материи, представляющая собой основу не только учения о строении атомов и молекул, но и теории химических превращений.

3. Единство структуры и процессов в химии. Проблема эволюции вещества в природе

Анализ эволюции развития химической формы движения материи предполагает предварительное рассмотрение ее функционирования и строения, т. е. исследование системно-структурных отношений. В современной химии теория строения вещества опирается на квантовую механику, химический аспект которой называется квантовой химией. Последняя обладает развитым логическим аппаратом, в принципе способным охватить и качественно, а отчасти и количественно описать свойства всех химических систем. Электронное строение как способ описания химических соединений средствами квантовой механики, не отрицая данных классической теории, существенно дополняет их. Кроме возможности описать разнообразие химических связей электронное строение позволяет понять и предвидеть свойства и структуру большого числа систем, которые вообще нельзя описать при помощи классической теории. Это относится к системе с делокализацией электронов в пространстве как одной молекулы, так и целого кристалла.

Квантовая химия является теоретическим ядром современной химии. Однако серьезные математические трудности, связанные с расчетом сложных соединений, не позволяют распространить ее на весь материал химии. Построение количественной теории химических связей кажется пока делом отдаленного будущего. Тем не менее качественное описание химических систем, которое дает квантовая механика, оказывается вполне адекватным. В основе его лежит диалектическая идея динамизма, подвижности, свойственной химическим системам. К пониманию динамизма интуитивно химики подходили еще в XIX в., когда стремились связать данное вещество с исходными веществами и продуктами его распада, т. е. изучить вещество не изолированно, а в системе реагирующих тел, диалектически, во взаимосвязи и развитии. Методику такого подхода прежде всего давала термодинамика и кинетическая теория материи.

Взаимосвязь химии с физическими концепциями не ограничивается квантовой теорией и электродинамикой, но осуществляется и через статистическую теорию строения материи. Особенно важна связь химии со статистической теорией равновесных систем. Эта теория тесно смыкается с химическим аспектом учения о макроскопическом равновесии — химической термодинамикой. Термодинамика дает метод описания химических соединений в системе реагирующих веществ, где каждое тело тесно связано с исходными веществами и продуктами своего распада. Такой подход позволяет ввести понятие о фазе как форме существования химического соединения.

Понятие о химическом соединении, находящемся в фазе, выступает как некоторая форма реальной фазы. Термодинамика требует также, чтобы внутри фазы существовало равновесие, которое должно иметь место со всеми веществами и вне фазы. Только в этом случае к описанию фазы можно применить аппарат термодинамики и записать ее уравнение. Исследование систем сводится, таким образом, к исследованию превращений между ними. Это важный вывод, поскольку он позволяет провести аналогию между классическими физическими процессами (например, плавление, испарение) и превращениями, сопровождающимися химическими реакциями. Так, переход жидкости в пар описывается термодинамическим уравнением такого же вида, как и химические процессы, например разложение известняка с образованием углекислого газа или восстановление окислов железа углеродом. Все это имеет большое значение, поскольку вскрывает новые стороны в познании природы превращения веществ.

Действительно, химические превращения, если смотреть на них с позиции взаимодействия атомов, универсальны. Невозможно представить себе никаких изменений в веществе без разрыва или образования каких-то химических связей. Любое испарение, хотя и считается физическим процессом, тем не менее включает в себя разрыв связей в жидкости при переходе в пар. Если при испарении воды это слабые связи между молекулами, то при испарении солей — прочные связи в кристаллах. Даже простое нагревание вещества (той же воды) в определенный момент сопровождается перестройкой ее внутренней структуры, которая приводит к разрыву связей.

Термодинамический анализ дает четкие границы понятию о химическом превращении. Он фиксирует как химические лишь те из них, которые сопровождаются образованием новых фаз, отличающихся составом и описывающихся новым уравнением. Поэтому переход воды из жидкости в пар термодинамика не позволяет рассматривать как химическую реакцию, хотя детальный анализ молекулярного механизма перехода воды в пар объясняет процессы образования сложных молекулярных агрегатов и их распад.

Подход к химическим превращениям с точки зрения термодинамики позволил рассматривать химический процесс не как изолированное превращение отдельных молекул. а как изменения в системе в целом. При этом не закрывается путь и к более детальному анализу данной системы и установлению в ней химических превращений. Этот анализ будет отвечать более глубокому познанию структуры системы. Иными словами, выделение индивидуального соединения в виде отдельной новой фазы выступает как первичный подход. Применяя более тонкие методы (исследование оптических свойств, плотностей, рентгеновский анализ), можно перейти на более глубокие уровни познания структуры и обнаружить изменения, сопровождающиеся образованием новых и разрушением прежних молекулярных образований или изменением порядков связей симметрии атомов.

Так обнаруживается глубокая диалектичность процесса познания химических превращений: многоуровневый подход, бесконечность процесса проникновения в природу реагирующих систем. Здесь наглядно видна истинность положения В. И. Ленина об углублении мысли человека от явления к сущности, от сущности первого порядка к сущности второго порядка и т. д.[90]

Подход к химическим соединениям как системам важен и потому, что позволяет выявить единство структуры и процесса. Образование нового вещества в общем представляет собой определенные изменения структуры системы. На этом основан метод физико-химического анализа, в котором соединение, образующееся в системе, обнаруживается в результате исследования процессов и изменения свойств при вариации состава.

Представление о единстве процесса и структуры получает дальнейшее развитие при исследовании неравновесных систем. Здесь наряду с температурой, давлением и другими внешними условиями выступает время. Эта область химии названа химической кинетикой. Она также тесно связана со статистической теорией строения материи. В основе химической кинетики лежит представление о механизме процесса, который описывается с помощью переходных состояний вещества, возникающих в момент превращения. В частности, в молекулярных системах это будут так называемые переходные комплексы — неустойчивые образования, появляющиеся в момент встречи молекул и существующие очень короткое время. Природа этих специфических форм интенсивно изучается. По существу переходные комплексы можно назвать особым состоянием материи. Современная теория опирается на методы квантовой химии и позволяет рассчитывать структуры многих переходных комплексов, что имеет большое значение для предсказания хода химических реакций.

В состав переходного комплекса входят не только реагирующие вещества, но и среда превращения (растворитель) и те, порой очень незначительные, примеси, которые ускоряют или замедляют процесс (ингибиторы и катализаторы). Структура переходного комплекса во многом отличается от структуры обычных молекул, поскольку здесь атомы проявляют необычные валентности. В переходном комплексе могут находиться также ненасыщенные связи и заряды. В целом в переходном комплексе осуществляется высшее единство структуры и процесса как в пространственном, так и во временном планах[91].

Рассмотрим теперь вопрос о месте химической формы движения материи среди других ее форм. Как известно, Ф. Энгельс генетически связывал химическую форму движения материи с физической. На уровне движения атомных и субатомных частиц появляются первые признаки химического взаимодействия, которое, развиваясь далее, создает макроскопические тела. Здесь физическая форма движения не исчезает, поскольку между макроскопическими телами происходят и физические взаимодействия (например, трение, удар, гравитационное воздействие). Таким образом, на этой стадии химическая форма движения сосуществует с физической. Наконец, на определенном этапе развития химическое движение порождает новую форму движения материи — жизнь.

Проследим более подробно ступени эволюции материи, связанные с появлением химизма, или «химической формы организации вещества»[92]. Эволюция вещества начинается в момент начала расширения Вселенной со стадии элементарных частиц. Химическая организация вещества появляется лишь после того, как плазма атомных ядер и электронов попадает в такие условия, при которых кинетическая энергия сталкивающихся ядер уже не способна преодолеть барьер отталкивания. В этом случае при столкновении ядер происходит не их слияние, а возникновение многоядерной системы, окруженной электронной оболочкой. Такая система при отсутствии сильно ускоряющихся магнитных полей и излучений становится устойчивой при температуре около 10 тыс. градусов. Она является верхней температурной границей химизма. Возникающие при этом двухъядерные, а частично и многоядерные молекулы образуют первые химические соединения (СО, СН, НО, SiO), присутствующие в периферийных частях звезд, туманностях и других космических объектах.

Следующей стадией эволюции вещества считается образование твердых тел, которое происходит при понижении температуры ниже 3–4 тыс. градусов. Образующиеся мелкие твердые частицы космической пыли постепенно объединяются в крупные тела, создавая объекты типа протопланет. Вещество этих тел еще не обладает свойствами веществ известных нам планет и содержит в себе ряд соединений, способных вступать в химическое взаимодействие. На этой стадии происходит своеобразное расхождение путей развития вещества. В тяжелых планетах, удаленных от Солнца, происходит образование форм вещества особой природы, которая пока еще мало изучена. Речь идет о специфических и сильно реагирующих химических системах, которые существуют сейчас на таких планетах, как Юпитер или Сатурн. Возможно, что наличие на этих планетах большого количества газов при низких температурах вызывает образование разнообразных форм взаимодействия свободных радикалов, несвойственных земным условиям.

По-иному развивается вещество в планетах земной группы. Здесь происходит формирование центрального тяжелого ядра, состоящего из металлов и их карбидов, и мощной мантии из силикатов и окислов легких металлов. В этой верхней зоне и локализуются дальнейшие процессы, связанные с эволюцией вещества. Решающую роль при этом играет процесс выделения газов, образующих атмосферу. При относительно высокой температуре (условия Венеры) газы (углекислота, аммиак, серный ангидрид) целиком переходят в атмосферу, обусловливая очень большую ее плотность. При низких температурах создаются условия для значительного поглощения газов твердой поверхностью, что приводит к сильно разреженной атмосфере (таковы условия на Марсе).

Оба эти направления эволюции вещества являются, по-видимому, относительно тупиковыми. Только на Земле возникают такие оптимальные условия, когда в атмосферу переходит некоторое количество газов и, что особенно важно, вода частично находится в воздухе, а частично в жидком состоянии — в гидросфере (Мировой океан). Здесь получает развитие новая, биогенная стадия эволюции вещества.

Растворенные в воде вещества сочетают в себе в оптимальном варианте структурное разнообразие твердого вещества с активностью газов. Действительно, газы обладают реакционноспособными частицами, поскольку двигаются и взаимно сталкиваются. Вместе с тем в газах благодаря их реакционной способности не могут сохраняться образования сколько-нибудь сложной структуры. Последние легко образуются в твердых телах, однако здесь их реакционная способность сравнительно мала. Водные же растворы за счет образования оболочек из молекул воды как бы стабилизируют достаточно сложные структуры. Вместе с тем, находясь в воде в виде раствора, они приобретают достаточную подвижность, а следовательно, и реакционную способность. С этим связана исключительная роль гидросферы (или Мирового океана) в эволюции вещества. Только в водных растворах подвижные небольшие молекулы атмосферного углекислого газа, аммиака, циана могли объединиться и дать частицы аминокислот, которые в свою очередь образовали цепочку белковых молекул.

Возможно, что окончательное формирование длинных цепей молекул проходило не в жидкой среде, а в адсорбированных слоях на поверхности, омываемой водой (отмели, неглубокие водоемы). В этих условиях могли образоваться вещества, способные в дальнейшем послужить материальной основой для возникновения жизни, которая образует верхнюю структурную границу химической формы организации вещества. Такой в самых общих чертах можно представить эволюцию вещества от ионизированной плазмы до первых организмов. Продолжая существовать и далее, она вместе с тем служит основой следующей форме движения материи — жизни. Из сказанного следует, что данный путь эволюции не единственный. Он тесно связан с условиями, возникшими на Земле, и в конечном счете приводит к образованию биосферы, которая в свою очередь служит материальной основой для возникновения человека.

Условия развития человеческой цивилизации, как это стало очевидно сейчас, сильно влияют на эволюцию вещества на Земле. Это сказывается не только на биосфере, но и на составе гидроатмосферы. Например, процесс загрязнения Мирового океана и изменение состава атмосферы путем увеличения количества углекислого газа являются естественными следствиями развития человеческой цивилизации, могут рассматриваться и как продолжение химической эволюции Земли. Современная химия обладает достаточными знаниями для того, чтобы противопоставить стихийному процессу такой эволюции сознательную деятельность человека по сохранению окружающей среды.

Глава IV. ДИАЛЕКТИКА РАЗВИТИЯ АСТРОНОМИИ