Удивительные числа Вселенной. Путешествие за грань воображения — страница 6 из 68

У самого Ньютона были серьезные опасения по поводу такого действия на расстоянии. В письме к ученому Ричарду Бентли в феврале 1692 года он писал: «Мысль, что… одно тело может воздействовать на другое на расстоянии через пустоту, без посредства какого-либо агента… представляется мне таким абсурдом, что, на мой взгляд, ни один человек, обладающий способностью судить о философских материях, никогда не сможет с ней согласиться».

В итоге Эйнштейн справился с этими проблемами, но для этого он отказался от Ньютона и его величайшего открытия. Он попросту отказался от существования гравитации.


Гравитация – обман.

Мне нравится начинать курс глубокого изучения гравитации с этой короткой фразы, даже если она расстраивает некоторых студентов. Но утверждение верно: гравитация – действительно обман. Даже на Земле можно стать невесомым, полностью устранив тяготение. Для этого отправляйтесь в роскошный город Дубай на краю пустыни и поднимитесь на вершину небоскреба Бурдж-Халифа – самого высокого здания в мире, уходящего в небо почти на километр. Оказавшись там, заберитесь в какой-нибудь большой ящик (вроде старой британской телефонной будки с затемненными стеклами) и попросите кого-нибудь сбросить вас вниз. Что происходит, когда вы падаете в этом ящике? На вас действует ускорение силы тяжести 1g, но оно действует и на пол ящика. Да, на ящик также будет воздействовать небольшая сила сопротивления воздуха, но, если воздух достаточно разрежен, вы станете более или менее невесомым и гравитация исчезнет. Конечно, я осознаю, что этот способ проверки гравитации слишком радикален. Но ведь на самом деле для ощущения эффекта невесомости вам вовсе не обязательно прыгать с Бурдж-Халифа. Достаточно съехать с крутого холма на своем автомобиле. Возможно, вам уже знакомо ощущение, когда ваш желудок начинает выполнять сальто. Это гравитация начинает исчезать, когда вы с ускорением спускаетесь по склону. Всякий раз, когда это происходит, я напоминаю себе (и всем, кто находится со мной в машине), что в животе непосредственно ощущаются эффекты гения Эйнштейна.

Когда Эйнштейн понял, что всегда может устранить эффекты гравитации, он назвал это самой счастливой мыслью в своей жизни. Смерть гравитации можно проследить вплоть до Галилея, гения эпохи Возрождения и основателя современной науки. По словам его ученика Винченцо Вивиани, Галилей сбрасывал сферические предметы разной массы с вершины наклонной Пизанской башни, демонстрируя профессорам и студентам, что те падают с одинаковой скоростью. Это противоречило старому утверждению Аристотеля о том, что более тяжелые предметы падают быстрее. Вопрос, действительно ли Галилей когда-то устраивал такие представления, остается предметом споров[13], но сам эффект, безусловно, реален. Одну версию такого эксперимента провел на Луне астронавт «Аполлона-15» Дэвид Скотт. Он взял молоток и перо, а затем одновременно выпустил их из рук. Без сопротивления воздуха оба объекта упали на поверхность Луны одновременно: как и предсказывал Галилей, они падали с одинаковой скоростью. Именно это универсальное поведение гарантирует, что и вы с телефонной будкой упадете с небоскреба Бурдж-Халифа в идеальном тандеме.

Но если мы можем полностью устранить гравитацию, то в каком смысле она реальна? Можем ли мы имитировать ее в открытом космосе? Имитировать гравитацию в космосе легко: достаточно ускориться. Если бы Международная космическая станция включила свои двигатели и начала подниматься на большую высоту с ускорением в 1g, то космонавты сразу бы перестали ощущать невесомость. Корабль будет двигаться вверх, однако космонавтам покажется, что они падают вниз – точно как под действием силы тяжести. Затемните иллюминаторы, и экипаж станции вполне может обмануться, считая, что МКС рушится на Землю.

Дело в том, что гравитация и ускорение неразличимы, – в космическом корабле с затемненными иллюминаторами у вас нет возможности узнать, ощущаете ли вы действие гравитации, или корабль ускоряется в пространстве. Это эйнштейновский принцип эквивалентности – физическая эквивалентность между гравитацией с одной стороны и ускорением с другой. Вы не можете отличить их друг от друга. Если вы все еще сомневаетесь, подумайте о том, что происходит, когда вы ведете машину и поворачиваете слишком быстро. Поверните налево, и вас как будто потянет к правой двери автомобиля. Это похоже на фальшивую силу тяготения, действующую вбок. Истина в том, что автомобиль ускоряется, когда поворачивает на перекрестке, а ваше тело при этом хочет продолжить движение в прежнем направлении, в результате чего вас откидывает к противоположной двери автомобиля.

Вернемся на мгновение к нашим глубоководным исследователям. Чтобы в полной мере оценить, как для них замедляется время, нам нужно снова подумать о свете. Как гравитация влияет на свет? Поскольку гравитация и ускорение неразличимы, мы можем спросить, как ускорение влияет на свет. Представьте, что вы на космическом корабле, летящем через пустое межзвездное пространство с постоянной скоростью. У вас в руках тарелка с желе[14], а у вашего друга – лазерное ружье. В случае дуэли вы бы проиграли, но это не поединок, а эксперимент. Вы предлагаете другу выстрелить лазером в желе. Когда он это делает, лазер прорезает желе по идеально прямой линии. Вы решаете повторить эксперимент, но на этот раз запускаете двигатели и начинаете разгонять ракету. Вы с другом немедленно почувствуете эффект фальшивой гравитации: теперь вы можете нормально стоять на полу космического корабля, с ускорением несущего вас в космос. Вы предлагаете включить лазер, и друг снова разрезает желе. Вы внимательно рассматриваете пути, которые проложил луч. Первый путь был прямым, однако второй оказался слегка изогнут, как показано ниже.


Что происходит, когда вы в космосе проводите лазерным лучом по желе, если космический корабль двигается с постоянной скоростью (слева) и если он ускоряется (справа)


Что случилось со вторым световым лучом? Ничего особенного. Он по-прежнему прошел через пространство по прямой линии, однако в этот момент желе ускорялось «вверх» вместе с ракетой. С вашей точки зрения (и с точки зрения желе), световой луч искривился. Хотя в этом случае искривление оказалось просто следствием ускорения желе, принцип эквивалентности говорит, что точно так же луч света должен искривляться под действием гравитации.


И он искривляется.

Подтверждение появилось вскоре после окончания Первой мировой войны. Хотя в те трудные времена в Британии мало кто воспринимал новые идеи Эйнштейна, у него имелся один сторонник. Артур Эддингтон был вдумчивым честолюбивым астрономом и пацифистом и старался, чтобы британские ученые поддерживали довоенный интерес к работам немецких коллег. Хотя получить доступ к немецким научным журналам было трудно, он узнал о трудах Эйнштейна от голландского физика Виллема де Ситтера и решил проверить предсказание, что свет от звезд должен искривляться под действием гравитации Солнца. Проблема тут в том, что яркое солнце не дает возможности увидеть свет звезд. Эддингтон понял, что для проведения соответствующего эксперимента ему нужно солнечное затмение; по его расчетам, затмение должно было произойти 29 мая 1919 года на красивом португальском острове Сан-Томе и Принсипи у западного побережья Африки, а затем зона затмения пересекала Атлантику и попадала в северную Бразилию. На африканский островок отправились Эддингтон и королевский астроном Фрэнк Уотсон Дайсон, а вторая группа ученых поехала в город Собрал в бразильском штате Сеара. Несмотря на облака и дождь, угрожавшие успеху эксперимента, ученым удалось сфотографировать во время затмения несколько звезд из скопления Гиады. Когда снимки сравнили с ночными изображениями того же скопления, положение звезд не совпадало. Следовательно, фотография, сделанная во время затмения, подтвердила, что свет звезды, проходящий близко к Солнцу, искривился, что и породило несовпадение с ночными снимками. Предсказание Эйнштейна подтвердилось и попало в заголовки новостей по всему миру. Именно в этот момент он стал суперзвездой.

Искривление света имеет важные последствия для времени. Вдали от гравитационного поля свет движется по прямой линии, и нужно всего несколько наносекунд, чтобы он добрался от лампочки на одной стене МКС до картинки на другой. Но если мы разместим МКС на орбите вокруг черной дыры, то сильное гравитационное поле искривит свет. Изогнутые пути длиннее прямых, поэтому свету потребуется немного больше времени, чтобы пройти путь от одной стены к другой. Это означает, что событие длится дольше, если гравитация больше, а поэтому гравитация должна замедлять время.

Чем сильнее гравитационное поле, тем сильнее искривляется свет и тем больше замедляется время. Вот почему Джеймс Кэмерон смог совершить прыжок в будущее, нырнув на дно Марианского желоба. Гравитационное поле Земли там сильнее, хотя и ненамного, поэтому часы идут медленнее. Обратное тоже верно. Поднимитесь высоко – и гравитационное поле немного ослабеет, заставляя часы идти быстрее. Секунда, проведенная на вершине Эвереста, примерно на триллионную долю длиннее секунды на уровне моря. Астронавты «Аполлона-17» после своего полета (двенадцать с половиной суток, включая три дня на Луне) испытали рекордное замедление времени[15], вернувшись назад во времени примерно на миллисекунду[16].

В 1959 году ученые непосредственно измерили влияние гравитации на время в известном эксперименте, который прошел в башне Джефферсоновской физической обсерватории в Гарвардском университете. Роберт Паунд и его ученик Глен Ребка направляли гамма-лучи (высокоэнергетические электромагнитные волны) с вершины башни высотой 22,6 метра в приемник, расположенный внизу. Их идея заключалась в том, чтобы использовать в качестве меры времени частоту гамма-лучей: часы «тикали» с каждым новым колебанием электромагнитной волны. Оказалось, что в нижней части башни частота волн была больше, чем наверху. Это означало, что одна секунда внизу соответствовала большему количеству колебаний волны, чем секунда наверху. Вывод был однозначен: значение секунды должно оказаться разным на разных концах башни. Секунда внизу содержала большее количество колебаний, поэтому она должна быть длиннее. Как и предсказывал Эйнштейн, время у подножия башни текло медленнее, чем наверху.