Траектория жизни. Между вчера и завтра — страница 48 из 65

асстоянии, например, 60–100 километров.

Состав такой «станции-облака» может расширяться и меняться. Естественно было бы использовать базовый блок станции, где размещается дежурная смена космонавтов, и как геофизический модуль с аппаратурой экологического контроля, контроля состояния озонового слоя атмосферы, исследований природных ресурсов. Там же можно было бы разместить средства медицинских и биологических исследований.

На этом блоке должны быть несколько причалов для пилотируемых и грузовых кораблей и для орбитальных «автомобилей» — аппаратов, предназначенных для перелетов космонавтов между модулями станции для их обслуживания.

Эта идея была предложена мной в восьмидесятые годы, излагал я ее в курсе лекций для студентов в девяностые годы и долго считал, что будущее орбитальных станций именно за схемой «станция-облако». Сейчас у меня уже нет такой убежденности. Сегодня представляется целесообразным создавать специализированные станции как единые, включающие в себя механически связанные модули, а универсальные — в виде «станции-облака».

Например, специализированную астрофизическую станцию, включающую в себя ряд больших телескопов (допустим, с размерами телескопа «Хаббл»), можно все же попытаться создать в виде ряда механически соединенных карданных подвесов, в которых устанавливаются отдельные работающие по независимым программам телескопы, нацеливаемые на различные участки неба. Технические трудности, связанные с наличием в этой же конструкции жилого блока для бригады обслуживания из космонавтов, будут, по-видимому, немалые, но, возможно, их удастся преодолеть, а космонавтам на такой станции работать будет существенно проще, и топлива на перелеты между отдельными телескопами не потребуется. А универсальную станцию, включающую в себя и телескопы, и модули для технологических работ и исследований, и заправочную станцию, и строительную базу, строить с использованием схемы «станции-облака».

Я говорил об орбитальных станциях, размещаемых на относительно низких орбитах, с высотой порядка 400 километров. Но в принципе может оказаться целесообразным создание орбитальных станций на очень высоких орбитах, например, на геостационарной. Геостационарная орбита отличается тем, что она лежит в плоскости экватора, а период обращения спутника на этой орбите равен периоду вращения Земли вокруг собственной оси. То есть спутник на геостационарной орбите остается неподвижным относительно поверхности Земли.

База-станция на геостационарной орбите (ГСО) может оказаться необходимой для обслуживания автоматических геостационарных платформ, спутников связи, ретрансляторов телевидения и метеорологических спутников, размещаемых на ГСО, для размещения аппаратуры связи и ретрансляции телевидения, наблюдения поверхности Земли в интересах экологического контроля и исследования природных ресурсов, метеорологических наблюдений, астрофизических исследований в радиои в некоторых других диапазонах. Она окажется необходимой в случае принятия решения о строительстве на ГСО солнечных орбитальных электростанций.

Создание базы на ГСО не выглядит сегодня насущной задачей, но развитие технических средств связи и ретрансляторов телевидения, появление многоцелевых платформ на геостационарной орбите может привести в будущем к выводу о необходимости создания базы на ГСО. Остальные цели (связь, телевидение, радиотелескопы) — попутные; если база будет создана, то логично использовать ее и для других задач, естественных для ГСО.

Можно отметить некоторые особенности базы на ГСО, отличающие ее от обычных низкоорбитальных станций.

Затраты энергии на доставку аппаратов на ГСО примерно такие же, как и при доставке на поверхность Луны. Поэтому доставка экипажа и грузов на базу будет обходиться очень дорого: в несколько раз дороже, чем при доставке грузов на низкоорбитальную станцию.

Отсутствие зонтика магнитного поля Земли, защищающего низкоорбитальные станции от опасных потоков солнечного космического излучения, возникающих при больших солнечных вспышках (такие вспышки на Солнце возникают до четырех раз в год).

Для возвращения экипажа на Землю нужно будет иметь спускаемый аппарат, предназначенный для движений в атмосфере при входе в нее примерно со второй космической скоростью.

В состав базы можно было бы включить: орбитальный блок, строительную платформу, заправочную станцию, орбитальный транспортный аппарат для перелетов космонавтов и доставки грузов к обслуживаем аппаратам и платформам.

Кроме того, в состав средств обеспечения работы базы должны входить транспортный пилотируемый корабль — для доставки экипажей на базу и для их возвращения, и грузовые транспортные корабли — для доставки грузов с низкой орбиты на базу.

При использовании современных одноразовых средств выведения на орбиту (исходя из стоимости выведения на низкую орбиту порядка 5000 долларов за килограмм) стоимость полета на базу корабля массой около семи тонн, с учетом массы двигательной установки с топливом, необходимой для возвращения на Землю, составит порядка нескольких миллионов долларов в зависимости от использованного носителя, плоскости орбиты выведения на промежуточную орбиту и компонентов, используемых в ракетной ступени для выведения корабля с промежуточной орбиты на ГСО. Это очень много. Поэтому нужно стремиться к минимальному составу экипажа на станции и к достаточно большому сроку вахты. Представляется логичным иметь в составе экипажа базы трех космонавтов со сроком работы каждой смены один год.

В жилом модуле базы, учитывая стоимость доставки грузов, следует ориентироваться на систему обеспечения жизнедеятельности экипажа, использующую для своего функционирования расходуемые материалы в виде заменяемых в процессе работы элементов оборудования. Обезвоженную пищу, белье, одежду придется доставлять грузовыми кораблями. Масса доставляемых пищи, белья и прочего может составить порядка 2–3 тонн в год при общем грузопотоке на базу порядка 15–20 тонн в год (напомним, что грузопоток на станцию «Мир» составляет 10–15 тонн в год). Основную часть грузопотока будет составлять оборудование для регламентных работ, приборы и агрегаты, требующие замены на обслуживаемых базой аппаратах, новое научное оборудование, топливо и тому подобное.

В варианте «облака» заправочная станция должна представлять собой самостоятельный автоматический космический аппарат. Поэтому она должна иметь в своем составе весь набор служебных систем, обеспечивающий ее существование: системы управления и ориентации (в том числе и радиолокатор для измерения дальности и радиальной скорости относительно основного блока базы, силовые гироскопы в качестве управляющих органов), связи, терморегулирования, электропитания, систем обеспечения жизнедеятельности, включаемых во время посещения их космонавтами.

Заправочная станции должна предусматривать как свою заправку от грузового корабля-заправщика, так и заправку от нее корабля обслуживания и, возможно, других аппаратов, которые будут к ней подходить на заправку. Ее пневмогидросхема заправки должна быть секционированной и включать в себя: емкости для компонентов, баллоны наддува, компрессорные установки и пневмогидроавтоматику.

Аппарат для перелетов между объектами обслуживания базы может представлять собой орбитальный корабль, способный работать как в пилотируемом режиме, так и в беспилотном. В беспилотном режиме корабль может использоваться для простейших операций обслуживания, таких, например, как операция заправки. Для более сложных операций, связанных с заменой или ремонтом приборов и оборудования обслуживаемого аппарата, в полет на этом корабле отправляется экипаж. В составе корабля обслуживания не нужно иметь спускаемый аппарат. Зато все остальное должно быть: аппаратура управления и связи, энергопитания с использованием солнечных батарей, системы терморегулирования и жизнеобеспечения, двигательная установка с маршевым и управляющими двигателями, стыковочный узел.

Кроме того, в нем должны быть установлены средства заправки обслуживаемых аппаратов: емкости для компонентов заправки, баллоны наддува, компрессорная установка (для перекачки газа наддува из баков заправляемой двигательной установки в ее баллоны) и пневмогидроавтоматика.

Естественно, что аппараты, которые станут клиентами базы на ГСО, должны будут унифицировать используемые компоненты, пневмогидросхемы своих двигательных установок (хотя бы в части заправки и обеспечения безопасности), стыковочные устройства.

Если принять ту же стоимость доставки топлива на низкую орбитальную станцию — 5000 долларов за килограмм, то переход к многоразовому кораблю МПК ГСО может сократить расходы на смену экипажа базы примерно вдвое. Но нужно еще принять во внимание расходы на полет пилотируемого транспортного корабля «Земля — орбита — Земля» и ту долю расходов на низкоорбитальную станцию обслуживания, которая будет отнесена на счет межорбитального пилотируемого корабля, так что выигрыш может оказаться не столь существенным.

Но будущее все же, наверное, за многоразовыми системами. И на них и нужно ориентироваться. А решительного сокращения транспортных расходов можно добиться только при последовательном применении принципа многоразовости, только при создании действительно экономичной многоразовой транспортной системы, обеспечивающей доставку грузов на низкую околоземную орбиту по цене примерно 100 долларов за килограмм.

Повторю, что на базу ГСО потребуется доставлять около 15–20 тонн грузов в год. Доставка этого количества грузов с помощью одноразовых грузовых кораблей обойдется примерно в 500 миллионов долларов (при такой же, как и в случае использования одноразового пилотируемого корабля, схеме оценки, то есть при работе в плоскости экватора). Поэтому и здесь возникает задача оценки целесообразности создания многоразового грузового транспортного корабля.

Такой корабль можно представить в виде многоразового буксира с электрореактивными двигателями, получающими электроэнергию для своей работы от солнечных батарей. У такого буксира, правда, будет один крупный недостаток: неоперативная доставка грузов, так как его полет с низкой орбиты на ГСО займет несколько месяцев.