Вместо тысячи солнц. История ядерной бомбы, рассказанная её создателями — страница 8 из 53

Мне думается, вы все наблюдали картину, которая получается, если на обычный стержневой магнит положить лист бумаги и насыпать железных опилок. При этом железные опилки создают совершенно определенный рисунок, образуя вокруг полюсов магнита линии, напоминающие параболы.

Уже в первой половине XIX века Фарадей наблюдал это явление. Он полагал, что пространство вокруг магнита, хотя и свободное от материальных тел, обладает физическим свойством, а именно наличием магнитного поля – силой, воздействующей на магнит. В самом деле, мелкие железные опилки играют роль магнитиков. Поле оказывает на них свое воздействие, они реагируют на него и поле проявляется через них. Подобно этому при приближении к заряженному электричеством стержню или шару предмета, имеющего заряд того же знака, возникает противодействующая сила, которая отталкивает его. Однако при приближении предмета с противоположным зарядом возникает притягивающая сила. Эти явления имеют место, когда объекты не находятся в соприкосновении: они порождаются неким свойством, характеризующим пространство, которое окружает электрический заряд или магнит. Фарадей говорил о силовых линиях и трубках, об электрических и магнитных потенциалах (это слово употреблено не в техническом значении), существующих в пространстве. Фарадей считал, что эти поля оживляют пространство. Поля можно было измерить: можно было определить их направление и их силу. Они были столь же осязаемы, как и реальные предметы, но они существовали в вакууме. В самом деле, поля действительно существуют в вакууме. Наличие атмосферы не имеет к ним никакого отношения. Они видоизменяются при наличии материальных тел, если таковые там присутствуют, но в то же время они существуют и в отсутствие этих тел. Конечно, это чем-то напоминает пресловутый эфир, т. е. пустое пространство, обладающее определенными свойствами.

Фарадей показал, что если быстро изменять магнитное поле, то появляется электрическое поле, а Максвелл теоретически доказал, что достаточно быстрое изменение электрического поля приводит к возникновению магнитного поля. Позже этот эффект получил подтверждение, хотя проверить его экспериментально значительно труднее, чем результат Фарадея. Действительно, Максвелл предсказал, что такого рода колебания поля, при которых электрическое и магнитное поля генерируют друг друга, могут свободно распространяться в отсутствие каких-либо зарядов и токов. Он произвел расчет скорости распространения колебаний и нашел, что она равна скорости света.

Таким образом, это поле Фарадея «деятельно». Оно не просто сосредоточено вокруг зарядов и магнитных диполей, оно передает электромагнитные волны. Оно передает все волны, которые питают телевизоры, управляют ракетами и позволяют нам благодаря радио наслаждаться замечательными плодами нашей культуры. Это поле передает свет и тепло, многие формы излучений высокой энергии – проникающие излучения, которые играют большую роль в ядерной физике. (Реальность созданных человеком длинных электромагнитных волн была установлена Герцем в конце XIX века.) Это густо заселенное пространство, которое полно всяких электрических и магнитных явлений, следующим образом связано с движущимися частицами: если мы имеем заряженный предмет, то он, безусловно, реагирует на силу тяготения (это универсальная сила), но он также реагирует на электрические поля, а если он в движении – то и на магнитные поля. Этот предмет ощущает дополнительный импульс, так как электрическое поле толкает его в направлении поля, а магнитное поле толкает его под прямым углом к полю и к направлению его собственной скорости. Законы этих воздействий на заряды были уже довольно хорошо изучены в конце прошлого и в начале нынешнего века, во всяком случае в той мере, в какой они касались предметов, движущихся не с чрезмерно большими скоростями. Однако концепция Максвелла о распространении электромагнитных волн света и вся основа его теории, равно как и интуитивное представление Фарадея о пространстве, сплошь заполненном полями, не согласовывались со свойством инвариантности Галилея. Это следует из общих соображений, так как если пространство заполнено электрическими и магнитными полями, оно не обязательно должно представляться тем же самым для наблюдателя, который движется по отношению к нему. Говоря более точно (и это действительно вызывает своего рода недоумение), надо отметить, что в соответствии с теорией Максвелла скорость света есть нечто фиксированное. Полученный им результат очень близок к наблюдаемым данным. Но если я движусь относительно среды, заполненной полями, то я должен как будто применить формулу V’ = V + v, из которой вытекает, что скорость видимого мною света составляет сумму (или разность) скорости моего движения и скорости света в среде. Скорость видимого мною света может быть больше или меньше, в зависимости от того, приближаюсь ли я к источнику света или удаляюсь от него. Именно это мнение и господствовало в конце прошлого и в начале нашего века. Однако оно было опровергнуто многочисленными косвенными методами и одним прямым экспериментом, одним из великих и решающих экспериментов в истории науки.

До того как эксперимент был проведен, представлялись возможными по крайней мере три альтернативы.

Во первых, можно было предположить, что существует система, в которой имеются электрические и магнитные поля, описываемые уравнениями Максвелла и подчиняющиеся им в своем поведении, и эта система уникальная; к ней применимо понятие абсолютного покоя, а все, что движется по отношению к этой системе, имеет вследствие своего движения другое физическое поведение. Принять такую альтернативу значило отказаться от закона инвариантности, полностью отказаться от идеи относительности, т. е. от относительности равномерного движения.

Во-вторых, можно было бы утверждать, что уравнения Максвелла, несмотря на то что они объясняют огромное множество явлений, в каком-то смысле неправильны, но сделать это было чрезвычайно трудно после полувекового успеха.

В-третьих, можно было бы сказать: «Относительность существует, и Максвелл прав, но уравнения Галилея не описывают преобразования относительности». Никто этого не сделал, пока положение не стало действительно отчаянным.

А положение стало отчаянным после проведения эксперимента Майкельсона – Морли. Готовясь к этим лекциям, я просмотрел записи лекций Эйнштейна, которое он читал в Принстоне в 1921 году. Говоря об эксперименте Майкельсона – Морли, он сказал, что считает результаты эксперимента известными его слушателям. Я подумал, что мне не следует поступать точно так же, как он, поскольку этот опыт был сделан довольно давно. Майкельсон измерил время, которое потребовалось свету, чтобы пройти небольшой путь туда и обратно в лаборатории. При этом он хотел проверить, будет ли получен один и тот же результат, если свет идет параллельно направлению движения Земли вокруг Солнца и перпендикулярно к нему. Ожидаемая разница должна быть чрезвычайно незначительной, и нужна была большая виртуозность, чтобы обнаружить ее.

Майкельсон проделал указанный эксперимент, повторил его снова и снова. Приборы Майкельсона обладали достаточно высокой чувствительностью, чтобы измерить скорость движения Земли относительно эфира (если он существует), регистрируя изменение скорости света в зависимости от того, движется ли Земля в том или ином направлении по отношению к эфиру – среде, где сконцентрировано электромагнитное поле, – или вообще неподвижна по отношению к нему. Он получил нулевой результат. Это было столь неожиданным, что эксперимент повторялся на протяжении десятилетий со множеством усовершенствований и во многих вариантах. Надо ли говорить о травмирующем характере ответа!

Таким образом, нельзя полагать, что скорость света зависит от скорости его источника. Нельзя сомневаться в правильности уравнений Максвелла во всех координатных системах. Нельзя также сомневаться в том, что преобразование Галилея не является точным описанием, это лишь приближённое описание того, что происходит, когда наблюдаемая система находится в состоянии равномерного движения по отношению к нам.

Три человека нашли решение, но только один из них сразу же осознал весь его смысл. Этим человеком был Эйнштейн.

Эйнштейн сказал: «Постараемся понять ситуацию, обусловленную тем, что мы не можем поддерживать связь со скоростью, превышающей скорость светового сигнала». Исходя из обычных эталонов, это довольно большая скорость (3 × 10 см/сек). В нормальных условиях мы не заметим никакого ограничения. Наши велосипеды никуда от нас не убегут. Но эта скорость – конечная, что вносит большое изменение в концепцию.

При отсутствии мгновенной связи и при необходимости сравнить информацию в двух различных пунктах следует принимать во внимание время, необходимое для того, чтобы сообщение пришло из одного пункта в другой и обратно. Например, пусть требуется синхронизировать двое часов, находящихся на большом расстоянии друг от друга. (Часы должны быть однотипными, желательно, чтобы они были «естественными», например «атомными», так как это гарантирует их идентичность.) Естественно было бы установить одни часы на среднее время между временем выхода сигнала с противоположного пункта и временем его получения после отражения. Понятие одновременности, которое интуитивно представляется чем-то таким, что не должно зависеть от какого-либо движения, вполне достоверно, когда предметы находятся в одной и той же точке пространства. Но это понятие перестает быть достоверным, если указанные предметы разделены большими расстояниями и если речь идет об относительных движениях со скоростями, приближающимися к скорости света.

Отсюда вытекает, что если действительно нельзя посылать сигналы со скоростью, превышающей скорость света, и если представление о такой возможности физически противоречиво, то следует говорить об относительности понятия одновременности, т. е. о зависимости суждений об одновременности от скорости.

Существуют также и другие физические эффекты, регистрируемые приборами, предназначенными для измерения времени и расстояния. Поясняю, что под словом «часы» я понимаю устройство, предназначенное для измерения с максимально возможной точностью определенных промежутков времени. Под словом «расстояние» я подразумеваю нечто, измеряемое линейкой, которая калибрована на основании дистанционного сравнения с эталоном метра, находящимся в Париже. Таким образом, часы и линейки являются физическими предметами.