В помощь радиолюбителю. Выпуск 2 — страница 3 из 7

5.2. Автомат световых эффектов «Фейерверк»

Карась А. [14]


Автомат управляет очередностью зажигания 16 пар лампочек накаливания, расположенных на панно, форма которого может выбираться конструктором. Принципиальная схема автомата приведена на рис. 16.



Рис. 16. Принципиальная схема автомата «Фейерверк»


На трех элементах интегральной микросхемы DD1 собран генератор тактовых импульсов, частота повторения которых управляется переменным резистором R2. Тактовые импульсы подаются на счетный вход четырехразрядного двоично-десятичного счетчика DD2, с выходов которого двоичный код поступает на дешифратор DD3. К выходам дешифратора через транзисторные ключи подключены 16 пар ламп. После каждого тактового импульса на очередном выходе дешифратора образуется напряжение низкого уровня (логический «0»), отпирающее ключ. В результате загорается соответствующая пара ламп.

Автомат световых эффектов питается от электросети с напряжением 220 В с помощью блока питания, принципиальная схема которого приведена на рис. 17. Блок питания представляет собой трансформаторный выпрямитель, состоящий из двух диодных мостов. Первый из них, VD1-VD4, оснащен электронным стабилизатором напряжения 5 В и предназначен для питания микросхем автомата. Второй диодный мост, VD5-VD8, служит источником питания ламп напряжением 12 В.



Рис. 17.Принципиальная схема блока питания автомата

5.3. Автоматический выключатель освещения в подсобных помещениях

Куприянов К. [15]


Принцип работы этого автоматического выключателя отличается от аналогичных тем, что при закрытой двери подсобного помещения и выключенном в нем освещении он не потребляет энергии, так как обесточен.

Принципиальная схема автомата изображена на рис. 18.



Рис. 18.Принципиальная схема автоматического выключателя


Органами коммутации освещения в помещении являются кнопочный переключатель SB1, установленный на дверной коробке, и контакты электромагнитного реле К1. Органом управления служит сенсор — металлическая ручка двери с ее внутренней стороны, соединенная проводником с левым по схеме выводом резистора R1. Положение контактов SB1, показанное на схеме, соответствует открытому состоянию двери. При этом на лампу освещения поступает питание через нормально замкнутую верхнюю пару контактов SB 1.1.

Если закрывать дверь с наружной стороны подсобного помещения, контактами SB1.1 цепь питания лампы обрывается раньше, чем замкнутся контакты. Поэтому осветительная лампа будет погашена, а вся цепь обесточена.

Если же закрывать дверь с внутренней стороны, прикосновение к ручке двери приведет к отпиранию транзистора, его коллекторный ток создаст падение напряжения на резисторе, которым откроется транзистор VT2. В результате сработает реле и контактами К1.1 заблокирует контакты дверного переключателя SB 1.1. Осветительная лампа будет продолжать гореть. Когда дверь закроется, контакты SB 1.1 разомкнутся, a SB1.2 замкнутся, благодаря чему окажется накоротко замкнут транзистор VT1. Через резистор R2 все еще будет протекать ток, отпирающий транзистор VT2, и реле останется сработавшим, контактами К1.1 поддерживая горение осветительной лампы после того, как ручка двери будет отпущена.

Печатная плата с размещенными на ней элементами схемы показана на рис. 19.



Рис. 19.Печатная плата выключателя с размещением деталей


При налаживании автоматического выключателя следует соблюдать осторожность, поскольку элементы его схемы непосредственно подключены к сети электроснабжения.

Глава 6УПРАВЛЕНИЕ ТРЕХФАЗНЫМИ ДВИГАТЕЛЯМИ

6.1. Подключение трехфазного двигателя к однофазной сети

Шаталов Н. [16]


Статорные обмотки трехфазного асинхронного двигателя могут быть соединены либо треугольником, либо звездой. При соединении треугольником конец первой обмотки подключается к начал)' второй, конец второй — к началу третьей, конец третьей — к началу первой. При соединении звездой начала всех трех обмоток (или концы) соединяются вместе, образуя нуль, а концы (или начала) образуют выводы трех фаз.

Основная трудность возникает в тех случаях, когда выводы всех трех обмоток присоединены к шести клеммам на колодке без обозначения их начал и концов. Сначала с помощью омметра нужно найти выводы всех обмоток и произвольно присвоить обмоткам номера I, II и III. Затем собирают простую схему, приведенную на рис. 20, соединив обмотки I и II последовательно, подав на них переменное напряжение, а к обмотке III подключают вольтметр переменного тока. Если вольтметр покажет наличие напряжения, примерно равное половине приложенного, значит обмотки I и II соединены согласно и можно считать их началами выводы, помеченные на схеме точками. Если же вольтметр покажет отсутствие напряжения, значит эти обмотки включены встречно, и выводы одной обмотки нужно поменять местами. Для определения начала и конца обмотки III меняют ее местами с обмоткой II и тем же методом определяют ее выводы.



Рис. 20.Определение начала и конца обмоток


Для питания трехфазного асинхронного двигателя от однофазной сети используют конденсатор, сдвигающий фазу напряжения питания одной из обмоток. Подключение фазосдвигающего конденсатора к обмоткам двигателя, соединенным звездой, показано на рис. 21. Подключение фазосдвигающего конденсатора к обмоткам двигателя, соединенным треугольником, показано на рис. 22.



Рис. 21.Подключение конденсатора к обмоткам, соединенным звездой



Рис. 22.Подключение конденсатора к обмоткам, соединенным треугольником


Емкость конденсатора в микрофарадах определяется по формуле


где Iф — ток фазы электродвигателя, A; Uсети — напряжение однофазной сети, В; k — 2800 при соединении обмоток звездой, k = 4800 при соединении обмоток треугольником. Конденсатор должен быть рассчитан на рабочее напряжение не менее 300 В, и быть бумажным или типа МБГЧ или К42-19. Мощность двигателя при использовании фазосдвигающего конденсатора составляет 50–60 % от номинальной.

6.2. Трехфазный двигатель в однофазной сети

Кухаренко А. [17]


Невозможность получения номинальной мощности двигателя при использовании фазосдвигающего конденсатора объясняется тем, что такая схема не обеспечивает сдвига фаз в обмотках статора, равного 120°, так как две обмотки включены противофазно и лишь в третьей создается сдвиг фазы, не равный 180°. Поэтому для достижения номинальной мощности двигателя необходим сдвиг фаз каждой обмотки относительно любой другой на 120°. Принципиальная схема, обеспечивающая такой режим, приведена на рис. 23.



Рис. 23.Схема преобразователя однофазного напряжения в трехфазное


Устройство представляет собой резистивно-индуктивно-емкостной преобразователь однофазного напряжения сети в трехфазное и пригоден для питания двигателей мощностью до 2,5 кВт. Он содержит дроссель с воздушным зазором и RC-цепи, создающие сдвиг фаз обмоток двигателя, равный 120°. Конденсаторы С1 и С2 — частотные, типа МБГЧ или К42-19. При значениях элементов, указанных на схеме, выходная мощность преобразователя Р = 1 кВт. Для этого дроссель содержит 600 витков (Wl = W2 = 150 витков, W3 = 300 витков) провода ПЭВ диаметром 1,4 мм и Ш-образный сердечник с сечением среднего керна 16 см2. Воздушный зазор подбирается таким, чтобы индуктивное сопротивление дросселя (всей обмотки) на частоте 50 Гц равнялось 110 Ом.

Для других значений мощности можно пересчитать элементы схемы по формулам:

C1 = 80P; C2 = 40P; R1 = 140/P; W = 600/P; XL = 110/P; S = 16P; d = 1,4P,

где мощность P выражена в кВт, емкости указаны в мкФ, R1 и XL — в омах, S (сечение магнитопровода дросселя) — в см2, d (диаметр провода обмотки дросселя) — в мм.

Глава 7ЭЛЕКТРОННЫЕ ИГРЫ

7.1. Кто сильнее? [18]

С помощью простого прибора можно соревноваться в силе сжатия ладоней. Принципиальная схема прибора приведена на рис. 24. К входным клеммам ХТ1 и ХТ2 присоединяются датчики — металлические трубки, при сжатии которых изменяется сопротивление между клеммами: чем больше сила сжатия, тем меньше это сопротивление. В результате нарастает напряжение на базе транзистора и увеличивается его коллекторный ток, измеряемый стрелочным прибором РА1.



Рис. 24.Схема и внешний вид измерителя силы


Вместо МП39 можно использовать транзистор КТ361 с любым буквенным индексом, при этом понадобится лишь подобрать сопротивление резистора R1. Стрелочный прибор может быть любого типа с пределом измерения 100–200 мкА. Питание прибора производится от батареи для карманного фонаря 3336.

7.2. «Красный или зеленый»

Верхало Ю. [19]


В этой игре очередной играющий должен угадать, лампа какого цвета загорится после нажатия им кнопки, — красная или зеленая. В случае угадывания играющему начисляются очки.

Принципиальная схема устройства приведена на рис. 25.



Рис. 25.Принципиальная схема игры «Красный или зеленый»


В исходном состоянии на аноды тиристоров VS1 и VS2 подано положительное напряжение относительно катодов с мостового выпрямителя на диодах VD1-VD4, подключенного к вторичной обмотке III сетевого трансформатора Т1. Выпрямленное напряжение сглаживается конденсатором С1.

Конденсатор С2 подключен к обмотке II трансформатора и перезаряжается с каждым полупериодом сетевого напряжения. Поэтому в момент нажатия кнопки SB1 полярность напряжения на С2 может быть любой. Если на правом по схеме выводе конденсатора положительный потенциал, отопрется тиристор VS1 и загорится лампа HL1. Если же отрицательный — загорится лампа HL2 открывшимся тиристором VS2. Для приведения схемы в исходное состояние достаточно нажать на кнопку SB2.