Уравнение Бога. В поисках теории всего — страница 4 из 29

[7]. (Но все это оставляет открытым другой вопрос: откуда берется магнитное поле стержневого магнита, ведь в нем ничто не движется и не вращается? Мы вернемся к этой загадке позже.) Сегодня все известные природные взаимодействия Вселенной описываются на языке полей, впервые введенном Фарадеем.

Принимая во внимание громадный вклад Фарадея в зарождение электрической эры, физик Эрнест Резерфорд объявил его «величайшим ученым-экспериментатором всех времен».

Фарадей был необычен, по крайней мере для своего времени, еще и тем, что обожал привлекать к своим опытам публику и даже детей. Он был известен своими Рождественскими лекциями в лондонском Королевском институте, где все желающие могли посмотреть на демонстрацию электрического волшебства. Он входил в большую комнату, стены которой были покрыты металлической фольгой (сегодня ее называют клеткой Фарадея), а затем заряжал фольгу. Хотя металл был очевидно заряжен, сам исследователь находился в полной безопасности, поскольку электрическое поле существовало только снаружи комнаты, а внутри нее было нулевым. Сегодня этот эффект широко используется для защиты микроволновых печей и чувствительного оборудования от случайных электрических полей, а также для защиты самолетов, в которые часто ударяют молнии. (На съемках программы для Science Channel, которую я когда-то вел, я зашел в клетку Фарадея в Бостонском музее науки. Сильнейшие электрические разряды, до двух миллионов вольт, обрушивались на клетку и наполняли аудиторию громким треском. Но я ничего не чувствовал.)

Уравнения Максвелла

Ньютон показал, что объекты движутся под действием сил, которые можно описать при помощи дифференциального и интегрального исчисления. Фарадей показал, что электричество возникает под действием поля. Но для исследования полей требовался новый раздел математики, векторное исчисление, которым воспользовался Джеймс Клерк Максвелл. Можно сказать, что если Кеплер и Галилей заложили основы Ньютоновой физики, то Фарадей открыл путь для уравнений Максвелла.

Максвелл – виртуоз математики, совершивший поразительный прорыв в физике. Он понял, что поведение электричества и магнетизма, каким его описывал Фарадей и другие, можно обобщить и описать точным математическим языком. Один из законов гласил, что движущееся магнитное поле способно порождать электрическое поле. Другой закон утверждал обратное: что движущееся электрическое поле способно порождать магнитное поле.

Максвелла осенила гениальная идея. Что, если переменное электрическое поле создает магнитное поле, которое, в свою очередь, порождает другое электрическое поле, которое затем порождает другое магнитное поле и так далее? Блестящее озарение подсказало ему, что конечным продуктом этого стремительного перехода туда-сюда должна быть бегущая волна, в которой электрическое и магнитное поля непрерывно сменяют друг друга. Эта бесконечная цепь превращений живет собственной жизнью и создает бегущую волну из колеблющихся электрического и магнитного полей.

Воспользовавшись методами векторного исчисления, он рассчитал скорость этой бегущей волны и получил величину 310 740 км/с. Результат потряс его. В пределах ошибки эксперимента полученная скорость оказалась поразительно близкой к скорости света (которая, как известно на сегодняшний день, составляет 299 792 км/с). После этого он сделал еще один дерзкий шаг и заявил, что это и есть свет! Свет – это электромагнитная волна.

Максвелл написал пророчески: «Мы практически не можем не прийти к выводу, что свет заключается в поперечных колебаниях той же среды, которая является источником электрических и магнитных явлений»[8].

Сегодня любому студенту-физику и инженеру-электрику приходится заучивать наизусть уравнения Максвелла. Именно они лежат в основе телевидения, лазеров, электромоторов, генераторов и т. п.

Фарадей и Максвелл объединили электричество и магнетизм. И ключом к объединению стала симметрия. В уравнениях Максвелла есть симметрия, которую называют дуальностью. Если электрическое поле светового луча обозначить E, а магнитное – B, то при замене E на B или наоборот уравнения для электричества и магнетизма не изменятся. Дуальность подразумевает, что электричество и магнетизм представляют собой два проявления одной и той же силы. Симметрия E и B позволяет объединить электричество и магнетизм, и это – одно из величайших прорывных открытий XIX века[9].



Рис. 3. Электрическое и магнитное поля – две стороны одной медали. Переменные электрическое и магнитное поля превращаются одно в другое и движутся подобно волне. Свет – одно из проявлений электромагнитной волны


Физики были околдованы этим открытием. Всякому, кто сможет воспроизвести волны Максвелла в лаборатории, была обещана Берлинская премия. В 1886 г. этот исторический эксперимент провел физик Генрих Герц.

Для начала Герц сгенерировал в одном из углов своей лаборатории электрическую искру. В нескольких футах от нее была установлена проволочная рамка. Герц показал, что проскакивание искры может привести к появлению в рамке электрического тока, и доказал таким образом, что новая загадочная волна распространяется в пространстве без проводов. Это стало предвестником открытия явления нового типа, получившего название радио. В 1894 г. Гульельмо Маркони представил новую форму связи публично[10]. Он показал, что можно передавать сообщения без проводов через Атлантический океан со скоростью света.

С появлением радио человек получил сверхбыстрый и удобный беспроводной способ дальней связи. Исторически отсутствие быстрой и надежной системы связи было одним из серьезных препятствий для прогресса. (В 490 г. до н. э. после битвы между греками и персами при Марафоне гонцу было приказано как можно быстрее доставить новость о победе греков. Он доблестно пробежал 42 км до Афин, да еще после того, как пробежал 230 км до Спарты, а потом, согласно легенде, упал замертво от усталости. Его подвиг в те времена, когда не было средств телекоммуникации, сегодня отмечается марафонскими состязаниями.)

Сегодня нам кажется совершенно естественным, что можно без всяких усилий пересылать сообщения и информацию в любой конец света, пользуясь возможностью преобразовывать энергию множеством разных способов. Например, когда разговариваешь по сотовому телефону, энергия звука преобразуется в механические колебания мембраны. Мембрана связана с магнитом, создающим электрические импульсы, которые можно передать в компьютер. Затем эти электрические импульсы преобразуются в электромагнитные волны, которые ловит ближайшая микроволновая вышка. Там сообщение усиливается и посылается на другой конец света.

Но уравнения Максвелла не только дали нам доступ к почти мгновенной связи через радио, сотовые телефоны и оптоволоконные кабели. Они открыли для нас весь электромагнитный спектр, в котором видимый свет и радио – всего лишь два диапазона. В 1660-е гг. Ньютон показал, что белый свет, если пропустить его через призму, можно разложить на все цвета радуги. В 1800 г. Уильям Гершель задал себе простой вопрос: что лежит за краями радуги, цвета в которой меняются от красного до фиолетового? Он взял призму, при помощи которой получал радугу в своей лаборатории, и поместил термометр за красным цветом, где никакого цвета вообще не было видно. К его немалому удивлению, температура в этом пустом вроде бы месте начала расти. Иными словами, за красным следовал еще какой-то «цвет», который был невидим невооруженному глазу, но нес энергию. Он получил название инфракрасного света.

Сегодня мы знаем, что существует целый спектр электромагнитного излучения, большая часть которого невидима и для каждой области которого характерна конкретная длина волны. Теле- и радиоволны, например, длиннее волн видимого света. Длины волн цветов радуги, в свою очередь, больше, чем длины волн ультрафиолетовой области излучения и рентгеновских лучей.

Это, помимо всего прочего, означало, что реальность, которую мы видим вокруг, представляет собой лишь крохотный кусочек полного электромагнитного спектра, мельчайший элемент гораздо более масштабной вселенной электромагнитных оттенков. Некоторые живые существа видят больше, чем мы. Например, пчелы способны воспринимать ультрафиолетовое излучение, невидимое для нас, но важное для пчел, поскольку оно помогает находить солнце и ориентироваться по нему даже в пасмурный день. А поскольку цветы в процессе эволюции обрели свои великолепные цвета, чтобы привлекать необходимых для опыления насекомых, например пчел, это означает, что они зачастую выглядят еще более привлекательно, если рассматривать их в ультрафиолетовом диапазоне.



Рис. 4. Бóльшая часть электромагнитного спектра, простирающегося от радио- до гамма-излучения, невидима для наших глаз. Из-за размера клеток в сетчатке наши глаза способны различать лишь крохотную часть электромагнитного спектра


Когда я еще ребенком читал об этом, мне всегда было интересно, почему мы видим лишь крохотный кусочек электромагнитного спектра. Какая жалость, думал я. Но причина, я теперь понимаю, состоит в том, что длина электромагнитной волны примерно соответствует размеру излучающей эту волну антенны. Размер вашего сотового телефона составляет всего лишь несколько дюймов потому, что размер его антенны должен примерно соответствовать длине передаваемых и принимаемых электромагнитных волн. Аналогично размер клеток сетчатки вашего глаза примерно определяет длины волн тех цветов, которые вы в состоянии различать. Следовательно, мы можем видеть только те цвета, длины волн которых равны размерам наших клеток. Все остальные цвета электромагнитного спектра невидимы для нас, потому что длины их волн либо слишком велики, либо слишком малы, чтобы восприниматься клетками сетчатки. Если бы клетки наших глаз были размером с дом, мы, возможно, воспринимали бы радио- и микроволновое излучение, которое пронизывает все вокруг.