Второй закон Эйнштейна, m = Е / с2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?
Когда я еще только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрепанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».
Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи. Это оказалось первым законом Ома.
Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V / R. Я предположил, что третий закон Ома формулируется как R = I / V, и оказался прав.
Открывать новые законы легко
Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключен глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)
Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.
Второй закон Эйнштейна
Второй закон Эйнштейна формулируется следующим образом:
m = E / c2.
Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.
Второй закон Эйнштейна предполагает нечто совершенно иное. Он предполагает возможность объяснения того, как масса возникает из энергии.
На самом деле этот закон неправильно называть «вторым». В оригинальной работе Эйнштейна 1905 года вы не найдете уравнения E = mc2. Вы встретите уравнение m = E / c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.) На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?» Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.
Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шредингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре. (Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов.
Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берется масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
Часто задаваемые вопросы
Разберем два отличных вопроса, которые люди часто задают мне на моих публичных лекциях о происхождении массы. Если они возникли и у вас, примите мои поздравления! Эти вопросы касаются основных сложностей, связанных с возможностью объяснения массы в терминах энергии.
Вопрос 1: если E = mc2, то масса пропорциональна энергии. Таким образом, если сохраняется энергия, не значит ли это то, что масса тоже сохраняется?
Ответ 1: короткий ответ заключается в том, что уравнение E = mc2 на самом деле применяется только к изолированным телам в состоянии покоя. Жаль, что это наиболее известное широкой публике уравнение физики иногда бывает непригодно. Обычно, когда речь идет о движущихся или взаимодействующих телах, энергия и масса не являются пропорциональными. В этих случаях уравнение E = mc2 просто не применяется.
Более подробный ответ можно найти в приложении A: «Частицы имеют массу, а мир — энергию».
Вопрос 2: как может что-то состоящее из не имеющих массы строительных блоков испытывать воздействие гравитации? Разве Ньютон не говорил нам о том, что сила тяжести, действующая на тело, пропорциональна его массе?
Ответ 2: в своем законе тяготения Ньютон действительно сказал, что действующая на тело сила тяжести пропорциональна его массе. Однако Эйнштейн в своей более точной теории гравитации, общей теории относительности, сказал нечто другое. Всю эту историю довольно сложно описать, и я не буду пытаться сделать это в данной книге. Очень грубо говоря, там, где Ньютон говорит, что сила пропорциональна m, более точная теория Эйнштейна говорит, что эта сила пропорциональна Е / с2. Как мы уже говорили в предыдущем вопросе и ответе, это не одно и то же. Эти параметры почти одинаковы для изолированных, медленно движущихся тел, однако они могут быть очень разными для взаимодействующих систем тел или для тел, движущихся со скоростью, близкой к скорости света.
На самом деле сам свет является наиболее ярким примером. Частицы света, фотоны, имеют нулевую массу. Тем не менее свет отклоняется под действием силы тяжести, так как фотоны имеют ненулевую энергию, а сила тяжести воздействует на энергию. Действительно, одно из самых ярких подтверждений общей теории относительности — это отклонение лучей света Солнцем. В данной ситуации гравитация Солнца воздействует на не имеющие массы фотоны.
Если продолжить эти размышления, то одним из самых впечатляющих следствий общей теории относительности станет возможность представить себе объект с такой сильной гравитацией, что она изменяет траекторию фотонов. И настолько сильно, что частицы движутся назад, даже если сначала они двигались вперед. Такой объект представляет собой ловушку для фотонов. Ни одна частица света не может из нее выбраться. Это черная дыра.
Глава 4. Состав материи
Из чего состоит мир? Мы объясним происхождение 95 % массы материи из чистой энергии. Для достижения такой точности нам придется быть очень конкретными. В данной главе мы расскажем, чем является и чем не является обычная материя.
«Обычная» материя — это то, что мы изучаем в химии, биологии и геологии. Материал, который мы используем для создания вещей, и то, из чего состоим мы сами. Обычная материя — это в том числе то, что видят астрономы, глядя в свои телескопы. Планеты, звезды и туманности состоят из того же вещества, которое мы находим и исследуем здесь, на Земле. Это величайшее открытие астрономии.
Однако недавно астрономы сделали еще одно великое открытие. Как ни странно, оно заключается в том, что обычная материя — это не все, что есть во Вселенной. Далеко не все. На самом деле большая часть массы Вселенной в целом представлена по крайней мере двумя другими формами — так называемой темной материей и темной энергией. «Темная» материя, оказывается, совершенно прозрачна, и именно поэтому она ускользала от взглядов ученых в течение сотен лет. До сих пор ее удалось обнаружить лишь косвенно, благодаря гравитационному воздействию, которое она оказывает на обычную материю (то есть звезды и галактики). В следующих главах мы поговорим о темной материи более подробно.
Если вы просто подсчитаете массу, то обычная материя окажется незначительной примесью, составляющей лишь 4–5 % от общего количества. Однако именно она содержит основную часть сооружений и устройств, информации и любви, присутствующих в мире. Поэтому я надеюсь, вы согласитесь, что эта часть является особенно интересной. И это именно та часть, которую мы лучше всего понимаем в настоящее время.
В следующих нескольких главах мы объясним происхождение 95 % массы обычной материи, начав с не обладающих массой строительных блоков. Для исполнения этого обещания мы должны быть очень конкретными в своем объяснении. (В конце концов, мы оперируем цифрами.)
Строительные блоки. Предположение о том, что материю[2] можно разложить на несколько типов элементарных строительных блоков, восходит по меньшей мере к древним грекам, однако четкое научное понимание этого сформировалось только в XX веке. Обычно люди говорят, что материя состоит из атомов. Великий физик Ричард Фейнман в начале своих знаменитых лекций по физике сделал важное замечание об этом:
«Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, могло бы передать наибольшую информацию? Я считаю, что это —