Когда Поль Ланжевен говорил Иоффе, что идеи диссертанта развиты с блеском, он прежде всего имел в виду, как просто и красиво удалось де Бройлю получить ясную формулу для длины предполагаемой волны электрона. А удалось ему это с помощью теории относительности и квантовой теории.
Заранее можно было предречь, что тут не обойдется без постоянной Планка h— без кванта действия — без этого всеобщего масштаба малости в микромире. Де Бройль показал, что надо hразделить на массу и на скорость электрона, дабы узнать длину его волны. В самом деле, куда уж проще и красивей! Тотчас сосчитывалось, что у обычных «лабораторных» электронов — не слишком быстрых и не слишком медленных — длина дебройлевской волны такая же, как у рентгеновских лучей: она измеряется ангстремами.
Отсюда прямо следовало… Да, конечно, отсюда прямо следовало, что рентгеноскописты могли бы попробовать экспериментально убедиться: реальны электронные волны или нет? Теоретически провозглашенную двойственность электрона как частицы–волны или волны–частицы обязательно надо было установить на прямом опыте. Для защиты такой небывалой новости, уподоблявшей электроны квантам, то есть вещество — излучению, мало было выкладок на бумаге, сколь блестяще они ни выглядели бы.
Электрон–частица…
Электрон–волна…
Первое в доказательстве не нуждалось: более четверти века назад электрон и был открыт как частица.
Второе потребовало через четверть века с лишним переоткрыть электрон в новой (прежде никем еще не замеченной в эксперименте) волновой ипостаси.
Переоткрытие электрона произошло тремя годами позднее — в 1927 году, вершинном году квантовой революции. Нам еще предстоит подниматься на эту вершину. Но придется, обгоняя события, заглянуть туда на минуту, просто чтобы не прерывать рассказа о «волнах материи» на полуслове.
Так окрестили дебройлевские волны сами физики, И этот термин — «волны материи» — будоражил воображение современников. В картине природы снова появилось нечто непредставимое — некое «дрожание» вещества.
Исторически кажется непонятным, почему оно не было сразу же продемонстрировано экспериментально де Бройлем–старшим в его хорошо оборудованной частной лаборатории на улице Байрона. Это тем непонятней, что работа с рентгеновскими лучами была, как говорят французы, «спесиалитэ де ля мезон» — «специальностью дома». А счастливая близость длин электронных волн и рентгеновских определилась тотчас, едва только де Бройль–младший вывел свою красиво простую формулу. Недоумение возрастет еще больше, если вслушаться в его воспоминание, которым он поделился с историками сорок лет спустя — в январе 1963 года:
— …Мой брат Морис рассматривал рентгеновский луч, как некую комбинацию волны и частицы.
Стало быть, в лаборатории на улице Байрона все нужное для эпохального эксперимента было налицо — и приборы, и руководящая идея, и духовная атмосфера. А дело не сделалось!
Между прочим, именно там еще в довоенные времена, в 1911 году, Луи де Бройль — девятнадцатилетний бакалавр гуманитарных наук — пленился физическими исканиями старшего брата и познакомился со спорами вокруг квантовых идей. Морис де Бройль был секретарем 1–го конгресса Сольвея и привез тогда из Брюсселя материалы только что прошедших дискуссий. Юный Луи их читал и — соблазнился: теоретическая физика навсегда обратила его в свою веру. Но он занимался в лаборатории брата и экспериментами, да притом вместе с очень искусным Александром Довийе… Еще один повод для всевозрастающего недоумения.
Но, быть может, на улице Байрона попросту не до гадывались, как поставить нужные опыты и чего добиваться? Ах, нет, догадывались! Во время защиты «вздорной диссертации» член жюри Жан Перрен спросил: возможно ли опытное доказательство идеи диссертанта? Луи де Бройль с прозрачной ясностью ответил: электронные волны, пронизывая кристалл, должны давать такую же дифракционную картину огибания атомных узлов кристаллической решетки, какую дают лучи Рентгена…
Так что же в конце–то концов помешало переоткрыть электрон как волну еще в 24–м году — на три года раньше, чем это действительно произошло?
Страсти человеческие помешали — не их вдохновляющий накал, а прохладное равнодушие к журавлю в небе, когда мерещится синица в руках… Уже переваливший за семьдесят, Луи де Бройль рассказал историкам, что он тогда — в далекой молодости — предложил многоопытному Александру Довийе взяться за дело, однако встретил отказ! Тот был слишком занят экспериментами по телевидению, которые сулили…
Словом, обычный сюжет: абстрактным «волнам материи» немножко надмирного принца пришлось уступить черед исканиям здраво–практическим. Но расчетливость всегда нерасчетлива, когда в жертву ей приносится фундаментальное знание. Довийе взял бы назад свой отказ, узнай он в тот момент, что все будущее электронной микроскопии, квантовой электроники, да и всех квантовых чудес в нынешней технике пряталось в азбучных опытах, которыми он пренебрег. И уж, конечно, он поспешил бы за них приняться, скажи ему голос из будущего, что впереди его ждет Нобелевская премия. Позднее она по праву досталась американцу Клинтону Джозефу Дэвиссону и англичанину Джорджу Пейджету Томсону «за их открытие дифракции электронов в кристаллах», то есть в точности за то, что предложил открыть уверенный в своей правоте Луи де Бройль.
Журавли и синицы, небо и руки меняются в истории местами, не оповещая об этом заранее слишком здравомыслящих.
Дэвиссон и Томсон открыли волнообразность электронов независимо друг от друга в 1927 году. А потом выяснилось, что первый наблюдал электронную дифракцию еще шестью годами ранее — в 21–м, но не смог понять странную картину, получавшуюся при работе с электронами и никелевым кристаллом. Идея, что перед ним — волновая картина, Дэвиссона не осенила. Подтвердилась изумительно точная, уже знакомая нам мысль Эйнштейна, для многих звучащая почему–то как ересь: «Лишь теория решает, что мы ухитряемся наблюдать!»
Оттого что Дэвиссон в лаборатории телефонной компании Бэлла ухитрился наблюдать электрон–волну раньше, чем де Бройль ухитрился теоретически описать такую возможность, физике не повезло: уже воочию явившись как волна, электрон остался неузнанным на целых шесть лет!
А Джордж Томсон — сын старого Дж. Дж. — ставил в лаборатории Абердинского университета тонкие опыты, заранее зная, что он должен увидеть по теории де Бройля. И он сумел сфотографировать волновую картину поведения электрона… Так удивительно распорядилась история физики, что вся честь открытия электрона–частицы и наполовину честь открытия электрона–волны досталась одной ученой семье в двух ее поколениях.
Однажды — в середине 50–х годов — обсуждался даже интересный вопрос: а не было ли чистой случайностью, что корпускулярная природа электрона обнаружилась раньше волновой? И уж заодно: как повернулся бы весь ход развития физики микромира, если бы электрон как волна был открыт прежде, чем как частица? Тут простор для праздных гаданий. Но в такую дискуссию можно было бы внести шутливый вклад: для изменения очередности этих открытий в семье Томсонов отец и сын вынуждены были бы поменяться ролями, что противно законам природы.
Успех экспериментаторов в 1927 году заставил даже упорствующих скептиков оценить правоту де Бройля. И с необычной для Шведской академии быстротой ему уже в 1929 году была присуждена Нобелевская премия. (А Дэвиссону и Томсону пришлось почему–то ждать десять лет.)
На церемонии вручения награды французскому теоретику его представлял собравшимся шведский физик Карл Усен, к слову сказать, давний друг Нильса Бора и еще более давний сторонник квантовых идей. Прежде чем попросить Луи Виктора де Бройля «принять награду из рук нашего короля», Усен сказал:
— Одна поэма, хорошо известная каждому шведу, начинается словами: «Моя жизнь — волна». Поэт мог бы выразить свою мысль и по–другому: «Я — волна!» Предпочти он именно это выражение, в его словах содержалось бы предчувствие глубочайшего понимания природы материи, ставшего доступным человеку ныне…
В зале могли подумать, что профессор Усен сказал больше, чем позволяла суть дела: разве из волнообразности электрона следовала волнообразность всего сущего в вещественном мире?
Следовала! Суть дела в том и состояла, что по простой и красивой формуле де Бройля волнообразность являла собою неизбежное свойство всякой движущейся массы — совершенно независимо от того, чья это масса, электрона или целого атома, дробинки или земного шара… Так в легенде о рождении закона тяготения перед взором Ньютона могло падать на Землю вместо яблока все, что угодно: не имело значения, какою «вещью» была тяготеющая масса. И на самом деле Ньютон изучал не падение яблока, а подобное падению движение Луны… Карл Усен не преувеличил права мечтательного поэта — тот мог сказать о себе, не противореча физике: «Я — волна!» Тогда метафора принадлежала бы науке, а не поэзии.
Резонно возразить: да ведь это означает, что уже классическая механика с первых своих шагов и всегда имела дело не просто с физическими телами, но с кентаврами — «телами–волнами»? Разумеется, да!
Так, стало быть, была она непростительно слепа?
«Слепа» — это верно, а вот «непростительно» — совсем неверно. Она, старая механика, не замечала волнообразности вещества по той же причине, по какой веками не замечала возрастания массы тел с увеличением их скорости: по причине неуследимой малости этого эффекта. Формула де Бройля вместе с небывало новым знанием содержала безусловное оправдание всех экспериментаторов прежних времен.
Могли ли астрономы почуять дебройлевское «дрожание» земного шара? Для ответа — чуть–чуть арифметики…
Помните, длина дебройлевской волны получается при делении постоянной Планка hна массу и скорость тела. Чем больше масса, тем короче волна. Пусть скорости Земли и электрона будут одинаковы. Тогда для земного шара длина волны будет во столько же раз короче электронной волны, во сколько Земля массивней электрона. А цифры такие: