Век генетики: эволюция идей и понятий — страница 1 из 37

Голубовский М. ДВЕК ГЕНЕТИКИ: ЭВОЛЮЦИЯ ИДЕЙ И ПОНЯТИЙНаучно-исторические очерки

Введение

Генетика оформилась как наука в начале XX века после переоткрытия законов Менделя. Бурный вековой период ее развития ознаменован в последние годы расшифровкой нуклеотидного состава геномной ДНК десятков видов вирусов, бактерий, грибов и вслед за ними ряда многоклеточных организмов — растение арабидопсис, Arabidopsis thaliana, круглый червь нематода Caenorhabditis elegans, два вида мушки-дрозофилы. Полным ходом идет секвенирование ДНК хромосом важных культурных растений — риса, кукурузы, пшеницы. В 2000 году в рамках международной программы был полностью расшифрован нуклеотидный состав двух хромосом человека (21-я и 22-ая пары) и вчерне секвенирован вариант всего генома. Эти биотехнологические достижения можно сравнить, пожалуй, с выходом человека в космос и высадкой на луну.

Генная терапия наследственных болезней, производство генетически измененных форм растений, успешное соматическое клонирование млекопитающих (овечка Долли), появление молекулярной палеогенетики — другие впечатляющие реалии науки в конце ее 100-летней истории. Генетическая инженерия и биотехнология с ясностью их методов, задач и публичной эффектностью успехов трансформировали облик генетики. Вот один эпизод. После 1998 г., как пишут авторы современной сводки (Баранов В. и др., 2000), "началась беспрецедентная гонка между 1100 учеными мирового сообщества проекта "Геном человека" и частной акционерной фирмой "Celera Genomics", — гонка, кто первым секвенирует весь хромосомный геном человека. Фирма, сконцентрировав мощную компьютерную базу и робототехнику, вырвалась вперед. Однако ее явные намерения извлекать выгоду от патентования состава фрагментов ДНК человека были благоразумно приостановлены вердиктом: "Что создано Природой и Богом, не может патентоваться человеком".

Мог ли представить такую фантасмагорическую картину гонки основатель генетики Грегор Мендель, неспешно проводя год за годом в тиши монастырского садика свои опыты по выяснению законов наследования признаков? Финансирование гонки и участие в ней тысяч специалистов основаны прежде всего на постулате или вере, что в генетике и биологии сейчас нет ничего более настоятельного, нежели тотальная расшифровка нуклеотидного состава ДНК: это напрямую может решить главные загадки и проблемы генетики и биологии в целом. Как золотой ключик от потайной кладовой в сказке о Буратино. Но упования о золотом ключике столкнулись с непредвиденной реальностью и парадоксами. Оказалось, что лишь 3–5 % генома человека кодирует белки и, возможно, еще около 20 % участвует в регуляции действия генов в ходе развития. Какова же функция и есть ли она у остальных фракций 75 % ДНК генома, остается совершенно не ясным. Гены в геноме сравнивает с небольшими островами в море неактивных неинформационных последовательностей. Не привели ли в какой-то степени колоссальные усилия по тотальному секвенированию геномов к сказочной ситуации — принести то, не зная чего?

С особой остротой высветилась и другая, более принципиальная проблема: а все ли наследственные изменения клеток и организмов связаны с изменениями ДНК? После расшифровки генетического кода и механизмов синтеза белка, после успехов генной инженерии трудно было не поддаться соблазну, что уже достигнуто практически полное знание о природе наследственности. Большинство исследователей оказалось плохо подготовленными к пониманию смысла и значения ряда экзотических и трудно объяснимых явлений в области неканонической (неменделевской и неморгановской) наследственной изменчивости. Неожиданно в конце XX века вопрос о том, каковы границы и спектр наследственной изменчивости, вышел за рамки чисто академических дискуссий. Годы 1996–2000, возможно, войдут в историю и такими событиями, когда одно из явлений неканонической наследственности стало вдруг предметом острых политэкономических дебатов глав правительств и парламентариев Европы.

Речь идет об эпидемии болезни "бешеных коров". Эта болезнь стала распространяться в Англии в 80-е годы после регулярных добавок в корм коров белков из утилизированных голов овец, среди которых встречались овцы, больные нейродегенеративной болезнью (скрэпи или почесуха). В свою очередь, сходная болезнь начала передаваться людям при поедании мяса больных коров. Оказалось, что инфекционным агентом являются не ДНК или РНК, а белки, названные прионами (от англ, prions — protein infectious particles — белковые инфекционные частицы). Проникая в клетку-хозяина, прионы навязывают свою болезнетворную конформацию нормальным белкам-аналогам. Открыватель прионов С. Прузинер (Нобелевская премия 1997 г.) в итоговой статье вспоминал о "большом скепсисе", который в начале 80-х годов вызвала его идея о том, что "инфекционные агенты состоят из белков и ничего более. В то время это положение было еретическим. Догма требовала, чтобы носители трансмиссивных болезней имели генетический материал — ДНК или РНК" (Prusiner, 1995).

Как это не раз бывало в разные периоды истории науки, некие исключения из общепринятых схем, досадные облачки или экзотика оказывались распространенными в природе явлениями. Так случилось и с прионами. Впервые с ними исследователи столкнулись еще в 60-е годы. Однако в то время генетическая семантика прионов не была адекватно распознана, и их поведение атрибутировалось в рамках классических генетических представлений ("медленные вирусы" животных или особый тип супрессорных мутаций у дрожжей). Теперь выясняется, "феномен прионов не является экзотикой, характерной для млекопитающих, а скорее — частным случаем общебиологического механизма, лежащего в основе эпигенетического наследования" (Инге — Вечтомов, 2000). "Центральную догму" молекулярной биологии приходится ревизовать и внести возможность копирования, модифицирования и межвидовой горизонтальной (по типу инфекций) передачи наследуемой конформации белков.

Для историка науки здесь любопытен парадокс, почему в такой стремительно развивающейся области, как молекулярная биология, свободная конкуренция идей зачастую уступает место догмам, которые прокламируются, быстро принимаются абсолютным большинством на веру, ревниво охраняются как миф, но вскоре оказываются ограниченными или несостоятельными. Один из возможных диагнозов назвал патриарх молекулярной биологии, член Национальной академии наук США Эрвин Чаргафф (родился в 1905 году в г. Черновицы, окончил Венский университет). С его именем связано открытие в начале 50-х годов регулярности в парных соотношениях пуриновых и пиримидиновых оснований в молекулах нуклеиновых кислот. Это знаменитое "правило Чаргаффа" явилось предтечей открытия двойной спирали ДНК. Чаргафф в ряде своих критических эссе ностальгически вспоминает об ушедшей атмосфере и ценностях золотого века науки: "Тогда еще можно было ставить эксперименты в прежнем смысле этого слова. Сейчас все трудятся над "проектами", результат которых должен быть известен заранее, иначе не удастся отчитаться в непомерных ассигнованиях, которых требуют эти проекты… Никто не опасался, что его немедленно ограбят, как это почти неминуемо происходит сейчас. Симпозиумов тогда созывалось немного, а их участники не представляли собой полчища голодной саранчи, жаждущей новых областей, куда можно еще вторгнуться" (Чаргафф, 1989).

Чаргафф с тонким сарказмом описывает первородный грех, который сопутствовал рождению и становлению молекулярной биологии после открытия двойной спирали ДНК. "Одно из главных несчастий моего времени — манипулирование человечеством с помощью рекламы. В области науки эта злая сила долгое время не проявляла себя. Однако, к тому времени, когда появилась на свет молекулярная биология, все механизмы рекламы были готовы к бою. И вот тут-то сатурналия и разыгралась в полную силу. Все трудности, например, даже сейчас не очень понятный механизм расплетания гигантских двуспиральных структур в условиях живой клетки, просто отбрасывались с той самоуверенностью, которая позднее так ярко проявилась в нашей научной литературе. Это был тот самый дух, который вскоре принес нам "центральную догму", против чего я выступил, по-моему, первым, потому что никогда не любил наставников-гуру, пусть даже и с докторским дипломом. Я увидел в этом первые ростки чего-то нового, какой-то нормативной биологии, которая повелевает природе вести себя в соответствии с нашими моделями" (Чаргафф, 1989).

Мнение Чаргаффа, при всей его саркастической меткости и красивых метафорах все же настоено на личных вкусах и преференциях. Ведь вполне естественна эмоциональная реакция сообщества, если сделано важное открытие или крупное достижение в сфере науки и техники. Людям свойственен комплекс Пигмалиона. Однако, в современных условиях действительно происходит резкое усиление действия "демона авторитетов" благодаря быстроте и легкости телекоммуникаций. Другая причина возникновения скоротечных догм, отмеченная Чаргаффом, связана с неизбежной специализацией и понижением общебиологического тезауруса и интереса к истории и методологии науки.

Уместно привести сходное саркастическое высказывание другого известного молекулярного биолога старшего поколения Сиднея Бреннера. Немецкий генетик Мюллер-Хилл, автор вышедшей в 1996 г. книги об истории открытия оперонов у бактерий, сетует, что для молодых исследователей история науки как бы не существует, и они не представляют себе длинного и извилистого пути, приведшего к современному уровню знаний. В рецензии на эту книгу С. Бреннер с характерным английским юмором пишет, что он придерживается иной точки зрения: нет, история науки входит в круг интересов молодых молекулярных биологов, но только они делят ее на две эпохи: последние два года и все остальное до того (Brenner S., 1997).

Классик отечественной цитофизиологии В. Я. Александров обычно охлаждал пыл не в меру ретивых молодых молекулярных биологов "образца 70-х годов" напоминанием, что, например, за привычной, вошедшей во все учебники схемой "информационная РНК переходит из ядра в цитоплазму" — скрывается бездна нашего незнания. Александров оказался пророком. На рубеже 90-х годов была осознана многоступенчатость и сложность явлений внутри- и межклеточного транспорта макромолекул.