[18] в начале XIV в. утверждал, что актуально бесконечной может быть любая величина: число, время, совокупность тел, а также что тело можно разделить на бесконечно много частей. Это подрывало фундамент всей космологии Аристотеля.
Окончательное разрушение античной космологии произошло в XV-XVI столетиях и связано с именами Николая Кузанского[19] и Джордано Бруно. Первый из них развил учение о максимуме, то есть о том, больше чего ничто не может быть. Оно явилось одним из наивысших достижений диалектической мысли эпохи Возрождения и подготовило революцию не только в космологии, но и в математическом способе мышления. Например, Николай Кузанский утверждал, что прямая является окружностью бесконечного радиуса, и рассматривал не отдельные фигуры, а предельные положения фигур при том или ином изменении их формы.
Понятие бесконечности привлекло к себе внимание и астрономов. В великом творении Николая Коперника утверждается, что расстояние между Землей и Солнцем неощутимо мало по сравнению с высотой небесной тверди. Звездную же сферу он считал в высшей степени подобной бесконечному. Иногда он говорил даже, что Небо неизмеримо велико по сравнению с Землей и представляет бесконечно большую величину. Однако решение вопроса о том, что является ли Вселенная бесконечной или лишь неизмеримо большой, он оставляет другим ученым.
Последний шаг в разрушении старых догм сделал Джордано Бруно, заплативший жизнью за свой научный подвиг. Он писал: "Итак, вселенная едина, бесконечна, неподвижна... Она никоим образом не может быть схвачена и потому неисчислима и беспредельна, а тем самым бесконечна и безгранична и, следовательно, неподвижна. Она не движется в пространстве, ибо ничего не имеет вне себя, куда бы могла переместиться, ввиду того что она является всем. Она не рождается... так как она является всем бытием. Она не уничтожается, так как нет другой вещи, в которую она могла бы превратиться... Она не может уменьшаться или увеличиваться, так как она бесконечна".
Так произошло освобождение человеческого духа от сковывающих его ограничений. Дух нового времени Бруно выразил в следующих стихах:
Кристальной сферы мнимую преграду,
Поднявшись ввысь, я смело разбиваю
И в бесконечность мчусь, в другие дали.
Кому на горе, а кому в отраду,-
Я Млечный Путь внизу вам оставляю...
Конечно, для многих этот открывшийся умственному взору новый мир был весьма неуютен — оказались разрушены небесные сферы, заключавшие в себе упорядоченный космос античности и средневековья. Мир предстал перед человеком как помещенный в ничто, окруженный этим ничто и насквозь пронизанный им. В начале XVII в. парижский парламент издал постановление, предписывавшее предавать смертной казни всех, кто выступит с полемикой против старых и общепризнанных авторов. А святейшая инквизиция провела в то же время два процесса над крупнейшим физиком и математиком того времени Галилео Галилеем и под угрозой сожжения на костре принудила к публичному отречению от идей Коперника и Бруно, а потом приговорила к пожизненному домашнему заключению.
Но времена менялись. Чтобы решать поставленные практикой задачи, ученым все чаще и чаще приходилось применять запрещенные аристотелевой наукой приемы, использовать неделимые и бесконечно малые величины. Вновь усиливается интерес к атомизму Демокрита. Используя "незаконные" приемы, Иоганн Кеплер получил формулы для объемов тел, к вычислению которых ревнители античной строгости не знали, как и подступиться. Эти методы он применил и в своих бессмертных работах, где были установлены законы движения планет вокруг Солнца. Итальянский математик Бонавентура Кавальери[20], используя идеи своего учителя Галилея, написал книгу "Геометрия, изложенная новым методом при помощи непрерывного". В ней он выдвинул принципы, позволявшие общими методами определять площади и объемы различных фигур. К концу XVII в. методы решения самых разнообразных задач, основанные на использовании бесконечно больших и бесконечно малых величин, были систематизированы и упорядочены в работах английского физика и математика Исаака Ньютона и немецкого математика и философа Готфрида Вильгельма Лейбница. Так возникло одно из самых замечательных творений человеческого разума — математический анализ (дифференциальное и интегральное исчисления). С помощью методов математического анализа можно было, зная силы, действующие на движущееся тело, определить его траекторию, в частности определить орбиты планет и комет.
Идеи Коперника и Бруно, Галилея и Ньютона интересовали не только ученых. Французский писатель Фонтенель[21] написал в конце XVII в. сочинение "О множественности миров", переведенное на многие языки. Немецкий поэт XVIII в. Альберт фон Галлер писал:
Нагромождаю чисел тьму,
Мильоны складываю в гору,
Ссыпаю в кучу времена,
Миров бесчисленных просторы.
Когда ж с безумной высоты
Я на тебя взгляну, то ты —
Превыше не в пример
Всех чисел и всех мер:
Они лишь часть тебя.
В России новые идеи пропагандировал великий основатель русской науки и поэт Михаил Васильевич Ломоносов, выразивший идею бесконечности мира во вдохновенных строках:
Открылась бездна, звезд полна,
Звездам числа нет, бездне — дна.
А поэт А. П. Сумароков изложил эти идеи в ...переводе библейских псалмов. Его соперник Василий Тредьяковский тут же написал донос в святейший синод: "Читая сентябрьскую книжку "Ежемесячных сочинений" 1755 года, нашел я, именованный, в ней оды духовные, сочиненные г. полковником. Александром Петровым, сыном Сумароковым, между которыми и оду, написанную из псалма 106; а в ней увидел, что она с осмыя строфа по первую на десять включительно говорит от себя, а не из псаломника, о бесконечности вселенной и действительном множестве миров, а не о возможном по всемогуществу божиему".
Получив этот донос, святые отцы потребовали от императрицы Елизаветы запрещения журнала "Ежемесячные сочинения", в котором, как они писали, "вере святой (много) противного имеется, особенно некоторые переводы и сочинения находятся, многие, а инде и бесчисленные миры быти утверждающие, что и св. писанию и вере христианской крайне противно есть и многим неутвержденным душам причину к натурализму и безбожию подает".
Но шел восемнадцатый век, и императрица оставила покорнейшее прошение святейшего синода "без последствий".
Мир Ньютона.
К концу XVII в. и в астрономии, и в физике, и в математике полную победу одержали идеи, так или иначе связанные с применением бесконечности. Сложилась картина мира, управляемого геометрией Евклида и законами движения Ньютона. Ученые полагали, что, зная положение всех материальных тел в данный момент времени, они смогут предсказать их положение в любой последующий момент — ведь для этого надо лишь решить соответствующие дифференциальные уравнения.
При этом два основоположных камня, на которых возводилось все здание, не имели ничего общего друг с другом. Бесконечное пространство никак не соотносилось с наполнявшей его материей, оно было лишь сценой, на которой разыгрывалась мировая драма. По самой своей сущности это пространство безотносительно к чему бы то ни было внешнему оставалось всегда одинаковым и неподвижным — оно не изменилось бы даже, если бы вся материя неожиданно исчезла. Как писал по этому поводу А. Эйнштейн, "Ньютон обнаружил, что наблюдаемые геометрические величины (расстояния между материальными точками) и их изменения во времени в физическом смысле не характеризуют полностью движения... Следовательно, кроме масс и изменяющихся во времени расстояний между точками существует еще нечто такое, что определяет происходящие события; это "нечто" он воспринимал как отношение к абсолютному пространству".
Успехи ньютонианских механики и астрономии сделали предложенную им картину мира общепринятой. Какие-либо сомнения в ней стали считаться чем-то антинаучным.
Картину Вселенной, принимавшуюся всеми в XVIII в., знаменитый немецкий философ Кант описал следующим образом: "В бесконечной дали существует еще много таких звездных систем, и части ее находятся во взаимной связи... Мы видим первые члены непрерывного ряда миров и систем, и первая часть бесконечной прогрессии уже дает нам представление, каково целое. Здесь нет конца, здесь бездна подлинной неизмеримости... Мировое пространство наполнено мирами без числа и без конца...".
Следует отметить, что признание бесконечности Вселенной мирно уживалось в уме Канта и большинства его современников с верой в бога. А некоторые богословы считали, что для сотворения бесконечной Вселенной нужен более могущественный бог, чем для творения конечного мира, и потому усматривали в бесконечности Вселенной "доказательство всемогущества божия". Понадобились полувековая деятельность Вольтера и энциклопедистов, грозы французской революции, чтобы Лаплас смог ответить Наполеону на вопрос, почему в его сочинении о небесной механике не упоминается бог: "Ваше Величество! У меня не возникла необходимость в этой гипотезе".
Новые осложнения.
Не зря все-таки Аристотель предупреждал о зыбкости и неясности понятия бесконечности, об осложнениях, к которым оно может привести. Вскоре после создания ныотонианской физики и математического анализа в этих науках возникли первые осложнения.
Ученики и последователи Ньютона и Лейбница с необычайной легкостью пользовались расплывчатыми и полными непостижимой загадочности понятиями бесконечно малого и бесконечно большого, решая с их помощью сложнейшие задачи астрономии, физики и механики. Запросто складывали они бесконечные множества слагаемых, не колеблясь, переносили на такие суммы правила действий над конечными суммами. И хотя основные понятия нового исчисления казались туманными для математиков, воспитанных на античной строгости, практические успехи нового исчисления заставляли всех забывать об этом. "Идите вперед, и вера к вам придет", говаривал своим ученикам видный французский математик XVIII в. Д'Аламбер