зываемого дифракцией рентгеновских лучей. Сегодня существует множество других методов, позволяющих заглянуть внутрь живого тела: от терагерцового излучения до ультразвука. Мы даже можем использовать антивещество в виде позитронов (антиэлектронов) для изучения метаболизма.
В организме есть электрическая система, и о ней тоже нам нужны данные. В то время как по проводам электричество движется со скоростью около 1 мм/с (хотя связанная с ним электромагнитная волна распространяется примерно со скоростью света, 300 000 км/с), сигналы в нашем теле движутся со скоростью 0,08 км/с, или около 290 км/ч. Внутри нас электричество переносится более крупными и сложными ионами, а не проворными электронами (заряженными субатомными частицами), которые питают наши дома.
Исследования того, как импульсы распространяются по нервам, восходят к разработке метода «зажима напряжения» в 1930-х и 1940-х гг. биофизиком Кеннетом Коулом (1900–1984) из США вместе с Аланом Ходжкином (1914–1998) и Эндрю Хаксли (1917–2012) из Великобритании, которые нашли способ проводить измерения, продевая электроды в гигантский аксон – нервную клетку – кальмара.
Рисунок 5. Клеточная структура пробки, представленная Робертом Гуком, «Микрография» (1665)
Еще лучшее понимание «проводки» тела стало возможным благодаря технике, которая позволяет регистрировать мизерные электрические токи силой около пикоампера (миллионная миллионной доли ампера), которые проходят через одиночный ионный канал, одну молекулу или комплекс молекул, позволяющий ионам проникать через мембрану клетки. В 1976 г. немецкие клеточные физиологи Эрвин Неер и Берт Закман сообщили, как это сделать с помощью крошечного, но простого устройства, называемого локально-изолирующим электродом.
Они использовали кончик чрезвычайно тонкой стеклянной пипетки, чтобы прикоснуться к крошечному участку внешней мембраны клетки, который, по счастливой случайности, содержал единственный ионный канал. Небольшое всасывание обеспечивало герметичное уплотнение, так что ионы могли течь только из канала в пипетку. Используя чувствительный электрод, они смогли зафиксировать крошечные изменения тока, когда ионы проходили через зажатый канал. За это замечательное открытие в 1991 г. Неер и Закман получили Нобелевскую премию.
Но данные, которые привлекли наибольшее внимание в последние годы, связаны с чтением генетического кода человека. За это мы можем поблагодарить британца Фредерика Сэнгера (1918–2013), одного из величайших новаторов в молекулярной биологии: «Из трех основных видов деятельности, связанных с научными исследованиями – мышлением, разговорами и действиями, я предпочитаю последний и, вероятно, именно он у меня лучше всего получается»[44]. Он был прав. Став первым, кто раскрыл структуру белка (это оказался инсулин), Сэнгер в середине 1970-х разработал методы секвенирования ДНК, за что во второй раз стал лауреатом Нобелевской премии.
Со времени новаторской работы Сэнгера стоимость секвенирования человеческого генома (генетического кода в ДНК человека) резко упала – с миллиардов долларов до сотен. Одной из причин является появление секвенирования «следующего поколения» – прорыва, который сравнивают с переходом от самолета братьев Райт к современному Боингу.
В 1997 г. химики Кембриджского университета Шанкар Баласубраманиан и Дэвид Кленерман начали разрабатывать свой метод, согласно которому образец ДНК делится на фрагменты, которые иммобилизуются на поверхности чипа и локально амплифицируются. Затем каждый фрагмент декодируется, вплоть до «буквы» генетического кода (нуклеотида – подробнее позже), с использованием флуоресцентно окрашенных букв, добавленных ферментом. Обнаружив цветные буквы, включенные в каждую позицию чипа, и повторив этот цикл сотни раз, можно прочитать последовательность каждого фрагмента ДНК[45].
Рисунок 6. Метод локальной фиксации потенциала. Адаптировано из книги Александра Д. Рейеса «Прорывной метод, который стал жизненно важным для нейробиологии» (A Breakthrough Method that Became Vital to neuroscience). (Nature, 2019)
Еще одно достижение в области секвенирования нового поколения относится к 1970-м гг., когда Стив Хладки и Денис Хейдон из Кембриджа зафиксировали поток тока через одиночный ионный канал в искусственной мембране. Поскольку ДНК является заряженной молекулой, она также может пройти через этот открытый канал и при прохождении вызывает колебания тока, соответствующие генетической последовательности. Последующее развитие коммерческого «нанопорового секвенирования» компанией Oxford Nanopore Technologies (в частности, ее основателем Хэганом Бэйли) можно проследить до исследований 1980-х гг., когда впервые было обнаружено движение ДНК через поровые белки[46].
Используя новую технологию секвенирования, можно считывать значительно более длинные участки ДНК, чем ранее, поэтому в 2021 г. международная группа из 30 учреждений – Консорциум Telomere-to-Telomere (T2T) – опубликовала первый «длинно читаемый» геном[47]. Это было важное открытие, поскольку исторический проект последовательностей человеческой ДНК, опубликованный в июне 2000 г., пропускал целых 15 % генома: более ранние технологии секвенирования параллельно считывали код миллионов фрагментов ДНК, каждый из которых был относительно небольшим и содержал до 300 букв кода. В результате они не могли справиться с повторяющимися участками кода ДНК, скрывающимися в геноме, особенно с центромерами – защемленными частями хромосом, которые играют ключевую роль в делении клеток. Сквозная последовательность 2021 г., основанная на длинном чтении от 10 000 до 100 000 букв, выявила 115 новых генов, кодирующих белки, и, вероятно, содержит множество областей, которые играют роль в регуляции генов и других функциях.
Рисунок 7. Как ДНК, проходящая через канал нанопоры, генерирует сигнал (дизайн – Ёритака Харазоно. TogoTV. cc BY 4.0)
Код жизни
Два десятилетия назад, когда на горизонте появились детали всего генетического кода человека, вопрос о том, какие данные необходимы для определения человеческого существа, имел соблазнительно простой ответ. Детали сложной структуры тела, казалось, заключены в ДНК – самом известном биологическом носителе информации. В начале этого столетия общественность была убеждена, что понимание кода ознаменует эру персонализированной медицины.
Биологи знали, что человеческий геном является чрезвычайно важным ресурсом, и в этом не может быть никаких сомнений. Копия находится в каждой из ста триллионов ваших клеток (за исключением красных кровяных клеток – они разрушают свою ДНК, чтобы переносить как можно больше кислорода, оставаясь при этом достаточно маленькими, чтобы проходить через капилляры). Подобно томам вашей «библиотеки», ДНК упакована в коробки, известные как хромосомы. Обычно в клетках человека имеется 46 хромосом. Если взять самую большую хромосому (вторую), то ДНК, содержащаяся в ней, в развернутом виде будет иметь размер более 8 сантиметров[48].
Используя рентгеновские лучи для изучения скрученной спиральной ДНК в каждом из этих пучков, можно понять, как она передает данные. Внутри двойной спирали ДНК находится лестница закодированной информации, где каждая «ступенька» состоит из двух химических единиц, называемых нуклеотидными основаниями. Эти единицы бывают четырех типов: аденин А, тимин Т, гуанин G и цитозин С. Из-за своей формы и химических свойств основания всегда образуют пары внутри ступени одинаковым образом: C соединяется только с G, а A соединяется только с T. В наших 46 хромосомах шесть миллиардов таких букв.
Вот почему двойная спираль также хранит секрет того, как клетки могут передавать свои инструкции после деления: если разделить нити двойной спирали, ступеньки лестницы разделятся на взаимодополняющие основания. Каждая полученная цепь может действовать как шаблон для копирования исходной партнерской цепи и сохранять информацию о том, как создавать белки, которые строят тело и управляют им (с помощью множества механизмов коррекции клеточных ошибок).
Порядок, в котором появляются основания, описывает код жизни аналогично буквам в этом предложении, только сообщения, которые они несут, содержат инструкции по созданию белка – одного из строительных блоков клеток – посредством вмешательства родственной генетической молекулы, называемой РНК. Информация в генах записана в трехбуквенном коде, причем тройка букв ДНК – кодон – отвечает за определенную аминокислоту, которая при соединении с цепочкой других аминокислот сворачивается в белок – один из блоков, которые строят ваши клетки и управляют ими.
Несмотря на то, что существует всего 20 различных аминокислот, для создания вас клетки вашего тела используют огромное количество комбинаций из таких разных белков, как гемоглобин (красный пигмент, который переносит кислород в вашей крови), инсулин (сигнальная молекула, которая сыграла главную роль в Нобелевской премии Сэнгера), или фермент АТФ-синтаза (преобразующая энергию молекулярная машина, примерно в 200 000 раз меньше булавочной головки, вращающаяся со скоростью 60 раз в секунду, производя энергетическую валюту нашего тела – молекулу под названием АТФ).
Всего, как говорилось ранее, в организме насчитывается около 37,2 триллиона клеток, и, хотя они (за парой исключений, таких как эритроциты по ранее упомянутым причинам) содержат всю информацию ДНК человека, каждый вид клетки во взрослом организме зависит от использования только определенного подмножества генов в геноме. Таким образом, клетки могут специализироваться на одном типе: от нервных и мышечных до клеток, населяющих органы, например мозг и сердце. Неудивительно, что многие думают, будто человеческий геном содержит все ответы, когда дело касается биологии человека.