[1] могут привести медицину.
Рисунок 1. Кадр из фильма «Виртуальные люди» (CompBioMed и Суперкомпьютерный центр Барселоны)
В сентябре 2017 мы провели премьеру в огромном кинотеатре IMAX Музея науки в Лондоне, вместе с Фернандо Куккетти и Гильермо Марино, нашими коллегами из Суперкомпьютерного центра Барселоны. Несмотря на то, что мы работали над фильмом несколько месяцев, мы все равно затаили дыхание, увидев бьющееся виртуальное сердце размером с четыре двухэтажных автобуса.
SuperMUC-NG и MareNostrum 4 – две из примерно нескольких сотен огромных вычислительных машин, разбросанных по всему миру. Эти машины используются для моделирования космоса, понимания закономерностей природы и решения основных задач, стоящих перед нашим обществом, таких как изучение изменения климата, разработка низкоуглеродных источников энергии и моделирование распространения виртуальных пандемий.
Подобно великим средневековым соборам, воздвигнутым архитекторами, каменщиками, геометрами и епископами, чтобы дать человечеству представление о бесконечности, суперкомпьютеры – это соборы информационной эпохи, где новые миры и даже целые вселенные бесконечного разнообразия могут быть смоделированы внутри великих двигателей логики, алгоритмов и информации.
Они также могут воссоздать внутренние миры человеческого тела, и не любого или «среднего» тела, а тела конкретного человека: от тканей и органов до молекулярных машин, работающих внутри клеток, их составных белков и ДНК. Конечная цель этой работы – запечатлеть на компьютере жизненные ритмы, закономерности и нарушения, причем не просто какой-то среднестатистической жизни, а одного конкретного тела и одной конкретной жизни – вашей[2].
Рисунок 2. Суперкомпьютер MareNostrum (wikimedia commons: Gemmaribasmaspoch. cc-BY-SA-4.0)
На премьере к нам присоединились коллеги, разработавшие виртуальные сердца, артерии и вены, а также скелет и его мускулатуру. На великолепном экране IMAX в Музее науки переполненная аудитория увидела будущее, когда лекарства можно будет разрабатывать с учетом индивидуальных потребностей каждого пациента, когда мы сможем визуализировать движение мутировавшего белка в организме, отследить турбулентный поток частиц лекарства глубоко в легких, изучить волны клеток крови через мозг и смоделировать давление и напряжение, оказываемые на ослабленные кости.
Расцвет цифровых двойников
В технике виртуальные копии известны как цифровые двойники. Эту концепцию обычно приписывают статье Джона Викерса и Майкла Гривза из Мичиганского университета от 2002 г.[3], в которой говорилось о «модели зеркальных пространств». НАСА ввело термин «цифровой двойник» в 2010 г.[4] и применило к космическим кораблям[5]. Однако истоки двойников можно найти гораздо раньше. Многие в качестве яркого примера ссылаются на лунную программу «Аполлон»: наземные симуляторы использовались в качестве аналоговых двойников космических кораблей. Этот подход был использован в 1970 г., чтобы помочь успешно вернуть трех астронавтов злополучной миссии «Аполлон-13» после взрыва в 200 000 милях от Земли[6].
Сегодня цифровые двойники хорошо зарекомендовали себя. Многие промышленные процессы и машины слишком сложны для понимания одним мозгом, поэтому эксперименты с цифровыми двойниками облегчают изучение и понимание их поведения[7]. Уроки, извлеченные таким образом, преобразуют будущее производства и, ускоряя автоматизацию, меняют будущее труда. Цифровые копии машин и даже целых заводов помогают предвидеть препятствия, совершенствовать конструкции и предотвращать ошибки еще до их возникновения.
Цифровые двойники используются для оптимизации цепочек поставок и планировки магазинов. General Electric использовала двойника для повышения эффективности на алюминиевом заводе в Индии; двойник маршрута предполагаемой железнодорожной линии на северо-западе Англии – в виде 18 миллиардов точек данных, собранных дронами, – был создан, чтобы помочь управлять этим огромным транспортным проектом; «фабрика будущего» в Австралии отточила виртуальную копию роботизированной рабочей станции, прежде чем создать настоящую; инженеры используют цифровые двойники, чтобы оценить срок службы реактивного двигателя и способы его эффективного обслуживания. Цифровые двойники использовались для создания ветряных турбин, нефтяных вышек, автомобилей, реактивных двигателей, самолетов, космических кораблей и многого другого. Некоторые считают, что цифровые двойники городов являются ключом к будущему городскому планированию.
Цифровые двойники появляются и в медицине благодаря революции данных в биологии. Одним из легионов людей, анализирующих данные о здоровье, является Лерой Худ из Института системной биологии в Сиэтле. Один из самых влиятельных современных биотехнологов, Худ десятилетиями работал на передовых позициях в области медицины, инженерии и генетики, начиная с первой встречи по программе генома человека в 1985 г. В 2015 г. он запустил проект, собравший множество данных о 5000 пациентах за пять лет. Все их данные хранились в том, что Худ называет «облаками личного здоровья»[8]. Анализ облака пациента может выявить характерные сигналы того, что Худ называет «пред-предболезнью», которые врачи могут использовать, чтобы предвидеть проблему, а затем вмешаться для поддержания здоровья.
Худ говорит о «научном благополучии», которое «использует личные, плотные, динамические облака данных для количественной оценки и определения здоровья, а также выявления отклонений от состояния здоровья в сторону болезни». Живое воплощение его подхода, 82-летний мужчина, был в отличной форме («Я не планирую выходить на пенсию»), когда мы говорили с ним о его видении будущего «4П», где лечение будет прогнозирующим, профилактическим, персонализированным и партиципаторным. Моделирование тела поможет вступить в это будущее, выявив закономерности в данных пациента.
В действительности, конечно, мы обходимся неполным пониманием и неполными данными. Но, как показали достижения в области прогнозирования погоды, эти недостатки можно преодолеть и сделать полезные прогнозы. Мы прошли долгий путь с 1922 г., когда британский математик Льюис Фрай Ричардсон (1881–1953) в замечательной книге «Прогноз погоды с помощью численного метода» (Weather Prediction by Numerical Process) изложил идею фантастической фабрики прогнозов, где тысячи человеческих «компьютеров», использующих логарифмические линейки и калькуляторы, координируются «дирижером». Ричардсон размышлял: «Возможно ли будет когда-нибудь в туманном будущем проводить вычисления быстрее, чем меняется погода?» Но даже он признал, что фабрика прогнозов была всего лишь мечтой.
Столетие спустя его необыкновенное видение стало реальностью. Суперкомпьютеры могут делать прогнозы на несколько дней вперед с достаточной точностью, постоянно обновляя сложные компьютерные модели данными с орбитальных спутников, буев, самолетов, кораблей и метеостанций.
Типичная модель прогнозирования опирается на систему уравнений, позволяющую моделировать: будет идти дождь или сиять солнце. Существует уравнение для импульса, плотности и температуры в каждой из трех фаз воды (пар, жидкость и твердое состояние), а также, возможно, для других химических переменных, таких как озон, который поглощает вредное ультрафиолетовое излучение. Во второй главе мы объясняем, почему эти нелинейные дифференциальные уравнения, особенно уравнения в частных производных, управляют климатической системой. В целом, чтобы смоделировать планету с разрешением, составляющим в настоящее время около 60 км, требуются миллиарды уравнений[9]. Модель должна учитывать постоянно меняющиеся термодинамические, радиационные и химические процессы, действующие в масштабах от сотен метров до тысяч километров и от секунд до недель[10]. Это представляет собой проявление силы моделирования, которое, как утверждают некоторые, уже приближается к сложности, необходимой для моделирования человеческого мозга.
Благодаря потоку биомедицинских данных, доступных сегодня, а также все более мощной теории и расчетам, мы считаем, что в биологии моделирование произведет революцию так же, как и в метеорологии. Американский метеоролог Кливленд Эббе (1838–1916) однажды заявил, что прогресс в его области зависит от «посвящения в эту науку физиков и математиков»[11]. Вторя его видению прогнозирования из 1895 г., мы с нетерпением ждем того дня, когда будет недостаточно знать, что кто-то нездоров, – мы хотим иметь возможность понять, заболеет ли он в будущем и почему, чтобы мы могли его вылечить.
Оптимизм в отношении потенциала цифровых двойников в медицине подкрепляется нашей нынешней способностью прогнозировать погоду, которая поразила бы Эббе. Мы воспринимаем ежедневные прогнозы как нечто само собой разумеющееся, но этот подвиг на стезе предсказания поистине выдающийся. Маркус Коверт из Стэнфордского университета, разработавший виртуальные клетки, заметил: «Прогнозирование таких бедствий, как ураган «Сэнди», за десять дней до выхода на берег – с соответствующей эвакуацией сотен жителей, спасающей как жизни, так и имущество, – возможно, стоит причислить к величайшим техническим триумфам в истории человечества»[12].
Что касается прогнозов климата, разрабатываются планы по созданию «цифрового двойника» Земли, который будет моделировать атмосферу, океан, ледники и сушу с разрешением в 1 км, предоставляя прогнозы рисков наводнений, засух и пожаров, а также океанских вихрей, которые перемещают тепло и углерод по планете. Эта европейская модель (Destination Earth) объединит другие данные, такие как использование энергии, структуру дорожного движения и перемещения людей (отслеживаемые с помощью мобильных телефонов), чтобы показать, как изменение климата повлияет на общество и как общество может изменить его траекторию во времени, которое некоторые уже называют антропоценом – геологической эпохой, когда человеческая деятельность оказывает значительное влияние на нашу планету