Власть роботов. Как подготовиться к неизбежному — страница 3 из 51

ована лишь половина домов в Соединенных Штатах. Потребовалось еще несколько десятилетий и принятие Франклином Рузвельтом Закона об электрификации сельских районов, чтобы электричество превратилось в привычное нам общедоступное удобство.

Для тех из нас, кто живет в развитом мире, практически все вокруг так или иначе связано с электричеством или вообще возможно лишь благодаря ему. Электричество является, пожалуй, лучшим — и, безусловно, самым долгоиграющим — примером технологии общего назначения: иначе говоря, инновацией, которая повсеместно масштабируется в экономике и обществе, трансформируя все их аспекты. К технологиям общего назначения относится также паросиловая установка, положившая начало промышленной революции, но сейчас имеющая сильно ограниченное применение, в частности на атомных электростанциях. Двигатель внутреннего сгорания также сыграл преобразующую роль, но сегодня нетрудно представить себе будущее без бензиновых и дизельных моторов, на смену которым придут электродвигатели. Если не разразится какая-нибудь апокалиптическая катастрофа, практически невозможно вообразить будущее без электричества.

Таким образом, было бы чрезвычайно самонадеянно утверждать, что искусственный интеллект превратится в технологию общего назначения, сопоставимую по масштабу и возможностям с электричеством. Тем не менее есть веские причины полагать, что именно к этому мы идем: ИИ во многом так же, как электричество, со временем затронет и преобразует практически все.

Искусственный интеллект уже оказывает влияние на все отрасли экономики, в том числе на сельское хозяйство, промышленное производство, здравоохранение, финансовый сектор и розничную торговлю. Эта технология проникает даже в области, которые мы считаем наиболее человеческими. Чат-боты на основе ИИ обеспечивают круглосуточный доступ к услуге психологического консультирования. Технология глубокого обучения приводит к появлению новых форм графического искусства и музыки. Удивляться тут нечему. В конце концов, практически все ценное, что было создано людьми, является продуктом нашего интеллекта — способности учиться, изобретать, творчески решать проблемы. Усиливая, дополняя или заменяя наш собственный интеллект, ИИ неизбежно превратится в самую могущественную и наиболее широко применяемую технологию. Возможно, он однажды станет одним из самых эффективных инструментов, который поможет нам выйти из кризиса, вызванного коронавирусом.

Более того, высоки шансы, что искусственный интеллект превратится в господствующую технологию намного быстрее, чем это было в случае электричества. Дело в том, что значительная часть инфраструктуры, необходимой для развертывания ИИ, — включая компьютеры, интернет, мобильные службы передачи данных и особенно мощнейшие ресурсы для облачных вычислений, поддерживаемые такими компаниями, как Amazon, Microsoft и Google, — уже имеется. Представьте, как быстро произошла бы электрификация, если бы большая часть электростанций и линий электропередачи уже была построена к тому времени, когда Эдисон изобрел лампу накаливания. Искусственный интеллект готов преобразовать наш мир — и это может случиться намного раньше, чем мы предполагаем.

Интеллект как электричество

Аналогия с электричеством уместна, постольку-поскольку она отражает будущую повсеместность и общедоступность искусственного интеллекта и тот факт, что он в конечном счете затронет и преобразует практически все стороны нашей жизни. Однако между этими двумя технологиями имеются принципиальные различия. Электричество — однородный товар широкого потребления, не изменяющийся как в пространстве, так и во времени. Где бы ни находились вы или компания — поставщик электроэнергии, ресурс, к которому вы получаете доступ через систему электроснабжения, в сущности, один и тот же. Электроэнергия, предлагаемая сегодня потребителям, почти не отличается от той, которую можно было получить в 1950 году. Искусственный интеллект намного менее однороден и неизмеримо более динамичен. Он обеспечит появление бесчисленного множества непрерывно меняющихся возможностей и применений и будет сильно варьировать в зависимости от конкретного поставщика этой технологии. Как будет показано в главе 5, искусственный интеллект продолжит неустанно развиваться, наращивая мощь и все больше приближаясь к интеллекту человека, а когда-нибудь, возможно, превзойдет его.

Если электричество дает энергию, обеспечивающую функционирование других инноваций, то ИИ предоставляет доступ к интеллекту, включая способность решать задачи, принимать решения, а когда-нибудь, по всей видимости, и умение мыслить, изобретать и выдвигать новые идеи. Электричество может питать машину, снижающую трудозатраты, а ИИ сам по себе является трудосберегающей технологией. Его распространение в экономике окажет колоссальное воздействие на трудовые ресурсы и на структуру компаний и организаций.

Постепенно превращаясь в универсальный общедоступный ресурс, искусственный интеллект сформирует будущее во многом так же, как электричество заложило фундамент современной цивилизации. Подобно тому как здания и другие инфраструктурные объекты проектируются и строятся в привязке к существующей сети электроснабжения, перспективная инфраструктура изначально будет разрабатываться с расчетом на использование возможностей ИИ. Этот принцип не ограничится физическими структурами и преобразует практически все аспекты экономики и общества. Новые фирмы и организации с момента своего создания будут ориентированы на использование возможностей ИИ. Искусственный интеллект станет важнейшим компонентом любой будущей бизнес-модели. Наши политические и социальные институты также изменятся с тем, чтобы встроить в себя этот универсальный ресурс и опираться на него.

Из всего этого следует, что ИИ в конечном счете станет таким же распространенным, как и электричество, но никогда не будет обладать той же стабильностью или предсказуемостью. Он всегда будет несоизмеримо более динамичной и подрывной силой, способной перевернуть все, чего коснется. В конце концов, интеллект — это основополагающий ресурс, фундаментальная способность, стоящая за всем, когда-либо созданным людьми. Трудно представить себе более значимое изменение, чем превращение этого ресурса в нечто повсеместно доступное в физическом и материальном отношении.

Программно-аппаратная инфраструктура ИИ

Как любому общедоступному ресурсу, искусственному интеллекту потребуется базовая инфраструктура, сеть каналов предоставления этой технологии. Она начинается, конечно, с обширной вычислительной инфраструктуры, которая уже существует, включая сотни миллионов портативных и настольных компьютеров, а также серверы мощных дата-центров и быстро растущую вселенную мобильных устройств с еще более впечатляющими возможностями. Эффективность этой распределенной вычислительной платформы как средства доставки ИИ радикально увеличилась с появлением широкого набора аппаратных и программных средств, специально разработанных для оптимизации глубоких нейронных сетей.

Это развитие началось с того момента, когда выяснилось, что определенные графические микропроцессоры, использовавшиеся в первую очередь для поддержки видеоигр, являются мощным ускорителем для приложений, связанных с глубоким обучением. Графические процессоры изначально создавались с целью ускорения вычислений, необходимых для почти мгновенной визуализации графики высокого разрешения. С 1990-х годов эти специализированные компьютерные чипы играют важную роль в высококачественных игровых приставках, в частности Sony PlayStation и Microsoft Xbox. Графические процессоры оптимизированы для быстрого параллельного выполнения огромного числа вычислений. Если у центрального процессора, обеспечивающего работу вашего ноутбука, может быть два или, возможно, четыре вычислительных «ядра», то современный высококлассный графический процессор, скорее всего, имеет тысячи специализированных ядер, которые способны одновременно выполнять расчеты с высокой скоростью. Когда исследователи обнаружили, что вычисления, необходимые для приложений глубокого обучения, в целом аналогичны тем, что используются для воспроизведения графики, графические процессоры быстро превратились в основную аппаратную платформу искусственного интеллекта.

Этот переход стал ключевым фактором, открывшим дорогу революции в сфере глубокого обучения в 2012 году. В сентябре того года команда исследователей ИИ из Торонтского университета привлекла внимание индустрии информационных технологий к глубокому обучению, продемонстрировав подавляющее превосходство на состязании по распознаванию визуальных образов ImageNet Large Visual Recognition Challenge — ежегодном мероприятии, посвященном машинному зрению. Если бы победившая команда не использовала графические процессоры для ускорения своей глубокой нейронной сети, ее решение вряд ли было бы достаточно эффективным, чтобы обеспечить победу. Мы ближе познакомимся с историей глубокого обучения в главе 4.

Команда из Торонтского университета использовала графические процессоры производства NVIDIA, компании, основанной в 1993 году и занимающейся исключительно разработкой и выпуском ультрасовременных графических чипов. После состязания ImageNet 2012 года и последовавшего широкого признания мощного синергетического эффекта соединения глубокого обучения и графических процессоров NVIDIA резко изменила траекторию своего движения, превратившись в одну из самых значимых технологических компаний, связанных с развитием искусственного интеллекта. Свидетельством того, что революция в области глубокого обучения свершилась, стала рыночная стоимость компании: с января 2012 года по январь 2020-го акции NVIDIA выросли более чем на 1500 %.

После того как проекты, связанные с глубоким обучением, перешли на графические процессоры, исследователи ИИ из ведущих технологических компаний начали разрабатывать программные средства, способные дать толчок созданию глубоких нейронных сетей. Google, Facebook и Baidu выпустили нацеленные на глубокое обучение программы с открытым исходным кодом, которые можно было бесплатно скачивать, использовать и обновлять. Самой широко используемой платформой является TensorFlow компании Google, выпущенная в 2015 году. TensorFlow — это комплексная программная платформа для глубокого обучения, предлагающая как исследователям, так и инженерам, разрабатывающим практические приложения, оптимизированный код для реализации глубоких нейронных сетей, а также разнообразные инструменты, увеличивающие эффективность разработок. Такие пакеты, как TensorFlow и PyTorch, конкурирующая платформа от Facebook, освобождают исследователей от необходимости писать и тестировать программный код, разбираясь в тонкостях, и позволяют сосредоточиться на задачах более высокого уровня при построении систем.