Фрэнк ВильчекТОНКАЯ ФИЗИКАМасса, эфир и объединение всемирных сил
Научный редактор К. Циберкин
Переводчики И. Айзятулова, С. Черников
Технический редактор Е. Рафалюк-Бузовская
Литературные редакторы Е. Рафалюк-Бузовская, Н. Хлебина
Художники Г. Блинов, С. Заматевская, Г. Синякина (Маклакова)
Корректоры О. Андриевич, Н. Гринчик, Е. Павлович
Верстка Г. Блинов
Посвящается памяти Сэма Треймана и Сидни Коулман.
Гидов в науке, друзей по жизни.
Руководство для читателя
Книга, которую вы держите в руках, имеет очень простую структуру: ее следует читать просто главу за главой, от начала и до конца.
Вместе с тем я включил в нее:
• обширный глоссарий, необходимый для того, чтобы вас не сбивали с толку незнакомые слова и чтобы вам не приходилось возвращаться к тому месту, где они встречаются впервые. Там есть даже несколько шуток;
• сноски, которые уточняют некоторые моменты, развивают важные идеи или содержат ссылки на источники;
• три приложения. Первые два посвящены более глубокому раскрытию тем, обсуждаемых в главах 3 и 8 соответственно; третье представляет собой отчет от первого лица о том, как было сделано ключевое открытие, описанное в главе 20.
Кроме того, предлагаю посетить интернет-страницу itsfrombits.com, где вы найдете дополнительные изображения, ссылки и новости, относящиеся к данной книге.
Вы можете обращаться к приложениям по мере изучения соответствующих глав, однако, если вы предпочтете этого не делать, материал книги все равно должен быть вам понятен. Я рассчитывал немного разгрузить главу 8, но в конце концов не смог этого сделать. В связи с чем в данной главе вы найдете очень много шума из Ничего.
Часть I. Возникновение массы
Материя — не то, чем она кажется. Ее самое очевидное свойство, называемое сопротивлением движению, инерцией или массой, может быть более глубоко раскрыто в совершенно других терминах. Масса материи — это энергия, заключенная в фундаментальных строительных блоках, которые сами по себе массой не обладают. Пространство тоже является не тем, чем оно кажется. То, что видится пустым местом, предстает перед нашими умами в виде сложной среды, наполненной случайными проявлениями разных процессов.
Глава 1. За дело
Вселенная — не то, чем она была раньше, и не то, чем она кажется.
Зачем все это? Люди, размышляя об огромном мире вокруг себя, о разнообразном и часто удивительном жизненном опыте и перспективе смерти, вынуждены задавать себе этот вопрос. Мы ищем ответы во многих источниках: в древних текстах и сохранившихся традициях, в любви и мудрости других людей, в музыкальных творениях и произведениях искусства. Каждый из этих источников может предложить что-то свое.
Однако логичным первым шагом при поиске ответов было бы понять, что подразумевается под «этим». Наш мир может рассказать о себе множество важных и удивительных вещей. Именно им и посвящена эта книга. Я хочу обогатить ваше понимание «того», в чем мы с вами находимся.
Чувства и картина мира
Начнем с того, что мы строим наши картины мира из странного исходного материала: мы используем сигналообрабатывающие инструменты, «спроектированные» эволюцией для отбора из наполненной информацией Вселенной очень немногих входящих потоков данных.
Потоки данных? Они более знакомы нам как зрение, слух, обоняние и т. д. В современном понимании зрение представляет собой отбор проб электромагнитного излучения, проходящего через небольшое отверстие в наших глазах, при этом из широчайшего спектра отбирается весьма ограниченная радуга цветов. Слух отслеживает изменение давления воздуха на наши барабанные перепонки, а обоняние производит тонкий химический анализ воздуха, попадающего в наши носовые пазухи. Другие сенсорные системы предоставляют приблизительную информацию об ускорении, с которым движется все наше тело (кинестетическое ощущение), о температуре и давлении на его поверхности (осязание), дают некоторое представление о химическом составе вещества на нашем языке (вкус) и еще немного всякой всячины.
Эти сенсорные системы позволяли нашим предкам, как позволяют и нам, построить богатую динамическую картину мира, помогающую адекватно реагировать на происходящее. Наиболее важными ее компонентами являются более или менее стабильные объекты (например, другие люди, животные, растения, камни, солнце, звезды, облака), одни из них движутся, другие представляют опасность, третьи годятся в пищу, а четвертые, избранные и особенно интересные, являются желанными партнерами.
Устройства для усиления наших органов чувств открывают перед нами более богатый мир. Когда Антони ван Левенгук в 1670-х годах рассмотрел живой мир через первые качественные микроскопы, он увидел совершенно неожиданный скрытый порядок бытия. За короткое время он обнаружил бактерии, сперматозоиды и полосатую структуру мышечных волокон. Сегодня мы относим многие болезни (и полезные эффекты) на счет бактерий. Основа наследственности (по крайней мере половина) находится в крошечном сперматозоиде. А наша способность двигаться обеспечивается этими полосами волокон. Точно так же, когда Галилео Галилей в 1610-х годах впервые направил телескоп в небо, обнаружились новые богатства: он увидел пятна на Солнце, горы на Луне, спутники вокруг Юпитера и множество звезд Млечного Пути.
Однако самым главным усиливающим органы чувств устройством является мыслящий разум. Он позволяет нам осознать, что мир содержит гораздо больше и во многих отношениях представляет собой не то, чем кажется на первый взгляд. Многие ключевые факты о мире не фиксируются нашими чувствами. Смена сезонов, сопровождаемая неизменным годовым циклом восхода и захода солнца, ночное вращение звезд на небе, более сложные, но все же предсказуемые движения Луны и планет, а также их связь с затмениями — все эти закономерности не улавливаются глазом, ухом или носом. Однако мыслящий разум может их разгадать. А заметив эти закономерности, разум вскоре обнаруживает, что они являются более регулярными, чем эмпирические правила, которыми мы пользуемся для составления повседневных планов и предположений. Более глубокие, скрытые закономерности поддаются подсчету и геометрии — одним словом, математической науке.
Другие скрытые закономерности были выявлены благодаря технологиям и, что примечательно, искусству. Красивым и исторически важным примером является устройство струнных музыкальных инструментов. Около 600 года до н. э. Пифагор заметил, что тона лиры звучат наиболее гармонично, когда длины струн соотносятся между собой как простые целые числа. Вдохновившись этой догадкой, Пифагор и его последователи сделали замечательное интуитивное открытие. Они предположили возможность построения другой картины мира, менее зависимой от наших чувств, но лучше соответствующей скрытой гармонии природы, а значит — и реальности. В этом и заключается смысл научного кредо пифагорейского союза: «Все вещи суть числа».
Научная революция XVII века начала подтверждать догадки древних греков. Она привела к открытию Исааком Ньютоном математических законов движения и тяготения. Законы Ньютона позволили точно рассчитывать движения планет и комет, а при наличии мощных инструментов — описывать и движение материи в целом.
Тем не менее ньютоновские законы действуют в картине мира, которая очень отличается от повседневных интуитивных представлений. Поскольку ньютоновское пространство бесконечно и однородно, Земля и ее поверхность не являются каким-то особенным местом. Направления «вверх», «вниз» и «в сторону» принципиально похожи. Все остальное тоже не получает каких-либо преимуществ перед равномерным движением. Ни одно из этих понятий не вписывается достаточно хорошо в повседневный опыт. Это беспокоило современников Ньютона и даже его самого. (Ньютона тревожила относительность движения, несмотря на то что она является логическим следствием его уравнений. Чтобы избавиться от нее, он постулировал существование «абсолютного» пространства, относительно которого определены истинный покой и движение.)
Еще один прорыв был совершен в XIX веке, когда Джеймс Клерк Максвелл вывел уравнения, описывающие электричество и магнетизм. Эти новые уравнения охватывали более широкий круг явлений, включая ранее известные и вновь открытые виды света (например, то, что мы теперь называем ультрафиолетовым излучением и радиоволнами), в рамках математически точной картины мира. Такой прорыв требовал пересмотра и значительного расширения нашего восприятия реальности. Там, где Ньютон описал движение частиц под действием силы тяжести, уравнения Максвелла заполнили пространство игрой «полей», или «эфиров». По словам Максвелла, то, что наши органы чувств воспринимают как пустое пространство, на самом деле является домом для невидимых электрических и магнитных полей, которые оказывают воздействие на видимую нам материю. Несмотря на то что эти поля начинаются как математический прием, они «выскакивают» из уравнений, чтобы жить собственной жизнью. Изменение электрических полей производит магнитные поля, изменение магнитных полей создает электрические поля. Таким образом, эти поля могут оживлять друг друга по очереди, порождая самовоспроизводящиеся возмущения, которые движутся со скоростью света. Благодаря уравнениям Максвелла мы понимаем, что эти возмущения и есть свет.
Открытия Ньютона, Максвелла и многих других блестящих ученых значительно расширили человеческое воображение. Однако только в XX и XXI веках развитие физики позволило поистине приблизить осуществление мечты Пифагора. По мере того как наше описание фундаментальных процессов становится все более полным, мы начинаем воспринимать больше и видеть иначе. Глубинная структура мира довольно сильно отличается от его поверхностной структуры. Чувства, с которыми мы рождаемся, не соответствуют нашим наиболее полным и точным моделям мира. Я предлагаю вам расширить восприятие реальности.
Сила, смысл и метод
Когда я был маленьким, мне нравилось думать, что за видимостью вещей скрываются великие силы и тайные смыслы[1]. Я был очарован магическими представлениями и хотел стать волшебником. Однако мой первый набор волшебника стал для меня полнейшим разочарованием. Я понял, что секреты волшебства основаны на хитрых уловках.
Позднее меня очаровывала религия, особенно римско-католическая вера, в атмосфере которой я рос. Мне рассказали о секретных смыслах, стоящих за видимыми вещами, о великих силах, на которые можно повлиять молитвой и ритуалами. Однако по мере изучения науки некоторые понятия и объяснения в древних священных текстах начали казаться мне явно неправильными; а по мере изучения истории и историографии (исследований в области истории) я усомнился в некоторых описанных в тех текстах событиях и фактах.
Однако наибольшим разочарованием явилось не то, что в священных текстах были ошибки, а то, что они не выдерживали сопоставления с наукой. По сравнению с тем, что я узнавал, изучая научные дисциплины, они предлагали очень мало по-настоящему удивительных и впечатляющих идей. Разве те представления могли бы соперничать с понятием бесконечного пространства, далеких звезд, сопоставимых с нашим Солнцем и даже превосходящих его? Скрытых сил и новых, невидимых форм «света»? Или огромных энергий, которые люди могли, понимая естественные процессы, научиться освобождать и контролировать? Я начал думать, что если Бог существует, то Он (или Она, или Они, или Оно) проделал намного более впечатляющую работу по раскрытию Себя в мире, чем описывается в старых книгах; и что сила веры и молитвы неуловима и ненадежна по сравнению с повседневными чудесами, которые творят медицина и технологии.
«Ах, — слышу я возражение приверженца традиционной веры, — но ведь научное исследование мира не раскрывает его смысла».
На это я отвечаю: дайте ему шанс. Наука выявляет некоторые очень удивительные факты о том, что собой представляет мир. Прежде чем пытаться постичь его смысл, необходимо понять, чем этот мир является.
Во времена Галилея преподаватели философии и богословия — эти предметы были неразделимы — вели грандиозные беседы о природе действительности, структуре вселенной и способах устройства мира, основываясь на сложных метафизических аргументах. Тем временем Галилей измерял скорость скатывания шариков с наклонных плоскостей. Как приземленно! Тем не менее философские беседы, какими бы грандиозными они ни были, отличались неопределенностью. Исследования Галилея были четкими и точными. Старая метафизика не прогрессировала, в то время как работа Галилея привела к богатым и захватывающим результатам. Галилея тоже волновали великие вопросы, однако он понимал, что для получения подлинных ответов требуются терпение и смирение перед фактами.
Этот урок справедлив и сегодня. Лучший способ решения самых важных вопросов, вероятно, заключается в диалоге с Природой. Мы должны задавать уточняющие вопросы, позволяющие Природе давать нам значимые ответы, в особенности такие, которые могли бы нас удивить.
Применение этого подхода неестественно для нас. В условиях, в которых мы эволюционировали, важные решения должны были приниматься быстро и с использованием доступной информации. Людям нужно было забить копьем свою добычу, прежде чем они сами станут добычей того, на кого охотились. Они не могли останавливаться для изучения законов движения и аэродинамики копий и вычисления траектории. И большие сюрпризы ими определенно не приветствовались. Мы хорошо приспособлены к усвоению и использованию эмпирических правил, а не к выявлению абсолютных причин и тонких различий. Еще меньше мы приспособлены к выполнению длинных цепочек вычислений, которые соединяют фундаментальные законы с наблюдаемыми следствиями. С этим намного лучше справляются компьютеры!
Чтобы получить как можно больше от нашего диалога с Природой, мы должны согласиться на использование Ее языка. Способы мышления, которые позволяли выживать и размножаться в африканской саванне 200 000 лет назад, уже нектуальны. Я предлагаю вам расширить свой способ мышления.
Масса — центральное понятие
В этой книге мы исследуем некоторые из самых великих вопросов, которые только можно вообразить: о фундаментальной структуре физической реальности, о природе пространства, о содержимом Вселенной и о будущем человеческих исследований. Вдохновленный примером Галилея, я буду обращаться к этим вопросам по мере их возникновения в процессе естественного диалога с Природой, когда мы будем подходить к конкретной теме.
Путь к самым серьезным вопросам нам позволит проложить тема массы. Для глубокого ее понимания мы пойдем дальше Ньютона, Максвелла и Эйнштейна, обратившись к множеству новейших и самых странных идей из мира физики. И мы увидим, что понимание массы позволяет нам подойти к решению фундаментальных проблем объединения сил и гравитации, которые находятся на передовой текущих исследований современной науки.
Чем объясняется центральная роль массы? Позвольте мне рассказать вам одну историю.
Когда-то давно существовало то, что называлось материей, и она была вещественной, тяжелой и неизменной. А то, что очень отличалось от нее, называлось светом. Люди воспринимали их в качестве отдельных потоков данных, осязая одно и наблюдая другое. Материя и свет служили — и все еще служат — мощными метафорами для других противопоставляемых аспектов реальности: плоти и духа, существования и становления, земного и небесного.
Когда материя появлялась из ниоткуда, это воспринималось как чудо, как тогда, когда Иисус накормил множество людей пятью хлебами.
Научной душой материи, ее неприводимой сущностью являлась масса. Масса определяла сопротивление материи движению, ее инерцию. Масса была неизменной, «сохраняемой». Она могла передаваться от одного тела другому, но никогда не могла возникнуть или исчезнуть. Для Ньютона масса определяла количество материи. В физике Ньютона масса обеспечивала связь между силой и движением, а также служила источником силы тяжести. Для Лавуазье постоянство массы, ее точное сохранение, составляло основу химии и стало толчком к многочисленным открытиям. Если вам кажется, что масса исчезла, ищите новые формы — вуаля, кислород!
Свет не имел массы. Свет перемещался от источника к приемнику с огромной скоростью без какого-либо толчка. Свет мог быть очень легко создан (испущен) или уничтожен (поглощен). Свет не создавал гравитации. И он не находил места в периодической таблице элементов, которая систематизировала строительные блоки, составляющие материю.
За много веков до появления современной науки и на протяжении первых двух с половиной веков ее развития деление реальности на материю и свет казалось самоочевидным. Материя обладала массой, а свет никакой массы не имел; масса сохранялась. Пока существовало разделение на массивное и невесомое, создать единое описание материального мира было невозможно.
В первой половине XX века теория относительности и особенно квантовая теория подорвали основы классической физики. Существующие теории, касающиеся материи и света, превратились в руины. Этот процесс творческого разрушения позволил за вторую половину XX века создать новую и более глубокую теорию материи/света, устранившую прошлое разделение. Новая теория воспринимает мир, основываясь на разнообразии заполняющих пространство эфиров, на всеобщности, которую я называю Сеткой (Grid). Новая модель мира является чрезвычайно странной, но в то же время необыкновенно успешной и точной.
Новая модель мира предоставляет нам совершенно новое понимание того, откуда берется масса обычной материи. Насколько новое? Наша масса, как мы узнаем далее, возникает из сочетания, включающего теорию относительности, квантовую теорию поля и хромодинамику — специальные законы, управляющие поведением кварков и глюонов. Вы не можете понять, откуда берется масса, без основательного использования всех этих концепций. Однако все они появились только в XX веке, и только специальная теория относительности представляет собой действительно зрелый предмет; квантовая теория поля и хромодинамика по-прежнему являются областями активного исследования, в которых существует множество нерешенных вопросов.
Вдохновившись своими успехами и многому на них научившись, физики вошли в XXI век с идеями для дальнейшего синтеза: идеи, которые приближают к созданию единого описания на первый взгляд различных сил природы, а также единого описания на первый взгляд различных эфиров, которые мы используем сегодня, готовы к тестированию. У нас есть некоторые тонкие намеки на то, что эти идеи ведут нас в правильном направлении. Следующие несколько лет будут потрачены на их тестирование в огромном ускорителе частиц БАК (Большом адронном коллайдере).
Слушай: за углом чертовски славный мир, ей-ей; идем!