БЕТОН И БЕТОНИРОВАНИЕ
Создание фундамента может выполняться как с применением готовых изделий (фундаментные блоки, блок–подушки, башмаки…), так и с его отливкой из бетонного раствора на месте. Для индивидуального застройщика, желающего снизить свои затраты, отказ от покупных железобетонных изделий будет более оправданным.
Это связано не только с относительно высокой ценой готовых железобетонных изделий, но и с теми затратами, которые потребуются на их транспортировку, разгрузку и проведение монтажных работ. Без привлечения специальных подъемных средств тут никак не обойтись. Создание подъездных путей и организация самой строительной площадки под монтаж железобетонных изделий — это большие проблемы и дополнительные хлопоты.
В условиях индивидуального строительства в подавляющем числе случаев возведение фундамента связано с его бетонированием на месте. Это оправдано не только желанием снизить затраты, но и возможно благодаря более гибкому подходу к проектированию фундамента. В этом случае из бетона можно отливать фундамент любых размеров и форм без привязки к габаритам каких‑либо готовых изделий. Такой фундамент можно устраивать практически на любой строительной площадке вне зависимости от степени её освоения и застройки.
С бетонированием многие застройщики, может, не в тех объемах и не в тех условиях, но, скорее всего, уже сталкивались. Опыт общения с ними автора показал, что познания в этой области иногда бывают поверхностными и даже ошибочными. Начинающий застройщик должен отдавать себе отчет в том, что фундамент — это не только верно выбранная схема. Правильный подбор материалов, грамотно выполненное армирование, точное соблюдение правил бетонирования и содержания созревающего бетона — обязательные условия надежности и качества фундамента. Многие просчеты и недопонимания застройщика в этих вопросах слишком дорого обходятся ему в дальнейшем, на этапе строительства и эксплуатации жилья.
3.1. ОБЩИЕ СВЕДЕНИЯ О БЕТОНАХ
Бетон — искусственный каменный материал, получаемый в результате затвердевания тщательно перемешанной и уплотненной смеси вяжущего материала (цемент), воды, заполнителей (песок, щебень…) и специальных добавок (в определенных пропорциях). До затвердевания уплотненная смесь называется бетонным раствором.
По назначению различают бетоны:
— конструкционный — применяется для изготовления несущих и ограждающих конструкций; не предназначен для выполнения теплозащитных функций;
— гидротехнический — используется для возведения гидросооружений; характеризуется стойкостью к увлажнению, водонепроницаемостью, морозостойкостью;
— жаростойкий — предназначен для возведения специальных конструкций, работающих при высоких температурах;
— теплоизоляционный — используется в качестве теплоизоляции стен и перекрытий; не ориентирован на восприятие больших механических нагрузок.
По плотности бетоны бывают:
— тяжелые — наиболее распространенный бетон, у которого в качестве заполнителя используется щебень твердых пород (гранит, известняк, диабаз…);
— легкие и особо легкие бетоны — получают с использованием легких заполнителей (пемза, туф, шлак керамзит, пенополистирол) — шлакобетон, керамзитобетон, пенополистиролбетон; или путем придания пористой структуры (поризованные бетоны) через введение в бетонную смесь воздухововлекающих добавок (микропенообразователей) — пенобетон, или же предварительно взбитой пены или газообразующих добавок — газобетон.
К числу легких бетонов относятся также ячеистые бетоны, которые обладают высокопористой структурой. Объем пор в таких бетонах достигает 80%. Такие бетоны с плотностью 300… 1200 кг/м3 обладают низкой теплопроводностью и используются как эффективный теплоизолирующий материал. Бетоны с малой плотностью используются только как теплоизоляция, а более плотные — и как конструкционный материал.
По виду вяжущего вещества различают бетоны:
— цементные — бетоны на портландцементе и его разновидностях;
— гипсовые — обладают малой водостойкостью, поэтому из них изготавливают конструкции, находящиеся внутри здания (подвесные потолки, перегородки…);
— полимербетоны — вяжущие эпоксидные, полиэфирные и другие смолы. В настоящее время полимербетон используется для изготовления черепицы с относительно низкой себестоимостью;
— полимерцементные бетоны изготавливают с добавкой водных дисперсий (ла–тексов, винилацетата, винилхлорида, водорастворимых модификаций полиамидных смол, клея ПВА…), которые вводят вместе с водой затворения. Полимеры осаждаются в виде пленки на поверхности заполнителя, увеличивая сцепление между элементами бетона. Такие бетоны хорошо сопротивляются растяжению, обладают повышенной морозостойкостью, водонепроницаемостью, а также хорошо сопротивляются поверхностному износу.
Бетон — это смесь активных и инертных составляющих.
Активные составляющие бетона — цемент и вода — в результате химической реакции (гидролиз) переходят в твердую фазу и образуют цементный камень. Специальные добавки, корректирующие свойства бетона, также относятся к активным составляющим.
Инертные составляющие — заполнители — не участвуют в реакции отверждения бетонного камня. Цементный камень связывает мелкий и крупный заполнители, образуя жесткий скелет, воспринимающий внешние нагрузки. В некоторых бетонах (пенобетон, газосиликатный бетон и пескобетон) крупный заполнитель отсутствует.
3.2. ЦЕМЕНТ
Цемент — мелкий порошок серого, зеленоватого или белого цвета. Обычно он упакован в мешки из крафт–бумаги порциями по 50 кг или отпускается с заводов и торговых складов навалом. Цементы различают по наименованию (обыкновенный портландцемент, пуццолановый портландцемент, шлако–портландцемент, роман–цемент и т. д.) и маркам. Бывают цементы марок "200", "250", "300"… "600".
Соотношение компонентов сырьевой смеси, необходимой для создания цемента, выбирают с тем расчетом, чтобы полученный при обжиге портландцементный клинкер имел следующий химический состав (%): СаО — 62…68, Si02 — 18…26, Аl203 — 4…9, Fe203 — 2…6. Для получения клинкера чаще всего используют известняк и глину (добываемые отдельно) в соотношении 3: 1 (по весу). Приготовленную смесь подают на обжиг во вращающуюся печь, где при температуре 1200…1450 °С происходит обжиг — образование цементного клинкера (твердых кусков серого цвета размером в горошину или орех). В шаровых мельницах куски клинкера тонко размалываются с гипсом и другими добавками (тонкость помола — менее 0,08 мм). Чем тоньше помол, тем выше марка цемента и тем быстрее он твердеет.
Обращаем внимание некоторых индивидуальных застройщиков, которые очень ревностно относятся к экологии жилья: эти природные минеральные составляющие цемента экологически нейтральны. Низкий уровень экологической безопасности бетонных домов может возникнуть из‑за малой воздухопроницаемости стен и из‑за наличия в их составе гранитного щебня, который иногда имеет радиоактивный фон, выходящий за допустимые нормы.
Плотность цемента насыпная — 1100…1200 кг/м3, а в уплотненном состоянии — до 1700 кг/м3. В какой‑то степени насыпная плотность цемента может охарактеризовать его марку. С увеличением марки цемента плотность свеженасыпанного цемента также увеличивается:
— марка 100…… плотность 0,70 кг/л,
— марка 200…… плотность 0,85 кг/л,
— марка 300…… плотность 0,97 кг/л,
— марка 400…… плотность 1,10 кг/л,
— марка 500…… плотность 1,24 кг/л.
В одном ведре объемом 10 литров — 12…13 кг цемента М400.
Срок схватывания — одна из основных характеристик твердения цемента. Он рассчитывается от момента затворения (соединение с водой). Начало схватывания должно быть не ранее чем через 45 минут, а конец — не позднее 10 часов. Такие сроки дают возможность транспортировать и укладывать бетонные смеси до начала схватывания. Эти показатели определяют при температуре 20 °С. Если цемент затворяют горячей водой (более 40 °С), то может произойти очень быстрое схватывание. Работая по технологии ТИСЭ, надо учитывать, что приготовленная смесь должна быть израсходована до начала момента схватывания (за 20 — 30 мин). Увеличить время схватывания можно, добавив в воду клей ПВА (на 1 ведро — 50 мл).
Твердение цемента — химический процесс, который происходит при взаимодействии с водой и сопровождается выделением тепла. Частицы цемента начинают растворяться, причем одновременно происходят гидролиз (разложение отдельных минералов водой) и гидратация (присоединение воды), образуется цементное тесто–гель, из которого позднее выпадают твердые кристаллы высокой прочности.
Твердение портландцемента — достаточно длительный процесс (месяцы и годы). Но если вначале, в первую неделю, процесс набора прочности идет очень резко, то в дальнейшем скорость нарастания прочности сильно замедляется. Поэтому качество цемента принято условно оценивать по прочности, набираемой им в первые 28 суток твердения (рис. 88).
Рис. 88. Изменение прочности бетона во времени (R — прочность бетона; R28 — марочная прочность бетона)
При твердении бетона в естественных условиях 50% прочности достигается через 7 суток. Эти сроки значительно удлиняются при пониженных температурах (рис. 89). При повышении температуры до 80°С сроки созревания бетона сокращаются в 8 — 10 раз. Поэтому на производствах ЖБИ применяют пропарочные камеры, где бетонные изделия набирают прочность, достаточную для транспортировки изделий, за 5 — 10 часов. В графике приведен пример с замораживанием и оттаиванием бетонной смеси. Здесь имеется в виду замораживание до начала набора прочности, т. е. если смесь заморожена до начала схватывания. Если же замораживание бетонной смеси произошло в начале набора прочности, то такая смесь, потеряв монолитную структуру, не способна стать полноценным бетоном.
Рис. 89. График созревания бетона в зависимости от температуры: 1 — при 15…20 °С; 2 — при 40 °С; 3 — при 12 °С; 4 — при замораживании и дальнейшем оттаивании
Оценка качества цемента.
Качество цемента можно оценить по дате изготовления и сроку его хранения, при этом условия хранения должны быть соблюдены. За время хранения марка цемента снижается на 5% в месяц. Так, при хранении в течение 6 месяцев марка цемента снизится на 40…50%.
Цемент считается качественным, если нет признаков окомкования. Наличие этого процесса определяют на ощупь: если горсть цемента сжать в кулаке, то свеже–изготовленный цемент сразу просыплется между пальцами, а лежалый — образует комок, поскольку он уже впитал влагу. До тех пор, пока комок можно размять пальцами, цемент считается пригодным к использованию.
3.3. ЗАПОЛНИТЕЛИ ДЛЯ БЕТОНОВ
Заполнители занимают в бетоне и в строительных растворах до 80% объема, оказывая влияние на их прочность, долговечность и стоимость.
Песок
Песок — основной заполнитель бетона и растворов различного состава и назначения. От свойств песка, от его гранулированного и химического состава зависит расход цемента, качество выполняемых работ и долговечность возводимых строительных конструкций.
Природный песок — рыхлая смесь зерен крупностью 0,16…5 мм — состоит главным образом из зерен кварца Si02. Возможна примесь полевых шпатов, известняка, слюды. Насыпная плотность природного песка — 1300…1500 кг/м3.
Песок может быть речным, морским, озерным, горным, овражным и карьерным. Овражный и горный засорены глинистыми примесями, озерный — илом. Загрязненный песок промывают, содержание в нем глины, ила, пыли и прочих примесей не должно превышать 5%.
По крупности зерен песок делится на пылеватый, мелкий, средний, крупный и гравелистый.
По происхождению пески делятся на природные, образовавшиеся в результате выветривания горных пород, и искусственные, получаемые в результате дробления твердых горных пород.
Горные (овражные) пески образуются в результате выветривания горных пород и последующего переноса продуктов выветривания ветром и ледниками. Угловатая форма и шероховатость поверхности зерен способствуют хорошему сцеплению их с вяжущим. Недостаток таких песков — загрязненность глиной и примесь в них гравия.
Речные и морские пески более чистые, их зерна бывают, как правило, округлой формы в связи с длительным воздействием движущейся воды. Наиболее вредная примесь и в этих песках — глина, так как она уменьшает сцепление составляющих самой смеси.
Искусственные пески, используемые значительно реже, бывают тяжелые и легкие. Тяжелые пески получаются путем дробления плотных горных пород (базальт, диабаз, мрамор, гранит). Легкие пески получают дроблением пористых пород (пемза, туф) или изготавливают специально (перлитовый и керамзитовый песок).
Поступающий на строительство песок должен отвечать определенным требованиям по зерновому (гранулометрическому) составу, наличию примесей и загрязнений. Зерновой состав песка определяют его просеиванием через стандартный набор сит с размерами ячеек: 5; 2,5; 1,25; 0,63; 0,315 и 0,16 мм. Основываясь на результатах просеивания, песку присваивают модуль крупности (табл. 13).
Таблица 13. Гранулометрический состав песка
Количество мелких зерен в песке, проходящих через сито 0,16 мм, не должно превышать для песка, используемого в строительных растворах, 20%, а в бетонах — 10%.
Существует и другой критерий оценки песка (грунта) по гранулометрическому составу, который для индивидуальных застройщиков может быть более приемлемым (табл. 14).
Таблица 14. Классификация песков по гранулометрическому составу
Основная цель заполнителя — образовать скелет бетонного массива, помешать развитию трещин, возникающих при усадке бетонного камня. Смесь крупного и мелкого песка со щебнем — идеальный заполнитель для этой цели (рис. 90, а). Подобный состав хорошо подходит для приготовления подвижных и жестких бетонов.
Рис. 90. Структура бетона с песком различного зернового состава: А — песок с мелкими и крупными фракциями; Б — песок с мелкими фракциями
Мелкий песок не может создать достаточно жесткую пространственную структуру (рис. 90, б), но его хорошо использовать для приготовления кладочного или штукатурного раствора.
Для хорошего соединения зерен песка в растворе или бетоне необходимо, чтобы цементное тесто покрывало всю поверхность каждой песчинки. Поэтому расход цемента увеличивается с увеличением объема мелких фракций песка. Очевидно, что чем больше разных фракций в песке, тем меньше объем цементного камня, а следовательно — и цемента.
Подбирая песок для проведения строительных работ, следует учитывать его влияние на свойства бетона.
Присутствие в песке органических примесей замедляет схватывание и твердение цемента и тем самым снижает прочность бетона или раствора.
Крупные куски глины следует удалять в процессе загрузки песка для приготовления бетонной смеси. Мелкие частицы глины не окажут существенного влияния на прочность бетона, но, являясь пластификатором, улучшат удобоукладываемость бетонной смеси.
Смирнов В. А. Материаловедение. Отделочные строительные работы. Учебник. М.: ПрофОбрИздат, 2001.
Возможность использования глины в качестве пластифицирующей добавки в растворах обоснована в 1930–х г. Н. А. Поповым. Казалось 6ы, что по аналогии с бетоном присутствие глины в растворе должно снижать его прочность и морозостойкость. Однако в цементно–глиняных растворах частицы глины равномерно распределены по всему объему, а не находятся в виде комьев и пленок, обволакивающих песок.
Если требуется удалить глину из песка, то для этого песок помещают в деревянный ящик и промывают потоком воды. В большинстве случаев этого не требуется.
Водопотребность песка — наибольшее количество воды, которое может быть принято сухим песком в весовом отношении. Мелкий песок может принять влаги в 2 раза больше, чем крупный, благодаря большей поверхности смачивания зерен.
Плотность песка — важный параметр при составлении смеси для бетона или раствора. Насыпная плотность изменяется с изменением его влажности своеобразным образом:
— совсем сухой песок имеет насыпную плотность 1500 кг/м3;
— при влажности 5% она уменьшается до 1300 кг/м3;
— при влажности 15% и более она увеличивается до 1900 кг/м3. Для приблизительного расчета можно принять, что в одном ведре объемом 10 литров — 15 кг песка.
При использовании песка, лежащего под открытым небом, в процессе приготовления цементной смеси необходимо учитывать как повышение его плотности от дождей, так и наличие самой влаги.
При указании состава смеси всегда подразумевают весовое соотношение сухого песка и цемента. Если же дозирование — объемное, то изменение плотности песка от степени его влажности обязательно следует учитывать.
Щебень и гравий
Гравий — мелкие камни округлой формы и небольшого размера. Гравий бывает щебневидным, малоокатанным, яйцевидным, лещадным, игловатым. Длина мелкого гравия — 0,5…2 см; среднего — 2…4 см; крупного — 4…8 см.
Щебень — камень такой же крупности, как и гравий. Щебень получают дроблен нием горных пород или кирпича, тяжелых доменных шлаков, пемзы, отслуживших бетонных конструкций.
В процессе бетонирования особенно крупных конструкций возможно использование щебня размером до 15 см.
Составляющие щебня имеют угловатую форму. От гравия щебень отличается тем, что имеет более шероховатую поверхность, что повышает его сцепление с цементным камнем. Именно поэтому для бетона повышенной прочности используют не гравий, а щебень. При использовании щебня, особенно гранитного, необходимо проверять фон его радиоактивности.
Морозостойкость щебня определяет морозостойкость бетона. При использовании щебня из известковых камней или кирпичного боя, способных задерживать в себе влагу, морозостойкость бетона сильно снижается. Поэтому при бетонировании фундамента, находящегося в зоне повышенной влажности и подверженного частой смене циклов "замораживание–оттаивание", их использовать нельзя.
Чтобы щебень и гравий не снижали прочности и долговечности бетона, они не должны содержать пылеватые, глинистые и илистые примеси более 1…3%. При необходимости вредные примеси вымывают водой.
В одном ведре объемом 10 литров — 15…18 кг щебня.
Чем больше в щебне различных фракций, тем больше его насыпная плотность. При использовании такого щебня в качестве заполнителя бетона потребуется меньше песка и цемента.
Пористые заполнители
Пористые заполнители для легких бетонов получают в основном искусственным путем (керамзит, шлак, перлит, пенополистирол…). Пористые фракции выпускают размерами 5…10 мм; 10…20 мм; 20…40 мм. При приготовлении бетонной смеси их смешивают в нужном соотношении.
Керамзит — гранулы округлой формы с пористой сердцевиной и спекшейся оболочкой. Благодаря такому строению прочность гранул керамзита достаточно высока. Получают керамзит во вращающихся печах быстрым обжигом легкоплавких глинистых пород с большим содержанием оксидов железа и органических примесей до их вспучивания. Керамзит выпускают в виде гранул размером 5…40 мм и песка (зерна менее 5 мм). Марка керамзита (насыпная плотность) — от 250 до 600 кг/м3. Морозостойкость керамзита — не менее Мрз 15. Керамзит используется в качестве заполнителя керамзитобетона или в качестве утеплителя. Крупные фракции керамзита позволяют обеспечить наилучшие теплоизолирующие характеристики. Прочность керамзита достаточно высока — 6 МПа.
Шлаковая пемза — пористый щебень, получаемый вспучиванием расплавленных металлургических шлаков путем быстрого охлаждения водой или паром. Этот вид пористого заполнителя экономически очень выгоден, т. к. сырьем служат промышленные отходы, а переработка их крайне проста. Марка шлаковой пемзы — от 400 до 1000. Прочность её соответственно — от 0,4 до 2 МПа.
Шлак каменноугольный, возникший при сжигании каменного угля, содержит некоторое количество частиц несгоревшего угля, серного колчедана и других вредных для цемента примесей, поэтому его использовать не следует. Хороший шлак представляет собой массу спекшихся стекловидных корочек серого и рыжего цвета с синевой, а также небольшого количества пористых кусков светло–серого или желтого цвета. Если пористых кусков много и шлак непрочен, то для получения доброкачественного раствора требуется больше цемента. Кроме того, в пористых кусках почти всегда имеется несгоревший уголь.
Шлак, пролежавший долгое время в отвалах, размельчается, и количество вредных примесей в нем уменьшается. Необходимо иметь в виду, что очень мелкий пы–леватый шлак, проходящий через сито с ячейкой менее 1 мм, применять для приготовления строительных растворов не следует.
Вспученные перлитовый песок и щебень — пористые зерна белого или светло–серого цвета, получаемые путем быстрого нагрева до 1000…1200 °С вулканических горных пород, которые содержат небольшое количество гидратной связанной воды. При обжиге исходная порода увеличивается в объеме в 5…15 раз, а пористость образующихся зерен достигает 85…90%. Перлитовый песок — особо легкий вид мелкого заполнителя (насыпная плотность — 75…400 кг/м3). Щебень, выпускаемый во фракциях 5… 10 и 10…20 мм, имеет плотность от 200 до 500 кг/м3.
Пенополистирол — гранулы вспененного полистирола диаметром около 5 мм. Пенополистирол имеет плотность 15…35 кг/м3, в зависимости от марки; отличается малой гигроскопичностью (0,05…0,2%), его водопоглощение — не более 2 — 3% от объема. Работает от — 65 °С до + 60 °С, из‑за чего им не рекомендуется утеплять бани. При перевозке или хранении пенополистирола или изделий из него необходимо обеспечить защиту от воздействия солнечных лучей.
После обработки гранул специальным адгезивом [омыленный древесный пек (ЦНИПС-1)], обеспечивающим хорошее их сцепление с цементом, гранулы применяют в качестве заполнителя пенополистиролбетона.
Вода
Вода для приготовления бетонной смеси должна быть без запаха, не должна содержать масла, агрессивные вещества и т. п., задерживающие твердение цемента, вызывающие его коррозию и образующие высолы на открытых поверхностях конструкции. К таким примесям относятся соли и кислоты. Болотная вода, богатая органическими примесями, а также сточные воды, содержащие жир, сахар, кислоты и другие включения, для приготовления бетона не пригодны.
Обычно применяют водопроводную, речную или колодезную воду, а в ряде случаев — морскую, если содержание солей в ней не превышает 5 г/л. Нельзя применять морскую воду при бетонировании внутренних конструкций жилых и общественных зданий в сухом и жарком климате, т. к. морские соли могут выступить на поверхности бетона или вызвать коррозию металла.
Если бетонную смесь готовят в теплое время, лучше использовать холодную воду, чтобы бетон не схватился слишком быстро. Зимой лучше применить теплую воду, подогретую до 40 °С.
Хранение материалов
Цемент
Сохранение цемента в условиях строительной площадки — задача, которая должна решаться застройщиком в обязательном порядке. Цемент может иметь товарный насыпной вид, бывает расфасован в бумажные или полиэтиленовые мешки по 50 кг. Встречаются и более мелкие фасовки цемента.
Хранение цемента на открытой строительной площадке требует особого подхода. Если приобретается насыпной цемент, то его следует разгрузить в закрываемую емкость, например, в плотный деревянный ящик (рис. 91), имеющий снизу и с боков надежную гидроизоляцию (толь, полиэтилен…), или в металлический ящик–ларь. Емкость с цементом необходимо изолировать от атмосферных осадков. Для этого ее следует поместить под навес на приподнятом основании (0,2…0,5 м от земли) и оснастить плотной крышкой. Доставка насыпного цемента осуществляется автосамосвалами, автосмесевозом со шланговой подачей или автобетоносмесителями.
При хранении расфасованного цемента следует предпринять определенные мероприятия, связанные с исключением его увлажнения.
Рис. 91. Хранение цемента в ящике
Следует учитывать, что цемент после хранения в сухом помещении теряет свою марочную прочность:
за 1 месяц… 10%,
за 3 месяца… 20%,
за 6 месяцев… 30%,
за 1 год……… до 40%,
за 2 года……. более 50%.
Особенно требовательны к условиям хранения высокомарочные цементы, которые из‑за тонкости помола быстро окомковываются и утрачивают свою активность.
При хранении цемента в помещении с нормальной влажностью (20…30%) потеря марочной прочности ускоряется почти в два раза.
Мешки цемента следует располагать на настиле (поддонах), на высоте 20..30 см от земли. Снизу под мешки цемента нужно проложить слой гидроизоляции (толь, пергамин, полиэтиленовую пленку…). Мешки с цементом лучше укладывать в штабель высотой не более 1,5 м от земли. Большая высота штабеля будет неудобной для его формирования и для съема мешков. Сверху штабель мешков следует закрыть полиэтиленовой пленкой (в два слоя) так, чтобы края пленки свисали вниз, закрывая штабель до земли (рис. 92). Обращаем внимание на то, что гидроизоляция под мешками не должна выходить за кромку верхней гидроизоляции, чтобы дождевые осадки не подтекали к штабелю.
Рис. 92. Хранение цемента в мешках
Предполагая длительное хранение цемента (полгода и более), следует учитывать, что хранение товарного цемента в общей емкости более предпочтительно, чем в мешках, т. к. пограничная площадь контакта цемента с воздухопроницаемой средой в первом случае существенно меньше.
Если хранение цемента выполнялось недостаточно хорошо, то это приведет к лишним тратам. При снижении марки цемента потребуется увеличить его количество. Если вместо М 400 использовать М 300, то его количество в бетонной смеси придется увеличить на 30%. Кроме того, при хранении мешков с цементом при повышенной влажности сам цемент схватывается, создавая массивные камнеподобные образования. Из‑за этого для приготовления бетонного раствора в ход идет не больше половины мешка, а остальное — на выброс.
Песок, шебень
Песок и щебень в строительстве используются в большом объеме, поэтому место их складирования на строительной площадке следует разместить так, чтобы работа по их транспортировке была минимальной, например, непосредственно около растворного узла. Подъезд самосвала к месту разгрузки песка или щебня должен быть свободным, а сами подъездные пути — крепкими, выдерживающими вес груженого автотранспорта.
Опыт выполнения строительных работ подсказывает, что место разгрузки песка лучше оградить с трех сторон (рис. 93). Грунт в зоне складирования также желательно застелить жестким материалом (доски, жесть, линолеум б/у…). Это позволит почти вдвое сократить площадь складирования сыпучих материалов и предотвратить их загрязнение грунтом.
Рис. 93. Хранение песка или щебня в ограждении
Обращаем внимание застройщиков, что объем складирования материалов не должен быть излишним: его надо увязать с графиком выполнения работ.
Планируя строительство, следует учитывать и возможные ограничения с проездом грузовых машин в осеннюю и весеннюю распутицу. Для осуществления строительства ранней весной песок и щебень лучше завезти осенью, до начала дождей.
3.4. СОСТАВ БЕТОННОЙ СМЕСИ И СВОЙСТВА БЕТОНА
Качество бетонных работ и производительность труда во многом определяются технологическими свойствами бетонной смеси. Бетонная смесь состоит из цементного теста, мелкого и крупного заполнителя. Каждый из этих компонентов влияет на вязкопластичные свойства смеси. Так, при увеличении содержания заполнителей смесь становится жесткой, а чем больше в цементном тесте воды, тем бетонная смесь становится подвижнее.
Характеристикой вязкопластичных свойств бетонной смеси служит удобоукладываемость — способность бетонной смеси легко укладываться в форму и уплотняться под действием различных способов уплотнения, не расслаиваясь. Удобоукладываемость различных смесей оценивают по их подвижности и жесткости.
Подвижность служит характеристикой удобоукладываемости пластичных смесей, способных деформироваться под действием собственного веса. Подвижность характеризуется осадкой конуса, отформованного из испытуемой бетонной смеси (рис. 94). Для этого стандартный конус заполняют смесью, уплотняя его штыкованием. После выравнивания верхней поверхности уплотненной смеси, форму–конус снимают и измеряют осадку конуса бетонной смеси (рис. 95), значение которой (в сантиметрах) послужит показателем подвижности (П).
Рис. 94. Определение подвижности смеси (размеры в мм): А — эталонный конус с образцом смеси; Б — геометрические размеры эталлонного конуса
Рис. 95. Подвижность смеси: I — малоподвижная (жесткая); II— подвижная; III — пластичная; IV — литая
Жесткость — характеристика удобоукладываемости бетонных смесей с малой подвижностью, у которых не наблюдается осадка конуса. Её определяют по времени вибрации (в секундах), необходимому для выравнивания и уплотнения предварительно отформованного конуса из бетонной смеси. Устройство для определения жесткости включает вибростол, металлическую цилиндрическую ёмкость и металлический диск с шестью отверстиями, закрепленный на штативе (рис. 96).
Для определения жесткости бетонной смеси конус заполняют смесью и уплотняют его штыкованием. Затем форму–конус снимают и опускают металлический диск на поверхность бетонной смеси. После этого включают вибратор (рис. 90, б). Время в секундах, в течение которых смесь распределится в цилиндре равномерно и хотя бы через два отверстия диска начнет выделяться цементное тесто, принимают за показатель жесткости бетонной смеси (Ж).
Рис. 96. Определение жесткости смеси: А — образец перед началом испытаний; Б — образец в конце испытаний; 1 — штанга; 2 — диск с отверстиями; 3 — образец смеси; 4 — штатив; 5 — цилиндрическая форма; 6 — вибростол
Производство бетонных работ требует определенной подвижности или жесткости, при которых качество бетонирования будет наилучшим (табл.15).
Таблица 15. Классификация бетонных смесей по удобоукладываемости
В зависимости от назначения, вида монолитных конструкций и степени их армирования рекомендуются следующие показатели жесткости и подвижности бетонной смеси (табл. 16).
Таблица 16. Область применения бетонной смеси в зависимости от подвижности и жесткости
Связанность — способность бетонной смеси сохранять однородную структуру, т. е. не расслаиваться в процессе транспортирования, укладки и уплотнения. При нормальной подвижности распределение фракций заполнителя в объеме смеси достаточно равномерное (рис. 97, а). При повышенной влажности и наличии в смеси тяжелых фракций вода, как наиболее легкий компонент смеси, отжимается вверх; а крупный заполнитель (гравий, щебень), плотность которого обычно больше растворной части смеси (цемент, песок и вода), опускается вниз (рис. 97, б).
Рис. 97. Схема расслоения бетонной смеси: А — свежеприготовленная смесь; Б — расслоившаяся смесь; 1 — крупный заполнитель; 2 — цементно–песчаный раствор; 3 — вода; 4 — направление движения воды
Застройщик, собирающийся отливать бетонную опору при высоком уровне грунтовых вод, должен учитывать возможность расслоения тяжелой бетонной смеси от повышенной влажности. Если воду из скважины сложно удалить, то в бетонную смесь не следует вводить тяжелые фракции размером больше 2…3 см; лучше применить пескобетонную смесь, без щебня.
При создании легких бетонов на керамзите или шлаке следует учитывать возможность всплытия легких фракций, если в смеси будет избыток воды. Такое расслоение может произойти как при бетонировании, так и в процессе приготовления бетонной смеси в бетоносмесителе.
Избыточная влажность делает бетон неоднородным, снижая его прочностные показатели и морозостойкость. Связанность бетонной смеси обеспечивается правильным подбором её составляющих.
Процесс приготовления пенополистиролбетона сложно было бы осуществить без использования адгезива, который "приклеивает" цемент к шарикам пенополистирола, утяжеляет их, вовлекая в процесс перемешивания и песчаную составляющую смеси.
Прочность — свойство бетона сопротивляться разрушению от действия внешних нагрузок. Она определяется прочностью цементного камня и его сцепления с заполнителем. Как у всех каменных материалов, прочность бетона на сжатие значительно выше, чем на растяжение или изгиб (в 10…20 раз).
Бетон на портландцементе набирает прочность постепенно. При нормальной температуре и постоянном сохранении влажности рост прочности бетона продолжается длительное время, но скорость ее набора со временем затухает (рис. 88).
Прочность бетона принято оценивать по результатам испытаний его образцов через 28 суток твердения в нормальных условиях (температура 20 °С, влажность 95%). По итогам этих опытов бетону присваивают марку. Так, если бетон выдержал нагрузку 350 кг/см2, то его марка — М350.
Отличительная особенность бетона — неоднородность его свойств. Это объясняется изменчивостью качества сырья, разными режимами приготовления смеси и её транспортировки, разнообразием условий твердения как по температуре, так и по влажности. Квалификация работников, организация контроля над строительством косвенным образом также сказываются на прочности бетона.
В практике выполнения бетонных работ вводится и такое понятие, как класс бетона — показатель, который учитывает возможные отклонения реальных свойств бетона от тех, которые оценены по результатам испытания образцов. Принимается, что реальные свойства бетона составляют 80…90% от свойств испытанных образцов. Например, класс бетона ВЗО соответствует бетону М400, а В40 — М550.
Прочность бетона зависит от марки цемента и соотношения воды и цемента (водоцементное соотношение В/Ц). Чем выше марка цемента, тем при прочих равных условиях прочнее будет цементный камень.
Влияние на прочность водоцементного соотношения объясняется следующим. Цемент при твердении химически связывает 20…25% воды от собственной массы, а чтобы обеспечить необходимую подвижность бетонной смеси, приходится брать 40…80% воды от массы цемента (рис. 98). После набора прочности в массиве бетона остаются мелкие поры, не оказывающие ощутимого влияния на свойства бетона.
Рис. 98. Схема взаимодействия зерен цемента с водой при нормальном количестве воды: 1 — зерно цемента; 2 — вода; 3 — гидратные новообразования; 4 — поры
Естественно, чем больше будет свободной воды, тем больше останется пор в цементном камне, уменьшится его прочность (рис. 99). Морозостойкость также будет снижена, ибо вода, попавшая в поры, при замерзании своим расширением начнет разрушать структуру цементного камня изнутри.
Рис. 99. Схема взаимодействия зерен цемента с водой при избыточном количестве воды: 1 — зерно цемента; 2 — вода; 3 — гидратные новообразования; 4 — поры
На основании опыта была установлена зависимость прочности бетона в возрасте 28 суток от цементно–водного отношения и марки цемента.
R28 = 0,6 RЦ (Ц/В — 0,5) — для бетона с В/Ц=0,4…0,7;
R28 = 0,4 RЦ (Ц/В + 0,5) — для бетона с В/Ц ≤ 0,4;
где RЦ, — марка цемента; Ц/В — цементно–водное отношение (по массе);
Обращаем внимание, что в формуле используется именно цементно–водное соотношение, обратное водоцементному.
Но вообще в строительной практике чаще используется термин водоцементное отношение (В/Ц), так как он сразу характеризует подвижность бетонной смеси — определение, более понятное для восприятия.
Графически зависимость прочности бетона от водоцементного отношения показана на рис. 100.
Рис. 100. Зависимость прочности бетона от В/Ц
Как уже отмечалось, скорость набора прочности цементным камнем сильно зависит от температуры. Влияние температуры окружающей среды на интенсивность набора прочности бетона показано на рис. 89.
Усадка бетона
При твердении на воздухе происходит усадка бетона — сокращение линейных размеров до 0,3…0,5 мм на 1 метр длины. Большие усадочные трещины — одна из причин образования трещин в бетоне. Особенно значительная усадка — до 70% — происходит в начальный период твердения, т. е. в первые сутки. Причина — усадка твердеющего цементного теста. Наполнители бетона (песок и щебень) препятствуют появлению трещин, разбивая сплошную структуру цементного камня.
Технологическая аналогия
Если в хрупком листовом материале (стекло или оргстекло) по каким‑либо причинам появилась трещина, то самым верным способом остановить её развитие — просверлить небольшое отверстие на самом кончике трещины, сняв, как говорят специалисты, концентрацию напряжений.
Заполнитель бетона (песок, щебень) — это и есть те самые элементы, на которых останавливают своё развитие усадочные трещины цементного камня.
Поэтому чем больше в бетоне цемента, тем больше его усадка и вероятность растрескивания. Так что желание застройщиков–перестраховщиков сделать бетон крепче через увеличение объема засыпаемого цемента — далеко не оправдано.
В настоящее время в строительной практике используются расширяющиеся и безусадочные цементы, лишенные этого недостатка (гипсоглиноземистый расширяющийся цемент и расширяющийся портландцемент). Гипсовая добавка в этих цементах связывает лишнюю воду, одновременно создавая расширяющуюся составляющую цементного камня.
Следует отметить, что простая добавка гипса в портландцемент не допускается, т. к. в этом случае в цементном камне будут происходить необратимые разрушающие процессы, да и схватываться цемент будет слишком быстро.
Пористость
Для получения удобоукладываемой смеси приходится вводить в состав бетона в 2.. А раза больше воды, чем может связать твердеющий цемент. Химически не связанная вода, занимая некоторый объем, испаряясь, делает цемент пористым.
В среднем пористость плотно уложенного и затвердевшего бетона достигает 5…7%. При такой пористости бетон слабопроницаем для воды, но проницаем для легких нефтепродуктов (бензин, керосин) и газов.
Снижение пористости может осуществляться с использованием специальных цементов или введением в состав смеси специальных пластифицирующих добавок. Пористость бетона можно также уменьшить, увеличивая подвижность бетонного раствора за счет уплотнения смеси вибрацией (жесткие бетонные смеси с малым содержанием воды вибрацией не уплотняются).
Водонепроницаемость
Водонепроницаемость бетона зависит от пористости и структуры пор (замкнутые, капиллярные или сообщающиеся). Микропоры и капилляры размером более 0,1 мкм доступны для фильтрации воды.
Для повышения непроницаемости бетоны пропитывают специальными составами, вводят полимеры, покрывают бетон пленкообразующими составами.
Морозостойкость
Морозостойкость — способность бетона выдерживать многократное замораживание и оттаивание. Перед испытаниями бетон насыщают водой. При замерзании вода в порах увеличивается в объеме на 9% и вызывает большие внутренние напряжения, которые постепенно разрушают его структуру: сначала образуются мелкие трещины и разрушаются поверхностные слои, а затем — и более глубокие.
Морозостойкость оценивается по числу циклов "замораживание–оттаивание", при которых масса образца изменится не более чем на 5%, а его прочность снизится не более чем на 15%.
Высокая морозостойкость достигается применением жестких бетонных смесей, а также введением пластификаторов. Морзостойкость повышается при увеличении плотности бетона и снижении водоцементного соотношения В/Ц.
В настоящее время созданы бетоны с морозостойкостью 600…800 циклов (например, уплотненные прессованием бетоны на мелкозернистых заполнителях — песках), используемые в дорожных покрытиях.
Состав бетонной смеси
Составом бетона называется массовое или объемное соотношение вяжущего, заполнителей и воды. Если в составе не оговаривается единица измерения, то значит принято весовое соотношение компонентов. Наиболее часто состав бетона выражают в виде отношения Ц: П: Щ, которое показывает во сколько раз количество мелкого заполнителя П (песка) и крупного заполнителя Щ (щебня) больше, чем цемента (Ц). Расход цемента в пропорции принимается за единицу. Обязательно указывают расход воды, который выражается водоцементным отношением В/Ц.
Пример
Состав бетона 1:2,5:5 при В/Ц=0,5 соответствует следующему массовому расходу компонентов смеси:
— цемент — 1;
— песок — 2,5;
— щебень — 5;
— вода — 0,5.
Состав бетона может быть выражен не только в массовом выражении, ни и в объемных долях, удобных для дозирования непосредственно на строительной площадке.
Выражают также состав и в виде массового расхода материалов (кг), необходимых для приготовления 1 м3 (1000 л) бетонной смеси.
Пример
— цемент — 320;
— песок — 800;
— щебень — 1200;
— вода — 160;
Всего — 2480 кг.
Вариантов состава бетона может быть достаточно много. В большой степени на этом сказывается назначенная марка бетона, фракционный состав мелких и крупных заполнителей, а также марка используемого цемента. В зависимости от содержания компонентов обычные бетоны подразделяются на жесткие, пластичные и литые. Примерные составы бетонов (в объемных частях) приведены в таблице 17.
Таблица 17. Состав бетона на тяжелых заполнителях
Подбор состава бетонной смеси сводится к тому, чтобы расход цемента был минимальным. Это достигается в том случае, если объем крупного заполнителя в бетоне максимально возможный (обычно 0,75…0,85 от объема бетона), а мелкий заполнитель занимает пустоты между зернами крупного (рис. 90, а).
Достаточно плотный и легко трамбуемый бетон получают, если количество гравия (щебня) не превышает количество песка более чем в два раза. Что касается фракций песка для бетона с наименьшей пористостью, то там применяют песок, у которого на долю зерен диаметром 0,25 мм приходится 25% от общей массы, диаметром 1 мм — 25% и до 3 мм — 50%.
При отсутствии крупных фракций прочность бетона существенно не снижается, но расход цемента увеличивается (рис. 90, б).
Технологические добавки
Добавки в количестве от 0,1 до 2,5% от массы цемента применяются для снижения его расхода и улучшения технологических свойств смеси и бетона: изменения сроков схватывания и созревания, повышения прочности и морозостойкости, водо- и газонепроницаемости, усиления защитных свойств бетона по отношению к арматуре.
Суперпластификаторы
Наибольшее распространение в качестве добавки получили суперпластификаторы, назначение которых — разжижение бетонной смеси до высокоподвижной литой консистенции. Они приготавливаются на основе меламино- и нафталино–формальдегидных смол. Суть их применения — снижение межмолекулярных сил сцепления в смеси. Введение суперпластификатора в количестве 0,3…0,6% обеспечивает снижение расхода воды, повышает физико–механические свойства бетона, дает возможность снизить расход цемента на 10… 15%.
Отличительной особенностью суперпластификаторов является их кратковременность. Через 1…1,5 часа после их введения подвижность смесей резко снижается.
Ускорители твердения
Для ускорения твердения бетона в качестве добавок применяют сульфат натрия (СН), нитрит натрия (НН), хлорид кальция (ХК), нитрит кальция (НК).
Ингибиторы
Для защиты арматуры от коррозии в бетонную смесь добавляют ингибиторы нитрит–натрия (НН), нитрит–нитрат кальция (НН1К) и нитрит–нитрат сульфат натрия (НН1СН).
Противоморозные добавки
При температуре + 5 °С бетонные смеси резко снижают скорость набора прочности. При температуре ниже 0 °С химически несвязанная вода превращается в лед и увеличивается в объеме на 9%. В результате в бетоне возникают напряжения, разрушающие его структуру.
При оттаивании процесс гидратации цемента возобновляется, но из‑за разрушенной структуры бетон не может набрать проектной прочности.
Экспериментами установлено, что если бетон до замерзания наберет 30 — 50% от проектной прочности, то дальнейшее воздействие низких температур не влияет на его физико–механические характеристики.
При внесении химических добавок процесс твердения бетона будет протекать и при температурах ниже 0 °С, но несколько замедленно. Скорость набора прочности бетоном зависит от температуры и химического состава противоморозных добавок.
Если противоморозные добавки действуют до температуры — 15 °С, то скорость набора прочности бетоном можно оценить по табл. 18.
Таблица 18. Скорость набора прочности бетона с противоморозными добавками,%оt R
Добавки вводят в виде водных растворов в процессе приготовления бетонных смесей в количестве 2…10% от массы цемента.
В качестве противоморозной добавки можно использовать:
— обычную пищевую соль, ее 5% водный раствор (на 40 л воды — 1 кг соли) замерзает при — 5 °С;
— раствор 6% пищевой соли и 9% хлорида кальция (ХК) (на 100 литров воды — 2,5 кг соли и 4 кг хлорида кальция) замерзает при — 15 °С.
В качестве противоморозных добавок применяют и другие соли: нитрит натрия (НН), нитрат кальция (НК), нитрит–нитрат кальция (ННК), поташ (П) и их соединения. Соли вводят в бетонную смесь только в виде водных растворов.
В настоящее время на рынке строительных материалов появилось достаточно много эффективных отечественных противоморозных добавок в жидком и в сухом виде, способ применения которых указывается в прилагаемых к ним описаниях.
Добавки вводят в виде водных растворов в процессе приготовления бетонной смеси.
Некоторые добавки, например, хлористые соли, ухудшают качество поверхности вследствие образования высолов — белесых трудно выводимых пятен. Поэтому их применение ограничено (фундамент, балки…). Кирпичная кладка, выполненная с применением подобных противоморозных добавок, хорошо заметна издалека.
Если в какой‑либо местности вместо песка или щебня используются иные материалы, сходные по своему применению в качестве заполнителя, то в этих случаях неплохо сделать образцы будущей смеси.
Для этой цели можно изготовить небольшие емкости, обрезав верхушки пластиковых бутылок (рис. 101). Образцов желательно сделать несколько, с разными составами. Их следует пронумеровать (нацарапать на свежем растворе) и сделать запись о составе каждого образца в тетради, которую застройщик должен обязательно иметь.
Рис. 101. Изготовление образцов бетонной смеси: А — заполнение емкости смесью; Б — образцы в пропарочной камере
Для ускорения созревания бетона на следующий день образцы можно освободить от емкости и поместить в пропарочную камеру. Для этой цели подойдет большая кастрюля с крышкой. На дно кастрюли наливается вода, образцы устанавливаются на невысокой подставке. На обычной плите кастрюлю с образцами разогревают до кипения воды и поддерживают это состояние в течение 8 часов, иногда подливая воду.
После такой пропарки образцы наберут прочность, соответствующую выдержке образцов в естественных условиях в течение 28 суток. Вынимайте образцы, разбивайте их молотком, оценивая их прочность. Более объективно это выполняется с применением эталонного молотка Кашкарова, оснащенного на конце подпружиненным шариком. Прочность бетона, по которому ударяют этим инструментом, оценивается диаметром следа от шарика.
3.5. СОСТАВ И СВОЙСТВА ПЕСКОБЕТОНА
Как уже пояснялось, тяжелые заполнители бетона вводят для экономии цемента. Бетонная смесь, в которой наполнителем служит только песок, для многих застройщиков может оказаться более приемлемой. Высокая стоимость щебня, усложнение дозирования смеси и повышенная вероятность её расслоения — не в пользу тяжелого бетона.
В последнее время и в индустриальном строительстве стал широко применяться пескобетон без тяжелых заполнителей. Чем это можно объяснить.
"… Известный уже более века песчаный бетон стал предметом систематических исследований с середины пятидесятых годов, что было связано, в первую очередь, с организацией производства железобетона в регионах, где отсутствуют месторождения крупного заполнителя…"
"…Песчаный бетон, как правило, обладает высокими физико–механическими характеристиками по сравнению с бетоном на крупном заполнителе…
"…Бортовые камни из песчаного бетона, находившиеся 25 лет в эксплуатации, не имели следов разрушения, в то время как бортовые камни из тяжелого крупнозернистого бетона, изготавливаемые по традиционной технологии, разрушились через 2-3 года от размораживания".
"Песок — единственный заполнитель в песчаном бетоне, наиболее дешевый и повсеместно распространенный строительный материал, стоимость которого в России в 2-3 раза ниже стоимости щебня ив 6 — 8 раз керамзитового гравия…"
Каков же состав пескобетона?
Самый классический — цемент и песок 1: 3.
"…Марку цемента определяют по прочности на изгиб и сжатие трех образцов, изготовленных из пескобетона с весовым соотношением цемент: песок — 1:3.
Для изготовления образцов отвешивают 500 г портландцемента и 1500 г стандартного песка (модуль крупности Мк=2,5…2,7). Смесь перемешивают и заливают 200 г воды (В/Ц=0,4), тщательно перемешивают до получения однородной массы, закладывают в разъемную металлическую форму, предназначенную для формования трех образцов размерами 40 х 160 мм, и трамбуют. После выдержки в течение 28 суток при нормальных условиях (высокая влажность и температура 20 °С) образцы испытывают на сжатие. Цементу, образцы которого разрушились, например, при давлении 400 кг/см2, присваивают, соответственно, марку 400…".
Эти материалы приведены как для застройщиков, осторожных и нерешительных по отношению ко всему новому, так и для строителей–консерваторов, которые отдают предпочтение традиционным материалам и технологиям, проверенным многими десятилетиями.
Организации, реализующие песок, часто предлагают песчано–гравийную смесь. Она несколько дороже песка, но значительно дешевле щебня. Применение такого наполнителя также позволяет снизить расход цемента. Застройщик, имеющий возможность выбрать песок любой фракции, должен знать, что для экономии цемента песок в своем составе должен иметь разные фракции. Чем больше будет это разнообразие, тем лучше.
Технологией ТИСЭ предусмотрено бетонирование фундамента без использования тяжелых заполнителей. Такой подход можно считать уместным, так как объем бетонирования при устройстве фундамента по ТИСЭ относительно невелик и экономия цемента от применения щебня может оказаться незначительной.
Возведение стен по технологии ТИСЭ выполняется с применением пескобетона повышенной жесткости. Формование пустотных стеновых блоков с применением опалубки ТИСЭ связано с ручной трамбовкой жесткой пескобетонной смеси. Распалубка осуществляется немедленно, сразу после трамбования.
Замена бетона со щебнем на пескобетон для многих индивидуальных застройщиков — хорошая возможность упростить и удешевить возведение фундамента и стен.
Жесткий бетон
Применение жесткой пескобетонной смеси в индивидуальном строительстве пока не столь распространено. Для многих начинающих и даже профессиональных строителей жесткий бетон — еще не освоенный материал. В последнее время на рынке строительных материалов появилось много изделий, изготовленных из пескобетона — тротуарные плитки, желоба систем водоотвода, бордюрные камни, черепица кровли и т. п. Все эти изделия формуются с применением жесткой пескоцементной смеси и рассчитаны на жесткие испытания морозами и влагой.
"…Жесткие бетоны при хорошем уплотнении обладают большей прочностью, чем подвижные, при одном и том же расходе цемента. Применение жестких бетонов позволяет экономить 10…20% цемента.
Морозостойкость повышается при снижении В/Ц. В настоящее время созданы бетоны с морозостойкостью 600…800 циклов, например, бетоны на мелкозернистых заполнителях — песках.
Особо жесткие смеси используют при изготовлении изделий по технологии, предусматривающей их немедленную распалубку. Для повышения морозостойкости конструкций и увеличения их механических характеристик в дорожном строительстве применяют бетоны повышенной жесткости.
Для уплотнения жестких бетонных смесей при устройстве покрытий небольшой толщины используется трамбование. Применяют пневматические или ручные трамбовки. Смеси уплотняют слоями толщиной 10…15 см".
Подвижность цементного раствора без крупных фракций можно определить глубиной погружения в неё эталонного конуса (масса 300 г, высота 150 мм, угол при вершине 30°). Конус делают из жести, внутри него — свинцовая дробь (рис. 102).
Рис. 102. Эталонный конус
В зависимости от назначения растворы могут иметь различную жесткость, характеризуемую разной глубиной погружения конуса:
— стеновые блоки по технологии ТИСЭ…… 2..4 см,
— бутовая кладка обыкновенная……………. 4…6 см,
— заполнение швов в панельных домах……. 5…7 см,
— кладка из пустотелого кирпича………….. 7…8 см,
— кладка из обыкновенного кирпича……….9…13 см,
— штукатурные растворы……………………7…12 см.
Жесткость и подвижность бетонной смеси с крупными наполнителями нельзя оценивать эталонным конусом. Щебень или галька будут мешать его полноценному внедрению, создавая несоответствие глубины погружения конуса с реальной подвижностью смеси.
При формовании блоков по технологии ТИСЭ не обязательно прибегать к работе с эталонным конусом. Подвижность смеси должна быть такой, чтобы она после сжатия в руке сохранила свою форму, а на ладонях не осталось бы следов цементного молока (рис. 103).
Рис. 103. "Ручная" оценка жесткости бетонной смеси
3.6. ПРИГОТОВЛЕНИЕ БЕТОННОЙ СМЕСИ
Приготовление бетонной смеси — достаточно трудоемкий процесс, требующий как больших физических затрат, так и хорошей организации работ. При выполнении бетонных работ до 50…70% трудозатрат приходится на приготовление раствора. Застройщику следует отнестись к этому процессу с большим вниманием как на этапе выбора того или иного способа приготовления смеси, так и на этапе подготовки строительной площадки, оборудования и инструментов.
Существует ряд способов приготовления бетонной смеси, которые осуществляются механизированным или ручным методом. Не останавливаясь на промышленных заводских методах производства бетонной смеси, реализуемых на БСУ (бетонно–смесительных узлах), рассмотрим способы их приготовления непосредственно на строительной площадке.
Приготовление бетонной смеси механизированным способом может осуществляться бетоносмесителями гравитационного действия, основанными на свободном падении и перемешивании материала, и бетоносмесителями принудительного перемешивания (рис. 104).
Рис. 104. Бетоносмесители: А — гравитационный; Б — принудительный
Гравитационные бетоносмесители
В этих бетоносмесителях материал перемешивается в медленно вращающихся вокруг горизонтальной или наклонной оси смесительных барабанах, внутри которых закреплены короткие лопасти. Лопасти захватывают материал, поднимают его и при переходе в верхнее положение сбрасывают. В результате многократного подъема и падения обеспечивается перемешивание. В таких смесителях готовят подвижные пластичные смеси с крупным заполнителем из плотных пород. Данный тип бетоносмесителей считается достаточно простым и дешевым.
Наиболее распространенный объем "груши" гравитационного бетоносмесителя, используемый индивидуальными застройщиками, — 150…200 л. Его достоинства: относительно небольшая масса, удобство в работе и возможность питания от однофазной электрической сети.
В паспортных данных на бетоносмесители указывают как полный объем "груши", так и её загрузочную вместимость (суммарный объем сухих компонентов бетонной смеси, которые могут быть загружены в смеситель). При перемешивании мелкие компоненты смеси входят в межзерновые пустоты более крупных заполнителей (песок — в пустоты крупного заполнителя; цемент — в пустоты песка), поэтому объем приготовленной бетонной смеси составляет 0,6…0,7 от суммарного объема исходных сухих компонентов. Этот коэффициент называется коэффициентом выхода бетона.
Время перемешивания зависит от подвижности смеси и вместимости бетоносмесителя. Чем меньше подвижность смеси и больше вместимость бетоносмесителя, тем больше времени необходимо на перемешивание. В среднем это занимает 2…3 минуты. При увеличении времени перемешивания некоторые смеси могут расслоиться с выделением тяжелых фракций.
Приготовление подвижной смеси в гравитационном смесителе может осуществляться различными способами.
Первый. Перед закладкой компонентов во вращающийся барабан заливают всю воду. Это необходимо для того, чтобы освободить стенки от налипшей смеси, которая может быстро схватиться, затвердеть. Засыпают цемент, немного перемешивают, засыпают песок и перемещивают до получения однородной массы.
По другому способу сначала во вращающийся барабан загружают песок, который очищает емкость от предыдущего замеса. После загрузки барабана цементом создается пескоцементная сухая смесь. Затем барабан заливают водой. После замеса полноценной пескоцементной смеси в барабан закладывают щебень и после получения однородной массы завершают приготовление смеси.
Приготовление жесткой смеси (для возведения стен с опалубкой ТИСЭ) в гравитационном смесителе достаточно сложно, если не прибегнуть к каким‑нибудь технологическим ухищрениям. Сложность перемешивания связана с тем, что густая смесь собирается в единый комок и перемещается в объеме смесителя без разрушения. Поэтому приготовление жесткой смеси в гравитационном смесителе может выполняться следующими нестандартными способами.
— В бетоносмеситель закладывают три–четыре булыжника, которые в процессе вращения своим падением разбивают жесткую смесь.
— В процесс перемешивания жесткой смеси деревянным или резиновым ударным инструментом стучат по корпусу–обечайке, стряхивая с лопастей залипшую бетонную смесь. Ось вращения барабана должна быть близкой к горизонтальному положению.
— В объеме смесителя между лопастями натягивают проволоку диаметром 1,5…2 мм с интервалом 6…7 см друг от друга, которая в процессе перемешивания будет "резать" комья жесткой смеси (рис. 105). В двухлопастных и в трехлопастных барабанах проволока натягивается между лопастями, как показано на рисунках (рис. 105, а, б). Подобная проволочная сетка может пересекать весь объем барабана в одной диаметральной плоскости (отверстия под проволоку сверлятся в стенках самого барабана) (рис. 105, в).
Рис. 105. Доработка смесителя для приготовления жестких смесей: А — двухлопастной смеситель; Б — трехлопастной смеситель; В — трехлопастной смеситель; 1 — емкость; 2 — лопасть; 3 — проволока
— Лопасти в смесителе снимают. В процессе вращения смесителя рабочая смесь перемешивается лопатой–веслом, заведенной в объем смесителя и удерживаемой вручную (рис. 106). В какой‑то степени такой бетоносмеситель можно считать полупринудительным.
Рис. 106. Смеситель со снятыми лопастями
Бетоносмеситель принудительного перемешивания
Этот тип смесителей более универсален и способен перемешивать бетонные смеси любой подвижности с различными материалами и величиной фракций.
Приготовление смеси происходит в неподвижном корпусе с помощью вращающихся смесительных лопаток, скребков или лопастей. Смесители принудительного действия имеют разные конструктивные решения и принципы работы.
Наиболее распространен среди индивидуальных застройщиков принудительный бетоносмеситель с горизонтально расположенной осью вращения смесительных лопаток (рис. 104, б).
Если сравнивать два типа смесителей, то гравитационные получили более широкое распространение, нежели бетоносмесители принудительного действия. Они отличаются конструктивной простотой, меньшей металлоемкостью и энергоемкостью. Хотя процесс перемешивания в них более длительный (в 1,5…2 раза), чем в бетоносмесителях принудительного действия. В принудительных смесителях жесткая смесь готовится свободно, без каких‑либо конструктивных или технологических доработок.
Приготовление бетонной смеси вручную
Среди индивидуальных застройщиков приготовление бетонной смеси вручную выполняется достаточно часто. Это связано не только с ограниченными финансовыми возможностями, не позволяющими приобретать дорогую строительную технику. Приготовление смеси вручную в отдельных случаях может оказаться более оправданным, чем механизированные её варианты.
Приготовление бетонных растворов вручную может выполняться несколькими способами.
На двух листах жести гарцеванием
Сначала на листы железа (два листа оцинкованного железа 1x2 м), чуть с краю, высыпается половина порции песка, затем сверху — цемент, а потом досыпается оставшаяся часть песка. Из этой горки смеси рядом возводится другая горка. В процессе такой переброски смесь перемешивается. После двух–трех таких перелопачиваний она получается достаточно однородной (рис. 107).
Рис. 107. Приготовление бетонной смеси гарцеванием
Перемешивание полученной смеси с водой можно производить в следующей последовательности (рис. 108).
В смеси делают лунку и заливают её из лейки водой (треть объема воды), после чего увлажненный слой раствора снимают лопатой и складывают рядом.
Делают в горке новую лунку и заливают её из лейки второй третью воды. Затем так же, как и в первый раз, насыщенный водой слой снимают и перекладывают на первую отложенную часть увлажненного раствора.
Оставшуюся смесь разравнивают и проливают равномерно последней третью воды.
Рис. 108. Ручное перемешивание сухой смеси с водой
Завершают процесс перемешивания смеси с водой формированием общей горки готового увлажненного раствора.
После этого разравнивают смесь, засыпают её щебнем и перелопачивают два–три раза.
Такая технология приготовления смеси достаточно производительна. Она была применена на подмосковной строительной площадке при создании плиты фундамента, монолитного перекрытия подвала, а также при возведении стен по технологии ТИСЭ. На приготовление бетонной смеси двумя рабочими уходило четыре тачки песка со щебнем и один мешок цемента. Само перемешивание занимало не более 20 минут.
На двух листах жести "ковровым" способом
На два листа жести размерами 1x2 м насыпают слой песка в количестве, рассчитанном на один мешок цемента. Цементную дорожку располагают в середине. Толщина слоев 5 — 10 см (рис. 109, а).
Рис. 109. Приготовление бетонной смеси "ковровым" методом: А — сухое перемешивание; Б — увлажнение сухой смеси
Работая тяпками или граблями с редкими жесткими зубьями в поперечном направлении, смесь перемешивают. Лучше это выполнять вдвоем с двух сторон листа. Застройщик, имеющий возможность выполнять сварочные работы, может изготовить такие грабли самостоятельно, используя стальную полосу 25x4 мм (рис. 110).
Рис. 110. Растворные грабли
Если слой сухой смеси тонкий, то грабли можно развернуть зубьями вверх. Проливать сухую смесь водой лучше с помощью лейки (рис. 109, б) и в два этапа. Первую половину требуемого объема воды равномерно распределяют по поверхности "ковра" и перемешивают слои граблями или мотыгой. После этого разравнивают слой раствора и повторяют увлажнение с остальной частью воды. После перемешивания слой раствора собирают в горку готовой бетонной смеси. Объем воды, требуемый для одного замеса, определяется заранее.
Скорость приготовления смеси таким методом почти как в гравитационном смесителе, но работа более трудоемкая.
В желобообразном бойке
Более удобный вариант приготовления смеси можно реализовать на бойке, выполненном с использованием листа жести 1x2 м (рис. 111). Отсутствие внутренних углов в такой емкости и высокое расположение смеси упрощает процесс её приготовления и разгрузки, делает работу более удобной, позволяя снизить уровень прилагаемых физических нагрузок. Готовить смесь можно граблями, мотыгами или тяпками. Сначала на боек высыпается песок, а на него — цемент. Смесь перемешивается до равномерного серого цвета, после этого разравнивается. Посередине делается углубление, куда и заливается в два–три приема вся вода. После получения однородной массы в два приема засыпается щебень, и смесь перемешивается до степени готовности.
Рис. 111. Приготовление бетонной смеси в желобообразном бойке
В корытообразном бойке
Такой боек достаточно прост и легок. Для его изготовления потребуется лист жести 1x2 м и обрезные доски шириной 18…20 см (рис. 112). Из‑за своей простоты такая конструкция наиболее распространена среди индивидуальных застройщиков. Боек удобно переносить с места на место, обеспечивая максимальную близость растворного узла к зоне формования. Кроме того, в процессе приготовления смеси вода из него никуда не просачивается, обеспечивая точную дозировку смеси, исключая потерю цементного молока.
Рис. 112. Приготовление бетонной смеси в корытообразном бойке
Приготовление смеси в непосредственной близости от зоны формования особенно целесообразно при работе в жарких условиях, при которых смесь после затворения её водой быстро схватывается.
Преимущества ручного приготовления бетонной смеси относительно механизированного способа:
— оснастка дешевле и надежней в работе;
— возможно сразу использовать целый мешок цемента (50 кг), что существенно упрощает процесс дозирования смеси;
— загрузка компонентов смеси удобней;
— не требуется электричество, нет необходимости в прокладке к растворному узлу питающих электрических кабелей; снижена вероятность поражения электрическим током;
— оборудование легко переносимо, отчего приготовление смеси можно выполнять в любом месте строительной площадки;
— оборудование просто в обслуживании, его легко чистить и ремонтировать.
3.7. УХОД ЗА СОЗРЕВАЮЩИМ БЕТОНОМ
Чтобы свежеуложенный бетон получил требуемую прочность в назначенный срок, за ним необходим правильный уход: поддержание его во влажном состоянии, предохранение от сотрясений, повреждений, ударов, а также от резких перепадов температур. Нарушение режима ухода может привести к получению низкого качества и непригодного для эксплуатации бетона, а иногда — к разрушению конструкции. Особенно важен уход за бетоном в течение первых дней после бетонирования. Недостатки ухода в это время могут настолько ухудшить качество бетона, что практически их нельзя будет исправить в дальнейшем.
Прочность бетона и его морозостойкость определяются не только маркой цемента или составом наполнителей, но и тем, в каких условиях, при какой влажности проходил процесс его созревания. В жарких климатических условиях влажностному уходу за созревающим бетоном необходимо уделять особое внимание.
Приведенный ниже график показывает, что если бетон оставили на открытом воздухе без увлажнения, то его прочность снижается почти вдвое (рис. 113).
Рис. 113. График зависимости прочности бетона от влажности среды в процессе созревания бетонной массы
Из графика также видно, что уход за бетоном можно закончить уже через неделю.
Сохранение влажности в бетоне можно осуществлять, как отмечалось, постоянно увлажняя его, а также укрывая намокаемым материалом (мешковиной, соломой, опилками, землей, песком…) или ограничивая потерю влаги (для этого закрепляют гидроизоляцию на внутренней поверхности опалубки и накрывают созревающий бетон полиэтиленовой пленкой).
Другой способ сохранения влажности — покрытие поверхности созревающего бетона водонепроницаемыми пленками (масляные краски, клей ПВА, битумная мастика, жидкое стекло…).
Влажность из бетонного массива может уйти и за счет капиллярного эффекта, который возникает при контакте созревающего бетона с водопоглощающим материалом. Именно поэтому перед формованием очередного стенового блока по технологии ТИСЭ нижний ряд блоков обязательно увлажняют. По этой же причине под лентой фундамента, отливаемого в опалубке, прокладывают гидроизолирующий материал (толь, пергамин, полиэтиленовая пленка…). Это позволяет избежать потери цементного молока, создает условия для полноценного созревания бетона.
Необходимость в дополнительном увлажнении созревающего бетона легко оценивается визуально: влажный бывает темно–серого цвета, а с недостаточной влажностью — светло–серый. Если бетон накрыт полиэтиленовой пленкой, то наличие конденсата с ее внутренней стороны — это гарантия 100% влажности.
При возведении фундамента по технологии ТИСЭ при высоком уровне грунтовых вод у застройщиков возникают сомнения в качестве созревающего бетонного массива фундаментных столбов. Спешим их успокоить: подобные условия для созревания бетона — почти идеальные.
Другое дело — создание фундаментных столбов в сухом глинистом или песчаном грунте. В этом случае грунт около столбов следует увлажнять в течение первых пяти дней — выливать ведро воды в кольцевую ямку, созданную вокруг столба. Хотя в большинстве случаев реальная влажность грунта вполне подходит для созревания бетона, даже если создается впечатление сухого грунта.
Еще проблема, которая может возникнуть у застройщика, — предохранение созревающего бетона от промерзания.
Достаточно часто холода застают нас неожиданно. Что же делать, если смесь не содержала противоморозных добавок, а синоптики грозят заморозками? Первое средство — укрыть выступающие бетонные массивы пленкой, засыпать их опилками, песком или грунтом. Второе — пролить созревающий бетон солевым раствором (пачка поваренной соли на три ведра воды). Это надо делать до промерзания, а не после — когда уже ничем не поможешь. Вместо соли лучше применить готовые про–тивоморозные составы, реализуемые на строительном рынке.
3.8. АРМИРОВАНИЕ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ
Бетон имеет существенный недостаток, присущий всем каменным материалам искусственного и естественного происхождения: он хорошо работает на сжатие, но плохо сопротивляется изгибу и растяжению. Прочность бетона на растяжение составляет всего 7…10% его прочности на сжатие. Чтобы повысить прочность бетона на растяжение и изгиб, в него укладывают стальную проволоку или стержни, называемые арматурой. Арматура с латинского означает "вооружение". Бетон, вооруженный арматурой, способен на многое.
Цемент изобрели в 1824 — 1825 гг. практически одновременно, независимо друг от друга Егор Челиев в России и Джозеф Аспдин в Англии. Производство цемента и использование бетона быстро совершенствовалось и развивалось, но оставался существенный недостаток — плохое сопротивление бетона растяжению.
Открытие железобетона принадлежит парижскому садовнику Иосифу Монье, который решил вместо деревянных кадок для цветов сделать бетонные. Для прочности он уложил в бетон проволоку. Получились очень долговечные изделия. Так появился железобетон (патент от 1867 г.), в котором бетон и сталь дополняли друг друга. Металл предотвращал появление трещин при растяжении, а бетон защищал сталь от коррозии. Попытки создать железобетон предпринимались и раньше (1845 — В. Уилкинсон, Англия; 1849 — Г. Е. Паукер, Россия). Первые железобетонные конструкции появились в 1885 г.
Железобетон — это не два разнородных материала (бетон и сталь), а новый материал, в котором сталь и бетон работают совместно, помогая друг другу. Это объясняется следующими причинами.
Прочность сцепления арматуры с бетоном достаточно велика. Так, чтобы выдернуть из бетона пруток диаметром 12 мм, введенный на глубину 300 мм, потребуется сила не менее 400 кг. Сцепление стали с бетоном не нарушается и при сильных перепадах температур, так как коэффициенты их теплового расширения почти одинаковы.
Модуль упругости стали почти в 10 раз выше, чем бетона. То есть при совместной работе бетона со сталью напряжения стали в 10 раз выше, чем бетона, что ведет к перераспределению нагрузок, действующих в растянутой зоне балок. Основную нагрузку в растянутой зоне балки несет сталь, а в сжатой — бетон.
Бетон, благодаря своей плотности и водонепроницаемости, с одной стороны, и щелочной реакции цементного камня, с другой, защищает сталь от коррозии (пассивирование).
Кроме того, бетон, как сравнительно плохой проводник тепла, защищает сталь от сильного нагревания при пожарах. При температуре поверхности бетона в 1000°С арматура, находящаяся на глубине 50 мм, через 2 часа нагреется лишь до 500 °С.
При работе железобетонной конструкции на изгиб на предельных значениях нагрузки в растянутой зоне бетона могут возникнуть трещины толщиной менее 0,1…0,2 мм (так называемые волосяные трещины), которые не опасны с точки зрения сцепления арматуры с бетоном и коррозии металла.
Для того чтобы арматура быстрее включалась в работу бетона, её выпускают с рельефной поверхностью, снабжая насечками различной конфигурации. Железобетонная конструкция будет работать лучше, если основные силовые прутки арматурного каркаса будут соединены в единую сварную конструкцию с поперечными связями.
Цель армирования можно пояснить на железобетонных изделиях, работающих на изгиб, которые достаточно широко применяются в строительной практике. Балки над проемами окон и дверей, железобетонные панели и плиты перекрытия, балки и ригеля мостов и цеховых построек можно отнести к этой категории строительных изделий.
"Сопромат" — сопротивление материалов — наука о прочности конструкций. Любая конструкция, на которую действуют силы, испытывает внутренние напряжения, соответствующие величине и направлению действия этих сил. Задача проектировщиков — создать такую конструкцию, в которой уровень внутренних напряжений не будет выше тех, которые способны выдержать используемые материалы, а деформации конструкции не превысят допустимую величину.
Если взять бетонную балку, загруженную какими‑либо силами, например, распределенной нагрузкой (q) (рис. 114, а), то в ней одновременно действуют напряжения двух видов: нормальные (σ) и сдвиговые (Τ). Следует заметить, что величина этих напряжений меняется не только по длине балки, но и по высоте её поперечного сечения.
По длине балки, в каждом её поперечном сечении, напряженное состояние от воздействия внешних нагрузок может быть приравнено к одновременному действию двух нагружений — изгибающего момента (М изг) и перерезывающей силы (Q), величина которых в каждом сечении балки рассчитывается по определенным формулам "сопромата".
Наибольшая величина изгибающего момента будет в середине балки. К концам она будет уменьшаться до нуля. Графическое изображение такого изменения называется эпюрой изгибающих моментов М изг(рис. 114, в).
Эпюра перерезывающих сил Q(рис. 114, г) показывает, что наибольшая их величина приходится как раз на опоры, на которые опирается балка.
Рис. 114. Балка под нагрузкой "Р" и напряжения в ней: А — неармированная балка; Б — армированная балка; В — эпюра изгибающих моментов; Г — эпюра перерезывающих сил; 1 — бетонная балка; 2 — арматура; 3 — трещина от изгиба балки; 4 — трещина от перерезывающей силы; 5 — напряжения сжатия; 6 — напряжения растяжения
Что же происходит с такой балкой?
От действия изгибающего момента в ней возникают нормальные напряжения (сжатие–растяжение), которые по высоте сечения меняются от наибольшего сжатия вверху до наибольшего растяжения внизу. В нейтральной средней зоне поперечного сечения нормальные напряжения — нулевые. Наибольшие напряжения от изгибающего момента будут в середине пролета. Если бетон "не вооружен" арматурой, то внизу, в зоне действия растягивающих напряжений, могут возникнуть трещины (рис. 114, а).
В зоне действия максимальных перерезывающих сил возникают наибольшие касательные напряжения. Обращаем внимание любителей "сопромата" на то, что касательные напряжения создают в теле балки напряженное состояние, которое характеризуется одновременным действием нормальных напряжений сжатия и растяжения, ориентированных к горизонтали под углом в 45°. Растягивающая составляющая напряжений в зоне опор может спровоцировать появление наклонных трещин (рис. 114, а).
Армирование балки стальными прутками, усиливающими бетонный массив в зоне наибольших растягивающих напряжений в середине пролета и около опор, позволяет создать жесткую и прочную железобетонную конструкцию (рис. 114, б).
Растягивающие напряжения в балках около опор могут быть причиной возникновения наклонных трещин только при относительно большом расстоянии между опорами и малой толщине балки (плиты перекрытий, длинные надоконные перемычки, балки или ригеля мостов и т. п.). Поэтому при армировании лент фундамента или стен дома наклонные отгибы арматуры в зоне опор можно не выполнять.
Где лучше располагать арматуру
Наибольшая эффективность арматуры при изгибающих нагрузках создается при её расположении в зоне максимальных деформаций от растягивающих напряжений, как можно ближе к краю. Но бетон должен защищать арматуру от коррозии, да и обжатие арматуры бетоном должно быть полноценным со всех сторон. Поэтому арматуру располагают в массиве бетона не ближе 3..5 см от поверхности железобетонного изделия, притом чем плотнее бетон, тем меньше может быть это расстояние.
Напряженный бетон
Использование прутков повышенной прочности в качестве арматуры полностью не реализует их потенциальные возможности. При полном их нагружении растяжением в массиве бетона возникают относительно широкие трещины, снижающие коррозийностойкость арматуры. Для повышения эффективности ее работы процесс бетонирования и созревания бетона происходит при натянутой арматуре. Таким образом создается напряженный бетон, находящийся в сжатом состоянии и при отсутствии нагрузок.
Применение метода предварительного натяжения позволяет повысить эффективность работы арматуры и всей железобетонной конструкции. В толще бетона натянутая арматура создает напряжения сжатия, которые после сложения с напряжениями изгиба, действующими на конструкцию, образуют относительно небольшую составляющую напряжений растяжения (рис. 115, а).
Рис. 115. Примеры напряженного бетона: А — балка; Б — Останкинская телебашня; 1 — бетонное основание телебашни; 2 — трос натяжения; 3 — напряжение от веса; 4 — напряжение от натяжения троса; 5 — напряжения от изгиба; 6 — суммарное напряжение в поперечном сечении; 7 — бетон; 8 — форма; 9 — арматура в растянутом состоянии; 10 — железобетонная балка под нагрузкой
Останкинская телебашня в Москве построена в начале 70–х годов прошлого века. Тонкой иглой башня пронизывает московское небо, поражая воображение. Невольно задаешься вопросом: как такая тонкая конструкция выдерживает ветровую нагрузку? Основная часть телебашни выполнена в виде трубы переменного сечения, отлитой из высокопрочного железобетона. Внутри трубы натянуты мощные троса, нагружающие массив бетона сжатием и исключающие появление растягивающих напряжений в бетоне при изгибе башни от ветровых нагрузок (рис. 115, б). За натяжением тросов специалисты ведут тщательное наблюдение.
В предварительно напряженных железобетонных конструкциях более полно используются прочность стали и бетона, поэтому уменьшается масса изделий. Кроме того, предварительное обжатие бетона, препятствуя образованию трещин, повышает его долговечность. Железнодорожные шпалы, сделанные по такой технологии, обладают весьма высоким ресурсом при эксплуатации в самых суровых климатических условиях.
Арматура
Прутки арматуры и сварные арматурные сетки используются в производстве железобетонных изделий на заводах ЖБИ и при бетонировании, выполняемом непосредственно на строительной площадке (устройство фундамента, армирование стен, создание бетонных перекрытий и надоконных перемычек, бетонирование дорог и устройство отмостки…).
В зависимости от механических свойств и технологии изготовления арматура делится на классы и обозначается следующими буквами:
А — стержневая арматура;
В — проволока;
К — канаты.
Для обеспечения максимальной экономии целесообразно применять арматуру с наиболее высокими механическими свойствами.
Индустриализация арматурных работ успешно решается за счет широкого применения сварных сеток, плоских и объемных сварных каркасов.
Металлургическая промышленность выпускает прутки арматуры диаметром от 5,5 до 40 мм. Следует учитывать, что применение арматуры большого диаметра (больше 12 мм) в условиях индивидуального строительства нельзя считать оправданным. Большие поперечные сечения арматуры используются при больших пролетах балок, которые встречаются лишь в индустриальном строительстве. Подобное ограничение связано с тем, что арматура в процессе работы бетонной конструкции загружается растягивающими напряжениями. Арматура больших сечений при небольших габаритах строений не успевает загрузиться в полной мере, из‑за чего полноценной совместной работы бетона и арматуры не происходит. Оптимальный диаметр прутков в условиях индивидуального строительства — 6…12 мм (армирование фундамента и стен, создание сейсмопояса).
Планируя выполнить стык прутков арматуры, индивидуальные застройщики не всегда хотят связываться с проведением сварочных работ. Простой перехлест арматуры на длине больше 60 диаметров прутков — достаточное условие для их соединения. Например, при диаметре прутков 12 мм, перехлест прутков должен быть не менее 72 см. Если законцовки прутков загнуть, то длину перехлеста можно уменьшить в два–три раза.
Достаточно часто застройщики применяют для армирования бетонных конструкций тот металл, который у них есть, или тот, который им предлагают знакомые.
Да, металл сейчас дорогой и такой подход к подбору арматуры вполне понятен. Но в этом есть некоторые ограничения.
Что нельзя применять для армирования:
— алюминиевые прутки (низкий модуль упругости и отсутствие сцепления с бетоном);
— листовую полосовую сталь (провоцирует появление трещин в плоскости листового материала при относительно малой площади поперечного сечения, слабое сцепление металла с бетоном по плоскости);
— полосы листового материала с просечками — отходы штамповочного производства (совсем малое реальное поперечное сечение арматуры);
— сетка–рабица (обладая свойствами пружины, никак не может выполнять армирующую роль);
— трубы, оставшиеся после демонтажа газопроводов, систем водоснабжения или центрального отопления (в полости труб может скапливаться вода, которая при замерзании разрушит трубу и бетон);
— массивные профиля в виде уголков, швеллеров, двутавров или рельсов (большая площадь сечения и относительно слабое сцепление бетона с плоскими участками металла затрудняют включение металла в работу, мешают созданию единой структуры железобетона);
— прутки арматуры длиной меньше 1 м (не успевают включиться в работу). Если арматура покрыта краской, жировыми или масляными пленками — все это необходимо снять, чтобы обеспечить хорошее сцепление металла с бетоном.
В последнее время в качестве арматуры в железобетонных конструкциях стали использовать изделия из стеклопластика и пластика с базальтовыми волокнами.
Арматурная сетка из стеклянных волокон, пропитанная битумом, используется для армирования асфальтобетонных покрытий и дорог, аэродромных покрытий, а также при проведении дорожных ремонтно–восстановительных работ. Выпускается по ТУ 2296-041-00204949-95. В технологии ТИСЭ применяется для армирования стен.
Лента выпускается в рулонах (75-80м) шириной 1 м. Ячейка — 25x25 мм. Разрывная прочность — 4 тонны на метр ширины. Сетка удобна в транспортировке и в раскрое (режется обычными ножницами), не создает "мостков холода", не ржавеет, инертна к электромагнитному излучению.
Гибкие связи из базальтовых волокон — прутки диаметром 5…8 мм с загнутыми законцовками. Длина гибкой связи согласуется с изготовителем. Прочная и жесткая гибкая связь не подвержена коррозии, хорошо стоит в бетоне, не создает "мостка холода". В технологии ТИСЭ применяется при возведении трехслойных стен без "мостков холода".
Замена металлического армирования стен на неметаллическое дает возможность сохранить природный электромагнитный фон Земли и тем самым улучшить экологическую среду в доме.