Восемь этюдов о бесконечности. Математическое приключение — страница 9 из 35

Перейдем к двухзначным числам. С ними-то все должно быть совсем легко, правда?

Начнем с одного из моих любимых чисел – 17.

71 – 17 = 54, 54 – 45 = 9, 90 – 9 = 81, 81 – 18 = 63, 63 – 36 = 27, 72 – 27 = 45, 54 – 45 = … Минуточку! Здесь мы уже были! Что происходит? На самом деле мы пришли к точке периодичности. Для двухзначных чисел неподвижной точки не существует.

Головоломка

А что получается с пятизначными числами? А с шестизначными?

Числа Капрекара

Капрекар обнаружил, что некоторые числа обладают одним необычным свойством: если возвести такое число в квадрат, то получившееся число можно разбить на две части, сумма которых будет равна исходному числу. Эта концепция станет яснее, если привести несколько примеров:



Числа 9, 45, 999, 818 181 – и многие другие – относятся к сообществу «чисел Капрекара». Вы можете запустить на своем компьютере простую программу, которая познакомит вас со многими другими представителями этого сообщества.

Головоломка

Докажите, что числа 9, 99, 999 и 9999 – это числа Капрекара.

Древняя индийская задача

Найдите следующее число в последовательности: 1, 2, 4, 8, 16, 23, 28, 38, 49…

Подумайте несколько минут. Если вы не сможете решить эту задачу, ответ можно найти в примечаниях в конце книги{13}.

Интересная особенность этой задачи заключается в том, что ее обычно бывает трудно решить почтенным математикам, потому что они углубляются в поиски сложных идей. Легче всего эта задача дается умным детям.

Капрекар заметил, что некоторые числа можно получить сложением меньшего числа с суммой его цифр, а для других чисел это оказывается невозможным. Например, число 40 можно получить этим методом, взяв 29 (2 + 9 = 11, 29 + 11 = 40). Но число 20 таким образом получить невозможно, с какого бы числа мы ни начинали (проверьте, так ли это).

Капрекар сформулировал критерий, по которому можно определить, какие числа невозможно получить при помощи этого метода[15]. Я не хочу лишать вас удовольствия самостоятельно воссоздать этот критерий. Дам лишь небольшой совет: найдите первое число, удовлетворяющее этому критерию, и попытайтесь вывести общее правило.

А теперь вернемся к нашему великому герою – Пифагору.

II. Пифагор на пляже

Представьте себе, что вы учитесь не в школе, а ходите на уроки на пляж. Здорово, правда? Именно так поступали пифагорейцы. Пифагор любил изображать числа шариками или камешками, выложенными на песке. По-разному располагая эти камешки, он придумал несколько математических формул и концепций.

Посмотрим на некоторые примеры.

Сумма последовательных нечетных чисел

Каждый, кто помнит хоть что-то из школьного курса, вероятно, может вспомнить и следующий закон: сумма n первых последовательных нечетных чисел, начиная с 1, всегда равна квадрату n.

Проиллюстрируем это утверждение:

1 + 3 = 4 = 2²;

1 + 3 + 5 = 9 = 3²;

1 + 3 + 5 + 7 = 16 = 4²

и так далее.

Те, кто продолжал углубленно изучать математику в старших классах, вероятно, знают, что этот закон можно доказать при помощи концепции, которая называется математической индукцией.

Математическая индукция – это совершенно поразительный инструмент для доказательства утверждений. Что особенно замечательно, он позволяет получить доказательство для бесконечного множества элементов исходя из доказательства для конечного их числа. Я приведу пример, объясняющий, как работает индукция. Предположим, мы хотим доказать, что следующее равенство справедливо для всех натуральных чисел:

1 + 3 + … + (2n – 3) + (2n – 1) = n².

Доказательство состоит из двух частей. В первой части мы доказываем справедливость так называемого индукционного перехода, то есть несколько странного утверждения, которое гласит: «Если это равенство истинно для n, то оно истинно и для n + 1».

Во второй части нужно доказать так называемую базу индукции, то есть убедиться, что это равенство истинно для n = 1.

Вот и всё! Этим мы доказываем справедливость этого утверждения для всех натуральных чисел.

Все это может показаться сомнительным, но позвольте мне объяснить. Представьте себе, что доказательство для n – это костяшка домино. Если вы когда-нибудь выстраивали ряд костяшек домино, вы знаете, что их ставят так, что, когда некая определенная костяшка падает, она толкает соседнюю, та толкает следующую и так далее – пока не упадут все костяшки. В доказательстве по индукции мы точно так же выстраиваем свои «утверждения» в ряд: если мы доказали утверждение для любого элемента n, это «толкает» утверждение для элемента n + 1. Но, как и в случае костяшек домино, чтобы запустить цепную реакцию падения, нужно подтолкнуть первую костяшку – или, если использовать терминологию математической индукции, доказать базу индукции. Итак, мы совершаем индукционный переход – то есть предполагаем, что истинно следующее равенство:

1 + 3 + … + (2n – 3) + (2n – 1) = n².

Теперь докажем, что оно справедливо и для n + 1, рассуждая следующим образом.

Левая часть равенства имеет вид:

1 + 3 + … + (2(n + 1) – 3) + (2(n + 1) – 1) = 1 + 3 + … + (2 n – 1) + (2n + 1).

В правой же части должно быть (n + 1)². Поскольку мы предполагаем, что наше равенство выполняется для n, мы можем утверждать, что:

1 + 3 + … + (2n – 1) + (2n + 1) = n² + (2n + 1) = (n + 1)².

Этим завершается доказательство гипотезы индукции. Осталось только толкнуть первую костяшку. Для базы индукции, то есть при n = 1, утверждение, несомненно, справедливо, так как 1 = 1².

Теперь костяшки доказательства начинают падать одна за другой: утверждение для n = 2 вытекает из утверждения для n = 1, утверждение для n = 3 – из утверждения для n = 2 и так далее.

Однако Пифагор придумал способ получше этого. Тот же закон становится совершенно очевидным, если расположить камешки определенным образом.

Один шарик и три шарика легко расставить в форме квадрата размером 2 × 2 клетки:



Один шарик, три шарика и еще пять шариков дают правильный квадрат размером 3 × 3:



Если же добавить к ним следующее нечетное число, 7, точно так же получится квадрат размером 4 × 4 клетки:



Великий еврейский философ Барух Спиноза различал три вида знания:

1. Вера.

2. Исследование (экспериментирование).

3. Понимание.


Я объясню, о чем идет речь. Если вы сообщаете мне что-то – например что сумма последовательности нечетных чисел равна полному квадрату, – я могу поверить, что вы знаете, о чем говорите. Это первый уровень знания. Однако вполне может быть, что то, что вы мне рассказали, неверно.

Если я не поленюсь проверить эту информацию – то есть рассмотрю несколько примеров и смогу убедиться, что для них это правило выполняется, – я перейду на второй уровень знания. На нем утверждение несколько более достоверно, потому что я видел, что оно действительно справедливо в некоторых случаях, но считать его абсолютно истинным нельзя. Профессор Бено Арбель (1939–2013) показал мне однажды замечательный пример, в котором многократные проверки не позволяют убедиться в истинности утверждения, даже когда их число необычайно велико. Возьмем выражение 991n² + 1. Существует ли такое значение n, при котором это выражение дает полный квадрат? Можно подставить множество разных значений n, а потом перебрать кучу других значений n, и все время будет казаться, что это выражение никогда не дает полного квадрата. Но это не так, потому что при n = 12 055 735 790 331 359 447 442 238 767 получается именно полный квадрат! Даже если мы проживем миллиард лет и потратим все это время на подстановки и вычисления, вряд ли мы обнаружим это число.

А это подводит нас к третьему уровню: только если понять, почему нечто происходит, – например разложив камни квадратом, – можно исключить всякую возможность ошибки.

Скажи мне – и я забуду. Научи меня – и я запомню. Дай мне сделать – и я пойму.

Китайская мудрость

Подход Пифагора нравится мне тем, что он дает знание третьего рода. Я понимаю, почему выражения верны, на более глубоком уровне. Я не могу проверить все бесконечное количество случаев применения формулы, но, если я получу глубокое понимание происходящего, я пойму, почему эта формула истинна.

Однажды мне попалась в библиотеке книга русского математика Якова Успенского (1883–1947) под названием «Теория уравнений» (Theory of Equations, 1948). Он работал в Стэнфордском университете под именем Джеймс Успенский. Успенский доказал множество разнообразных формул тем же путем, каким доказывал Пифагор, – то есть при помощи иллюстраций.

Начну с весьма простого примера.

Если сложить все числа от 1 до n, результат будет равен



Следующий чертеж объясняет, почему эта формула действует для случая n = 4.



Сумма чисел от 1 до 4 равна половине площади прямоугольника; другими словами, ½ × 4 × 5 = 10.

Ну хорошо, для n = 4 все просто. А что происходит с более крупными числами?

Существует хитрый способ вычисления суммы последовательных чисел от 1 до, скажем, 100. Этот способ тесно связан с историей, главный герой которой – маленький мальчик. Разные страны и народы спорят о том, кто