В гармонии с едой. Основы питания от доказательного диетолога — страница 3 из 33

Например, Солнце выделяет 100 тыс. Дж энергии, растения запасают только 1000 Дж энергии от солнечного света (исключение из закона – растениями от солнца поглощается только 1 % энергии). После этого корова, съев растение получит 100 Дж (10 % энергии). Волк, съев корову, получит 10 Дж (10 % энергии коровы). Человек, если съест волка, получит 1 Дж (10 % энергии волка) и т. д. Конечно, в реальности передается не всегда 10 %. Доля энергии может доходить и до 35 %. Но факт состоит в том, что часть энергии теряется.

Пример с морковкой, зайцами и лисой вы можете посмотреть на рисунке ниже.


Закон Линдемана о 10 %


Вот такой сложный процесс передачи энергии, которая поступает на Землю, преодолевая 150 млн километров. А о том, что с ней происходит внутри нашего организма, поговорим далее.

Законы физики и человеческий организм

Ну что, дорогие мои биологи, мы продолжаем достаточно сложную тему. И чтобы упростить восприятие, давайте проведем аналогию с автомобилем. Итак, мы заправляем автомобиль одним видом топлива. Это может быть бензин, дизель, газ, а кто-то стал сторонником зеленой энергетики и использует электромобили. Двигатель автомобиля не может работать на двух видах топлива одновременно, поэтому, приезжая на заправку, мы выбираем именно тот, который для него предназначен.

Выше мы выяснили, что в качестве источника энергии человек потребляет органические соединения, которыми являются белки, жиры и углеводы. По аналогии с автомобилем нашему организму нужен один универсальный источник энергии, а не три. Что же делать?

Теперь чуть усложним. Универсальный источник энергии [19] имеет сложное название аденозинтрифосфат (АТФ). В нашем организме химические связи органических соединений разрываются, и все это преобразуется в такую универсальную валюту – АТФ. Причем ее мы за день производим столько, что она по массе сопоставима с массой нашего тела [20]. Запасы АТФ можно представить в виде батарей, в которых хранится энергия [21]. И дальнейшее использование этой энергии приводит в действие все процессы нашего организма.

Сейчас придется вспомнить еще один сложный предмет из школьной программы. В основе понимания феномена жизни и процессов, которые протекают в человеческом организме, как и в организме любого живого существа, лежат законы физики [22]. Они используются для объяснения многих функций организма, включая механику мышц и движений тела, механику движения крови и воздуха, слуховые и акустические свойства ушей, зрительную оптику, тепло, энергию и электрические сигналы. Причем эти законы будут существовать вне зависимости от нашей веры в них. Можно не верить в закон всемирного тяготения, но если мы прыгнем с высокой поверхности вниз, то за счет гравитации очутимся на земле, а не зависнем в воздухе.

Как только на Земле возникла жизнь, она распространилась по планете и приняла замечательные и порой удивительные формы. И на первый взгляд может показаться, что она безгранична в своем размахе. Но как бы банально это ни звучало, жизнь должна подчиняться законам физики. Да, мы ограничены в понимании некоторых процессов, но тем не менее физические явления пронизывают все формы жизни. И даже небольшие живые организмы демонстрируют законы физики в процессе своего существования. Давайте посмотрим на навозного жука, который катит свое богатство. Да, понимаю, не самый лучший пример для книги про еду, но какой есть.



Можно сказать, что жук реализует принцип колеса. И именно физика, а не случайные эволюционные изменения, позволяют жуку использовать такой своеобразный транспорт.

Перейдем к более сложным процессам. Полет насекомых является изысканным примером биофизики [24]. И в основе такого явления лежат изученные физиками аэродинамический подъем, характерная форма крылышек, которая позволяет создать область низкого давления над крылом, а также механизм «хлопай и бросай». Когда крылья толкаются в обратном направлении, они схлопываются вместе. Такой маневр вытесняет воздух между ними и обеспечивает дополнительную тягу. Потом крылья начинают свой передний ход и раздвигаются; воздух, который устремляется, чтобы заполнить зазор, улучшает циркуляцию над поверхностью крыла и, таким образом, увеличивает подъемную силу. Только благодаря высокоскоростной фотографии ученые относительно недавно узнали, как насекомые используют каждый нюанс физики для осуществления полета.



В основе человека, насекомых, в том числе навозного жука, и всех других существ, лежат молекулы. И они также подчиняются законам физики. В качестве примера возьмем аминокислоты, которые являются строительными блоками белков. Цепочки аминокислот, как и молекулы, склонны сворачиваться таким образом, чтобы достичь своего самого низкого энергетического состояния. Каждый последующий этап складывания для поиска наиболее стабильного состояния, чтобы все не развалилось, управляется термодинамикой. И как бы нам ни казался этот процесс случайным, чтобы выбрать для конкретных белков определенную форму, работают фундаментальные законы физики [25].

Итак, мы убедились, что все организмы подчиняются законам физики и жестко ограничены универсальными принципами, которые действуют в любом масштабе, начиная с целого организма, заканчивая молекулярным и субатомным уровнем. И конечно же, человеческий организм не исключение.

Если мы с вами говорим про еду, то в этом контексте главным законом, конечно, является первый закон термодинамики или закон сохранения энергии [26]. Он гласит: «Энергия не может быть ни создана, ни уничтожена, но может быть преобразована из одной формы в другую». А мы уже выяснили, что для нас источником энергии является пища. И, судя по написанному выше, из ниоткуда еда возникнуть не может. Мы должны где-то ее найти, купить или отобрать и съесть. А организм уже может использовать полученную энергию по трем направлениям: запасти в виде жира, преобразовать в АТФ для последующего использования или рассеять в виде тепла [27].

А так как все потребляемые нами продукты отличаются друг от друга, возникает вопрос, как же измерить и понять, сколько энергии содержится в той или иной еде. И об этом мы поговорим с вами далее.

Калории, джоули и другая скукота

Может показаться, что расчеты количества энергии – это просто какие-то математические заморочки. Но так как еда содержит основные компоненты (белки, жиры, углеводы) в разных пропорциях, они имеют очень важное практическое применение. Как минимум благодаря расчетам есть возможность оценить, насколько питательны имеющиеся запасы продовольствия. А как максимум – проанализировать рационы населения (или даже отдельных лиц) и понять, соответствуют ли имеющиеся в магазинах продукты их потребностям. Поэтому оценка энергетической ценности еды имеет важное значение для социально-экономической сферы и для здравоохранения.

ПОДСЧЕТ ЭНЕРГЕТИЧЕСКОЙ ЦЕННОСТИ ПРОДУКТОВ ПОМОГАЕТ РЕШИТЬ ДВЕ ПРОТИВОПОЛОЖНЫЕ ПРОБЛЕМЫ – ЭТО НЕДОЕДАНИЕ И ОЖИРЕНИЕ. Недостаточное потребление энергии (недоедание) по-прежнему ограничивает потенциал людей, а избыточное все чаще приводит к очень высокой распространенности ожирения (с сопутствующими ему осложнениями) во всех социально-экономических слоях как в развивающихся, так и в развитых странах. На данный момент, покупая продукты, например, в супермаркете, на упаковках можно встретить такие обозначения, как калории и джоули. Что это такое и как их определяют? Давайте разбираться.

Главный источник [28], который нам в этом поможет, – документ ФАО, который называется «Пищевая энергия – методы анализа и коэффициенты пересчета». И начнем мы с такой единицы измерения, как калория. Кстати, она не является стандартизированной. «Стоп, погоди, как это не является? На упаковке с пельменями же написано», – спросите вы. Да, но дело в том, что в системе международных единиц СИ есть джоуль (Дж), а калории нет.

Напомню, что такое СИ (от французского Système International d’Unités) – современная метрическая система измерения. Она была учреждена в 1960 году XI Генеральной конференцией по мерам и весам. Эта конференция является международным органом, обеспечивающим широкое распространение СИ и модифицирующим ее по мере необходимости, чтобы отражать последние достижения в области науки и технологий.

Полное официальное описание системы вместе с ее толкованием содержится в действующей редакции Брошюры СИ [29], которая издается на французском языке с 1970 года.

СИ была создана французскими учеными и впервые широко внедрена после Великой французской революции. До введения метрической системы единицы выбирались независимо друг от друга, поэтому пересчет из одной в другую был сложным. Особенно неудобно было все это использовать в международной торговле, когда одни продавцы взвешивают апельсины (например) в килограммах, а другие в каких-нибудь чашках. А сейчас, если мы откроем Брошюру СИ, мы увидим килограммы, амперы, ватты, джоули и другие единицы измерения с описанием, символами, международными обозначениями. Как говорится, «удобненько».

Несмотря на рекомендацию более 30 лет назад использовать для обозначения энергетической ценности продукта только джоули, многим ученым и неученым потребителям до сих пор трудно отказаться от использования калорий. Да нам это и не так принципиально.

Если мы будем вместо калорий считать джоули, в морковке все равно не появится больше энергии, чем в чипсах. А было бы неплохо, особенно если чипсы со вкусом сыра… ой, что-то мы отвлеклись.

Итак, энергию пищи можно выразить в джоулях и калориях. А теперь давайте поговорим о том, как же измеряют эту энергию. Ведь на продуктах, которые мы покупаем, уже указаны какие-то значения, значит, эти цифры не спускаются на скрижалях с небес, а их как-то вычисляют. Теоретическое максимальное содержание энергии в пище можно измерить с помощью бомбовой калориметрии. Почему только теоретическое? А потому что наш организм не механизированное устройство и, соответственно, пища может перевариться и усвоиться не вся. Часть энергии теряется с мочой, фекалиями. Но об этом чуть позже. Пока давайте рассмотрим, что представляют собой эти устройства для измерения энергии пищи. А для этого минуточка истории.