Транзистор?.. Это очень просто! — страница 4 из 33

ется впечатление, что каждый атом имеет по 8 периферийных электронов, что, как ты видел, определяет условие стабильности. Попытайся представить себе правильное размещение атомов в пространстве.



Рис. 8. Атом германия, находящийся в центре куба, связан своими валентными электронами с четырьмя другими атомами (куб нарисован лишь для того, чтобы пояснить расположение атомов в пространстве). Кристаллы углерода и кремния имеют аналогичную структуру.


Н. — Очень забавная картина: висящие в пустоте шарики, каждый из которых наподобие индусских богов протягивает своим соседям четыре руки!.. И все твердые тела образуют подобные кристаллы?



Л. — Нет, Незнайкин. Но несколько других элементов имеют такое же распределение атомов, в частности углерод, большие кристаллы которого называются…

Н. — …алмазами. Это, мой дорогой друг, я знал. Нам повезло, что транзисторы делают из германия, а не из алмазов, иначе транзисторы стоили бы очень дорого.



Л. — Да, для нас с тобой, мой друг, это было бы очень и очень накладно… Однако существует много других типов кристаллов, которые нас сегодня не интересуют. Но нам чрезвычайно важно изучить свойства электронов внешней оболочки или, как их еще называют, периферийных электронов.

Н. — Ты мне сказал, что они легче других отрываются от атома, потому что слабее притягиваются его ядром.

Л. — Это правильно, но они отрываются лишь тогда, когда на внешней оболочке их мало — один, два или три. Это правило справедливо для всех металлов. Золото, серебро и медь имеют всего лишь по одному периферийному электрону; железо, цинк, магний — по два, а алюминий — три электрона. Эти электроны легко отрываются от атома и, став свободными, образуют поток электронов, который мы называем электрическим током. В отличие от металлов металлоиды имеют больше электронов на внешней оболочке, и эти электроны не проявляют тенденции к бродяжничеству, к которому так склонны их собратья, находящиеся в атомах металлов. Вот почему металлоиды являются диэлектриками.

Н. — А германий со своими четырьмя электронами тоже представляет собой диэлектрик?

Л. — И да, и нет, мой дорогой друг. В следующий раз я объясню тебе, что означает мой достойный древнегреческого оракула ответ.

Беседа втораяПЕРЕХОДЫ

Примеси, содержащиеся в полупроводниках даже в ничтожных количествах, резко изменяют электрические свойства этих материалов. Двое наших друзей изучают здесь, что происходит, когда чужеродные атомы нарушают правильную структуру кристаллической решетки.

Содержание: Собственная проводимость. Фоторезисторы и фотоэлементы. Примеси. Доноры. Дырки. Акцепторы. Полупроводники типов р и n. Переход. Потенциальный барьер. Прямое и обратное напряжения. Напряжение пробоя. Диод. Выпрямление тока полупроводниками.


Спокойная семейная жизнь атомов


Незнайкин. — Я много думал о твоих кристаллических решетках и даже пошел во Дворец открытий[4] посмотреть модели, изображающие структуру различных кристаллов. Эти модели очень красивы: разноцветные маленькие шарики, изображающие атомы, соединены металлическими трубочками, представляющими собой валентные связи.

Любознайкин. — Поздравляю, что ты с такой пользой провел свой досуг. А к чему же привели твои размышления?

Н. — К идее, что кристалл германия похож на большое количество семей, каждая из которых имеет по четыре ребенка, а каждый ребенок одной семьи женат на ребенке одной из четырех соседних семей. Таким образом, по супружеским связям каждая из семей породнилась с четырьмя другими (рис. 9).



Рис. 9. Кристаллическая решетка может быть представлена в виде схемы, хотя в действительности межатомные связи расположены не в одной плоскости, а в пространстве.


Л. — Ты нарисовал совсем неплохую картину, она даже поможет объяснить тебе дальнейшее. Действительно, в описанном тобой исключительно уравновешенном обществе нельзя ожидать больших потрясений, если все пары будут сохранять безупречную верность. И в нашем кристалле германия все электроны должны оставаться крепко привязанными к своим атомам прочными валентными связями.

Н. — Но что ты сделаешь с человеческими страстями?



О нескольких разводах

Л. — Ты, как я вижу, прочитал какой-нибудь сентиментальный роман… Ну, ладно. Точно так же, как людьми движут страсти, атомы подвержены тепловому воздействию, которому время от времени удается вырвать из той или иной связи электрон и освободить его. А ты знаешь, что когда электроны свободны…

Н. — …тело становится проводником тока. Много ли свободных электронов в германии при нормальной температуре?

Л. — Нет, очень мало. Едва ли два электрона на 10 миллиардов (т. е. на 1010) атомов. Это примерно такое соотношение, как если бы на удвоенное население земного шара был только один свободный человек.

Н. — Какая ужасная картина! Но если это так, то германий должен быть очень плохим проводником?

Л. — Да, и именно по этой причине его назвали полупроводником. Заметь, однако, что в одном грамме германия имеется десять тысяч миллиардов (или 1022) атомов, так что в нем содержится около двух тысяч миллиардов (или 2·1012) свободных электронов. Это лучше, чем ничего… и такого количества достаточно, чтобы пропустить небольшой ток.

Н. — Ты говоришь мне о тысячах миллиардов электронов и утверждаешь, что ток небольшой!

Л. — Значит, ты, Незнайкин, забыл, что плотность тока в один ампер соответствует прохождению 6·1018 электронов в секунду. Ты, конечно, поймешь, что наши несколько жалких тысяч миллиардов свободных электронов, разбросанных в колоссальной кристаллической решетке германия, могут создать только небольшую проводимость. Последняя обязана своим существованием тепловому движению и (обрати на это внимание) носит название собственной проводимости.



Н. — Одним словом, дело обстоит так, как если бы в нашем образцово организованном обществе изредка случались разводы и повторные браки.

Л. — Это тоже правильно. А чтобы лучше использовать твое сравнение, скажем, что иногда там может, как пишут в романах, дуть «знойный ветер страстей», вызывающий большие потрясения.

Н. — Я догадываюсь, что ты хочешь сказать: Если повышать температуру кристалла германия, то тепловое движение, становясь быстрее, высвобождает большее количество электронов. Собственная проводимость в этом случае повышается. В отличие от того, что имеет место в проводниках, сопротивление полупроводников при повышении температуры уменьшается.

Л. — Ты хорошо рассудил, Незнайкин! Именно поэтому германий плохо работает при повышенных температурах. Нас в германии интересует не его собственная проводимость, потому что не ее используют в транзисторах. Кремний лучше выдерживает повышение температуры, так как его валентные электроны, находящиеся на третьей оболочке, крепче связаны с ядром, чем валентные электроны германия, находящиеся на четвертой оболочке. Я добавлю, что можно также высвобождать электроны, воздействуя на атомы полупроводника не тепловой, а световой энергией.



Н. — Не хочешь ли ты сказать, что фотоны, эти зернышки света, бомбардируя атомы германия, вырывают из них электроны?

Л. — Да, и это свойство позволяет делать из германия фоторезисторы, т. е. устройства, сопротивление которых изменяется под воздействием освещения. В наиболее старом из известных фотоэлементов используется селен, который также является полупроводником.

Н. — Впрочем, я пользуюсь фотоэкспонометром, в котором установлен такой элемент…

Л. — Фотоэлемент в твоем экспонометре, очевидно, сделан не из селена, а, возможно, из кадмия или кремния. Эти вещества позволяют создавать генерирующие фотоэлементы, т. е. устройства, преобразующие световую энергию в электрический ток.

Н. — Не такие ли элементы, освещаемые солнцем, питают электрическим током космические станции?



Скандалы многочисленных семей

Л. — Да, Незнайкин. А теперь мы станем свидетелями смуты в нашем так хорошо организованном обществе, введя в него семью с пятью детьми.

Н. — Что ты хочешь этим сказать?

Л. — Что среди атомов даже самого чистого германия содержатся в самых малых количествах атомы других элементов, именуемых примесями. В самом чистом германии на миллиард атомов имеется один атом примеси.

Н. — Стоит ли обращать внимание на такую малость? Ведь это все равно, что его вообще нет.

Л. — Ты неправ, когда пренебрегаешь этими примесями, потому что даже при такой ничтожной пропорции в одном кубическом сантиметре германия, который называют чистым, содержится пятьдесят тысяч миллиардов чужеродных или, как их называют, примесных атомов.

Н. — Я не подумал, что этот кубический сантиметр содержит тысячи миллиардов атомов… Но что делает семья с пятью детьми? Ты хочешь сказать, что речь идет об атоме с пятью электронами на внешней оболочке?

Л. — Совершенно верно. Один пятивалентный атом, например атом мышьяка или сурьмы, проник в благородное общество атомов германия (рис. 10)… и скандал разразился!



Рис. 10.Пятивалентный примесный атом нарушил безукоризненный порядок кристаллической решетки. Что станет с пятым электроном этого атома?


Н. — Очевидно потому, что если удастся переженить четырех детей этой странной семьи с детьми четырех соседних семей, то пятый останется безнадежным холостяком?



Л. — Да, Незнайкин, четыре электрона образуют валентные связи с четырьмя соседними атомами кристаллической решетки, а пятый электрон остается свободным.