Восстановление данных. Практическое руководство — страница 7 из 13

Восстановление ошибочно удаленных файлов на разделах NTFS

Надежность NTFS — это одно, а ошибочно удаленные файлы — совсем другое. Файловая система, даже такая мощная, как NTFS, бессильна защитить пользователя от себя самого. Но вот предусмотреть "откат" последних выполненных действий она вполне может, тем более что транзакции и ведение их журнала в NTFS уже реализованы. До совершенства остается всего лишь один шаг. Однако, к сожалению, Microsoft не торопится сделать этот шаг, возможно, оставляя эти усовершенствования как задел для будущих версий. "Защита" от непреднамеренного удаления реализована исключительно на интерфейсном уровне, а это не только неудобно, но и ненадежно.

Прекрасно, если удаленный файл сохранился в "Корзине", но что делать, если там его не окажется? Эта глава рассказывает о методах ручного восстановления файлов, в том числе и файлов с отсутствующей файловой записью, которые приходится собирать буквально по кластерам.

Пакет FILE_DISPOSITION_INFORMATION

IPR_MJ_SET_INFORMATION
/
FILE_DISPOSITION_INFORMATION
— это пакеты, посылаемые драйверу при удалении файла (имейте это в виду при дезассемблировании). Чтобы уметь восстанавливать удаленные файлы, необходимо отчетливо представлять, что происходит в процессе удаления файла с раздела NTFS. Последовательность выполняемых при этом действий приведена ниже.

1. Корректируется файл

/$MFT:$BITMAP
, каждый бит которого определяет "занятость" соответствующей файловой записи (FILE Record) в MFT (значение 0 говорит о том, что запись не используется).

2. Корректируется файл

/$BITMAP
, каждый бит которого определяет "занятость" соответствующего кластера (значение 0 говорит о том, что кластер не используется).

3. Файловые записи, соответствующие файлу, помечаются как удаленные (поле

FLAG
, находящееся по смещению
16h
от начала файловой записи, сбрасывается в ноль).

4. Ссылка на файл удаляется из двоичного дерева индексов. Технические подробности этого процесса здесь не рассматриваются, поскольку восстановить таблицу индексов вручную сможет только гуру. Кроме того, в таком восстановлении нет необходимости. Ведь в NTFS индексы играют вспомогательную роль, и гораздо проще переиндексировать каталог заново, чем восстанавливать сбалансированное двоичное дерево (B*tree).

5. Обновляется атрибут

$STANDARD_INFORMATION
каталога, в котором хранится удаляемый файл (время последнего доступа и т.д.).

6. В файле

/$LogFile
обновляется поле
Sequence Number
(изменения, происходящие в журнале транзакций, здесь не рассматриваются).

7. Поля

Update Sequence Number 
следующих файловых записей увеличиваются на единицу: сам удаляемый файл, текущий каталог,
/$MFT
,
/$MFT:$BITMAP
,
/$BITMAP
,
/$BOOT
,
/$TRACKING.LOG
.

Каталоги удаляются практически так же, как и файлы. В этом нет ничего удивительного, так как с точки зрения файловой системы каталог тоже представляет файл особого вида, содержащий внутри себя двоичное дерево индексов (B*tree).

Ни в том, ни в другом случае физического удаления файла не происходит, и он может быть легко восстановлен. Легкое и быстрое восстановление возможно до тех пор, пока не будет затерта файловая запись (FILE Record), принадлежащая этому файлу и хранящая его резидентное тело или список отрезков (run-list) нерезидентного содержимого. Утрата файловой записи крайне неприятна, поскольку в этом случае файл придется собирать по кластерам. При этом стоит заметить, что чем сильнее был фрагментирован удаленный файл, тем сложнее будет эта задача. К счастью, в отличие от FAT, NTFS не затирает первого символа имени файла, что значительно упрощает восстановление.

Автоматическое восстановление удаленных файлов

Утилиты, восстанавливающие удаленные файлы, не входят в стандартный комплект поставки Windows NT/2000/XP. Разумеется, это явный недостаток — вспомните, ведь в MS-DOS такая утилита была. Следовательно, эти средства приходится приобретать отдельно. Одной из автоматических утилит для восстановления удаленных файлов является GetDataBack (рис. 7.1). Опасаясь разрушить файловую систему окончательно, большинство таких утилит избегает прямой записи на диск. Вместо этого пользователю предлагается считать удаленный файл и переписать его в другое место, но только не на сам восстанавливаемый раздел. Не слишком-то удачное решение. А если на остальных дисках свободного места нет, или если восстанавливаемый диск имеет всего лишь один логический раздел? Предположим, вам необходимо восстановить базу данных в несколько гигабайт. Можно, конечно, подключить второй винчестер, скопировать ее туда, а затем обратно. Однако подумайте, сколько же это займет времени, не говоря уже о том, что сервер лучше не выключать, а горячую замену поддерживают далеко не все жесткие диски! Другой недостаток подобных утилит — слишком медленная работа. Вместо того чтобы найти один-единственный файл, имя которого нам известно, они проводят полномасштабные маневры, сканируя весь раздел целиком. При работе с большими дисками на это уходит от одного до нескольких часов, причем это время фактически тратится впустую.

Рис. 7.1. Утилита GetDataBack за восстановлением удаленных файлов

С другой стороны, утилиты, вносящие изменения непосредственно в структуру NTFS, рискуют серьезно повредить дисковый том, после чего ему не помогут даже профессионалы. Настоящие хакеры не доверяют никакому коду, кроме созданного лично ими, особенно, если исходные тексты недоступны, а документация туманна и двусмысленна. Различные версии NTFS отличаются друг от друга. Последние радикальные изменения произошли в Windows XP (NTFS версии 3.1) — массив последовательностей обновления (Update Sequence Number-n-Array) переместился на шесть байтов вперед, а его место было отдано под выравнивание и поле номера текущей файловой записи (Number of this MFT Record). Восстанавливающая утилита должна не только поддерживать вашу версию файловой системы, но и безошибочно отличать ее ото всех остальных. При этом в дополнение к уже указанным сложностям встречаются и совершенно неочевидные "подводные камни". Например, при обновлении Windows 2000 до Windows XP обновления файловой системы не происходит вплоть до переформатирования диска. Эта небольшая особенность не слишком афишируется, и знают о ней лишь немногие. Большинство пользователей попадается в эту ловушку, и последствия оказываются катастрофическими.

Наконец, возможна и такая ситуация, когда утилит восстановления просто не окажется под рукой в тот момент, когда вам срочно потребуется восстановить какой-нибудь ценный файл. Законов Мэрфи еще никто не отменял! В этом случае вам придется рассчитывать только на свои силы.

Ручное восстановление ошибочно удаленных файлов

Начнем с простейшего. Файл только что удален, и принадлежащая ему файловая запись еще не затерта. Как найти его на диске? Существует два способа — "теоретический" и "практический". Теоретический метод исключительно надежен, но требует дополнительных операций, выполнения которых можно избежать, приняв ряд практических допущений.

Теоретически грамотный и правильный подход состоит в следующем. Извлекаем из загрузочного сектора указатель на MFT, извлекаем из нее первую запись (она описывает

$MFT
), находим атрибут
$DATA
(
80h
), декодируем список отрезков (data runs) и последовательно читаем все записи в MFT, анализируя содержимое атрибута
$FILE_NAME
(
30h
) — имя файла. Обратите внимание, что таких атрибутов у файла может быть несколько. Этот же атрибут хранит ссылку на родительский каталог. Поэтому, если несколько одноименных файлов были удалены из различных каталогов, то необходимо выяснить, какой именно из них должен быть восстановлен.

Практический подход выглядит следующим образом. В девяти случаях из десяти файл

$MFT
не фрагментирован и располагается практически в самом начале диска. Имена файлов хранятся по смещению
EAh
от начала сектора, в начале которого расположена сигнатура
FILE*
(
FILE0
— в NTFS 3.1). Поэтому можно просто запустить любой дисковый редактор (например, Disk Probe из комплекта Support Tools от Microsoft), ввести имя восстанавливаемого файла в кодировке UNICODE и дать редактору указание искать его по смещению
EAh
(в NTFS 3.1 —
F0h
) от начала сектора (рис. 7.2).

Рис. 7.2. Ручное восстановление удаленного файла с помощью Disk Probe

Когда же искомая строка будет найдена, необходимо проверить, находится ли в начале сектора сигнатура

FILE*
/
FILE0
. Если такой сигнатуры в начале сектора нет, следует продолжить поиск. Двухбайтное поле по смещению
16h
от начала сектора содержит флаги записи:
00h
— запись не используется или была удалена,
01h
— запись используется,
02h
— запись используется и описывает каталог. Встречаются и другие значения, например,
04h
,
08h
. Эти значения не документированы. Возможно, что именно вы сможете пролить свет на этот вопрос?

Исправляем 00h на 01h, записываем изменения и... Ничего не выходит?! А чего вы хотели! Ведь помимо этого необходимо выполнить еще несколько действий. Во-первых, следует сообщить файлу

/$MFT:$BITMAP
, что данная запись MFT вновь используется. Во-вторых, необходимо исключить из файла
/$BITMAP
номера кластеров, принадлежащие восстанавливаемому файлу. Наконец, необходимо перестроить двоичное дерево индексов, хранящее содержимое каталога. Первые два пункта не представляют серьезной проблемы, но вот над последней задачей придется повозиться. Хотя ее можно существенно упростить, просто запустив chkdsk с ключом
/F
. Утилита chkdsk самостоятельно найдет "потерянный" файл и внесет все необходимые изменения в файловую систему (листинг 7.1). От вас потребуется только установить флаг по смещению 16h в единицу, а все остальное сделает chkdsk. После этих нехитрых манипуляций восстановленный файл окажется в своем родном каталоге.

Листинг 7.1. Восстановление удаленного файла при помощи chkdsk

C:\chkdsk D: /F

Тип файловой системы: NTFS.

Проверка файлов завершена.

Проверка индексов завершена.

Восстановление потерянных файлов.

Восстановление потерянного файла test.txt в файле каталога 5

Замена неправильного идентификатора безопасности для файла 29

Проверка дескрипторов безопасности завершена.

Исправление ошибок в атрибуте BITMAP основной таблицы файлов.

Windows сделала изменения в файловой системе.


1068290 КБ всего на диске.

     20 КБ в 2 файлах.

      4 КБ в 9 индексах.

      0 КБ в поврежденных секторах.

   7894 КБ используется системой.

   7392 КБ занято под файл журнала.

1060372 КБ свободно на диске.


Размер кластера:          2048 байт.

Всего кластеров на диске: 534145.

  530186 кластеров на диске.

Восстанавливаем руины

Рассмотрим более сложный случай восстановления, а именно — случай, когда файловая запись уже затерта. Если удаленный файл был резидентным (хранил свое тело в MFT), то восстанавливать уже нечего. Даже если на ранее занимаемом им месте создан нерезидентный файл (а файловая запись нерезидентного файла заканчивается там, где начинается резидентное тело), операционная система заботливо заполнит оставшийся "хвост" нулями, и для восстановления оригинального содержимого придется прибегнуть к дорогостоящему оборудованию, читающему поверхность жесткого диска на физическом уровне.

С нерезидентными файлами, хранящими свое тело вне MFT, ситуация обстоит не так плачевно, хотя и здесь проблем тоже хватает. Порядок размещения файла на диске хранится в списке отрезков (run-list) внутри файловой записи в MFT. При этом, поскольку файловая запись уже затерта, возможен лишь контекстный поиск по содержимому. Запускаем дисковый редактор, вводим последовательность, заведомо содержащуюся в удаленном файле, но не встречающуюся во всех остальных, и даем редактору команду начать поиск. Для ускорения поиска можно искать только в свободном дисковом пространстве (за это отвечает файл

/$BITMAP
). Известные мне редакторы напрасно пренебрегают этой возможностью, однако утилиту "продвинутого" поиска несложно написать и самостоятельно.

Восстановление нефрагментированных файлов осуществляется элементарно. Достаточно просто выделить группу секторов и записать ее содержимое на диск.

Внимание!

Повторюсь еще раз — ни в коем случае не записывайте файлы не на сам восстанавливаемый том!

Единственная проблема заключается в определении оригинальной длины. Некоторые типы файлов допускают присутствие "мусора" в своем хвосте. В этом случае можно следовать правилу, гласящему, что перебор лучше недобора. Однако это справедливо не для всех файлов! Если конец файла не удается определить визуально (например, pdf-файлы завершаются сигнатурой

%%EOF
), проанализируйте заголовок файла. Как правило, наряду с прочей полезной информацией там присутствует и размер файла. В данном случае все зависит от структуры конкретного файла, и универсальных рекомендаций дать невозможно.

Если восстанавливаемый файл фрагментирован, то ситуация осложняется. По правде говоря, она практически безнадежна, поскольку, чтобы собрать разрозненные цепочки кластеров воедино, необходимо хорошо знать содержимое удаленного файла. В этом смысле NTFS восстанавливается намного хуже, чем FAT. Последовательность фрагментов файла, хранящаяся в FAT в виде однонаправленного списка, очень живуча. Если список не поврежден, достаточно лишь найти его первый элемент (а сделать это проще простого, поскольку он будет указывать на заголовок файла с вполне предсказуемым содержимым). Даже если список "разрубить" на несколько частей, они продолжат жить собственной жизнью, и останется лишь подобрать комбинацию, в которой их необходимо склеить воедино. Список гибнет лишь при полном затирании FAT, что случается, прямо скажем, не часто. В NTFS же порядок фрагментов файла хранится в крохотных списках отрезков, и их гибель — обычное дело, после чего мы остаемся один на один с миллионом беспорядочно разбросанных кластеров. С текстовыми файлами еще можно работать, но что делать, если файл представлял собой электронную таблицу, графическое изображение или архив? Без знания стратегии выделения дискового пространства восстановить такой файл невозможно. Порядок, в котором драйвер файловой системы находит подходящие свободные фрагменты, не предопределен. Он варьируется в зависимости от множества обстоятельств, однако некоторые закономерности в нем все же присутствуют.

В ходе анализа списков отрезков сильно фрагментированных дисков мне удалось установить следующие закономерности. Сначала заполняются самые большие "дыры", причем заполнение происходит в направлении от конца зоны MFT к концу диска. Затем драйвер файловой системы возвращается назад и начинает заполнять "дыры" поменьше. Так продолжается до тех пор, пока файл не оказывается на диске целиком. В последнюю очередь заполняются "дыры" размером в один кластер. Просматривая карту диска, представленную файлом

/$BITMAP
, мы можем в точности восстановить порядок размещения фрагментов удаленного файла, наскоро собрав их воедино. Во всяком случае, теоретически такая возможность существует. На практике же на этом пути нас ждут коварные препятствия. Дело в том, что с момента создания восстанавливаемого файла карта свободного дискового пространства могла радикально измениться. Всякая операция удаления файлов высвобождает одну или несколько "дыр", хаотично перемешивающихся с "дырами" восстанавливаемого файла. Как этому противостоять? Сканируем MFT в поисках записей, помеченных как удаленные, но еще не затертых. Декодируем списки отрезков и вычеркиваем соответствующие им фрагменты из списка кандидатов на восстановление. Это существенно сужает круг поиска, хотя количество комбинаций, в которые можно собрать фрагментированный файл, по- прежнему остается велико. Но это не самое главное.

Самое "интересное" начинается, когда на диск одновременно записываются несколько файлов (например, скачиваемых из Интернета) или когда некий файл постепенно увеличивает свой размер (это происходит с документами Word при наборе текста), и одновременно с этим на диск записываются другие файлы. Когда к существующему файлу дописывается крошечная порция данных, файловая система находит наименьшую "дыру", затем следующую наименьшую "дыру" и т.д., вплоть до тех пор, пока маленькие "дыры" не исчерпаются. Когда это происходит, наступает черед "дыр" большего размера. В результате файл сильно фрагментируется. Кроме того, файл заполняется не от больших дыр к меньшим, а наоборот (т.е. происходит инверсия стратегии размещения). Таким образом, маленькие фрагменты одного файла перемешиваются с маленькими фрагментами других файлов.

Хуже всего поддаются восстановлению документы, созданные в Microsoft Office. Происходит это потому что приложение создает большое количество резервных копий редактируемого файла, как в текущем каталоге, так и в каталоге

%TEMP%
. Разобраться с тем, какой фрагмент какому файлу принадлежит, очень нелегко!

Проще всего восстанавливать ZIP-архивы. Для этого вам даже не потребуется запускать дисковый редактор. Откройте временный файл на запись, сделайте

seek
на размер свободного дискового пространства, закройте файл. А теперь обработайте его утилитой pkzipfix.exe (или запустите стандартный pkzip.exe с ключом
Fix
). В "исправленном" файле волшебным образом появятся все уцелевшие ZIP-архивы! Внутренняя структура ZIP-архива такова, что pkzipfix легко распознает даже переупорядоченные блоки, поэтому высокая степень фрагментации ему не помеха.

Дефрагментация тоже происходит интересно. Стандартный API дефрагментации в силу малопонятных ограничений оперирует не единичными кластерами, а блоками! Минимальный размер блока составляет 16 кластеров, причем начало блока должно быть кратно 16 кластерам в файле! Количество мелких "дыр" после дефрагментации только возрастает, а непрерывных областей свободного пространства практически совсем не остается.

Не забывайте, что перемещать что-либо внутрь зоны MFT тоже нельзя. Наверняка вы знакомы с системным сообщением примерно следующего вида:

На томе С:  свободно  17%,  но только  5% доступно для использования

дефрагментатора диска. Для эффективной работы дефрагментатор требует

по крайней мере 15% доступного свободного места.

"Недоступное" для дефрагментатора пространство находится внутри зоны MFT, потому что, как вы помните, при форматировании диска для хранения файла

$MFT
резервируется 12,5% от емкости тома. Затем, по мере исчерпания дискового пространства, файл $MFT усекается наполовину, а освободившееся за счет этого дисковое пространство отдается для хранения пользовательских файлов. Иначе говоря, для гарантированной работы дефрагментатора ему нужно
10% + 15% == 25%
свободного дискового пространства. Не слишком ли высока эта плата за дефрагментацию? Если же у вас свободно свыше 25%, настоятельно рекомендуется создать на диске временный файл и выполнить
seek
, чтобы заполнить все более или менее крупные "дыры", что не позволит дефрагментатору их изуродовать. Разумеется, после дефрагментации этот файл нужно удалить. К счастью, на сжатые файлы ограничение на минимальный размер блока в 16 кластеров не распространяется, поэтому мелкие файлы очень выгодно держать в сжатом состоянии, так как это существенно уменьшает фрагментацию тома. Чаще дефрагментируйте свой диск! Это не только увеличит быстродействие, но и упростит восстановление удаленных файлов с затертой файловой записью.

Вообще говоря, восстановление файлов — операция несложная, но нудная и кропотливая. Если по долгу службы или в силу иных обстоятельств вам приходится заниматься восстановлением постоянно, то этот процесс можно "автоматизировать", написав несколько простых утилит. Чтобы получить доступ к логическому разделу в Windows NT, достаточно открыть одноименное устройство с помощью функции

CreateFile("\\.\X:", GENERIC_READ, FILE_SHARE_READ, 0, OPEN_EXISTING, 0, 0)
, где
X:
— буквенное обозначение логического диска. Более подробную информацию по данному вопросу можно найти в документации Platform SDK.

Не думайте, что все уже написано задолго до вас! Утилит, пригодных для профессионального восстановления данных, под NTFS до сих пор нет. Во всяком случае, их нет в открытой продаже. Имеющиеся же средства восстановления страдают массой нелепых ограничений. Например, они не могут ограничить диапазон секторного поиска только свободным или только занятым пространством. Так что дерзайте!

Методики изучения механизма фрагментации

Существуют, по меньшей мере, две методики исследования стратегии выделения дискового пространства: статическая и динамическая. При использовании статической методики мы просто запускаем дисковый редактор (предпочтение следует отдать DiskExplorer от Runtime Software) и анализируем списки отрезков уже существующих файлов, записанных в различное время и различными способами. Например, можно скопировать файл из одного каталога в другой или попеременно увеличивать размер нескольких файлов — стратегии выделения свободного пространства в обоих случаях будут различны (рис. 7.3). Статический подход полезен тем, что дает бесценный статистический результат для всего тома в целом. Однако этот метод позволяет определить лишь окончательный результат, но не путь, которым этот результат был достигнут.

Рис. 7.3. Статический анализ стратегии выделения дискового пространства, выполняемый при помощи DiskExplorer от Runtime Software

Утилита Diskmon.exe, разработанная Марком Руссиновичем (Mark Russinovich) и доступная для свободного скачивания на его сайте (http://www.sysinternals.com), позволяет заглянуть в "святая святых" файловой системы и увидеть, как именно она выделяет дисковое пространство для хранения файлов (рис. 7.4). Особенно интересно запускать Diskmon.exe параллельно с дефрагментатором или утилитой chkdsk, так как в этом случае все тайное сразу становится явным.

Рис. 7.4. Динамический анализ стратегии выделения дискового пространства, выполняемый при помощи Дискового Монитора Марка Руссиновича

Совет

Если, несмотря на все усилия, восстановить удаленный файл так и не удается, попробуйте отыскать его резервную копию. Многие приложения создают такие копии, но не все афишируют их присутствие. Не стоит забывать и о файле подкачки, временных файлах, дампе памяти и других источниках, которые могут хранить фрагменты восстанавливаемого файла. Если вам повезет, можно даже найти там весь файл целиком. Даже если эти источники информации тоже уже были удалены, возможно, принадлежащие им файловые записи еще не затерты, и тогда восстановление не займет много времени.

Восстановление разделов NTFS после форматирования

Представьте себе, что случилось самое страшное: вы потеряли весь раздел NTFS целиком. Возможно, вы случайно отформатировали его или пережили разрушительный дисковый сбой. Где-то там остались миллиарды байт бесценных данных, теперь уже недоступных операционной системе. Как вернуть информацию к жизни? До сих пор мы рассматривали лишь незначительные дисковые сбои и легкие разрушения данных наподобие ошибочно удаленных файлов. Теперь настал черед рассмотреть восстановление после тяжелых повреждений, при которых прежнее содержимое тома становится недоступно операционной системе. Причиной этому может быть, например, непредумышленное форматирование или искажение главной файловой таблицы.

Но не падайте духом! Из любых переделок NTFS выходит с минимальными потерями, и во всех этих случаях возможно полное восстановление данных, если к делу подойти правильно.

Проще всего начать с форматирования. Для экспериментов нам потребуется утилита format.com, входящая в стандартный комплект поставки Windows NT/2000/XP, а также дисковый раздел, не содержащий никакой ценной информации.

Совет

Лучше всего проводить эксперименты на виртуальной машине — Virtual PC или VMWare, эмулирующей жесткий диск и ускоряющей процедуру форматирования в сотни раз (рис. 7.5). Ведь время — это не только деньги, но и бесцельно прожитые годы, проведенные за созерцанием индикатора прогресса.

Рис. 7.5. Форматирование виртуального диска в среде VMWare

"Живой" винчестер лучше не трогать, во всяком случае, до тех пор, пока вы не научитесь его восстанавливать. Кроме виртуальной машины, можно использовать привод ZIP (который, кстати говоря, намного надежнее оптических накопителей) и форматировать дискеты под NTFS, поскольку штатная утилита форматирования это позволяет. С обычными трехдюймовыми дискетами дело обстоит сложнее. По мнению Microsoft, их емкости недостаточно для размещения всех структур данных, хотя, простейший расчет показывает, что это утверждение не соответствует действительности, что утилита NTFSflp от Марка Руссиновича, собственно говоря, и демонстрирует. Статья "NTFS Support for Floppy Disks" (http://www.sysinternals.com/ntw2k/freeware/ntfsfloppy.shtml) подробно описывает, как обхитрить систему, заставив ее отформатировать гибкий диск под NTFS. Следует, правда, отметить, что для этого вам потребуется SoftIce.

Действия, выполняемые при форматировании

Форматирование диска — это сложная многоступенчатая операция, намного более сложная и намного более многоступенчатая, чем это может показаться на первый взгляд. Наверняка это мнение поддержит каждый программист, который писал в свое время нестандартные утилиты для форматирования дискет. Надо отметить, что в конце восьмидесятых — начале девяностых годов прошлого века такие утилиты писали практически все. Свои исследования мы начнем с изучения тома NTFS, непредумышленно переформатированного под NTFS. Техника восстановления томов NTFS, переформатированных под FAT16/32, будет рассмотрена отдельно.

При выполнении команды

format X: /U /FS:NTFS
в файловой системе диска
X:
происходят следующие изменения (форматирование диска утилитой GUI, вызываемой из контекстного меню "проводника", осуществляется по аналогичной схеме):

1. Формируется загрузочный сектор NTFS.

2. Генерируется новый серийный номер тома, который затем записывается в загрузочный сектор по смещению

48h
байт от его начала.

3. Рассчитывается новая контрольная сумма загрузочного сектора, которая затем записывается по смещению

50h
от его начала (более подробная информация была приведена в гл. 5).

4. Создается новый файл

$MFT
, содержащий сведения обо всех файлах на диске. Как правило, он записывается поверх старого файла
$MFT
. Исключения из этого правила бывают, но они крайне редки. Обычно они происходят, если прежний файл
$MFT
был заблаговременно перемещен дефрагментатором, или если при переформатировании был назначен новый размер кластера. Во всех остальных случаях первые 24 файловых записи (FILE Record) погибают безвозвратно. Эти записи содержат непосредственно сам файл
$MFT
,
$MFTMirr
, корневой каталог,
/$LogFile
— файл транзакций,
/$BITMAP
— карту свободного пространства,
/$Secure
 — дескрипторы безопасности, а также ряд других служебных файлов.

5. Инициализируется файл

$MFT:$DATA
— назначаются новая длина файла (инициализируются
$MFT:$30.AllocatedSize
,
$MFT:$30.RealSize
,
$MFT:$80.AllocatedSize
,
$MFT:$80.RealSize
,
$MFT:$80.CompressionSize
,
$MFT:$80.InitializedSize
и
$MFT:$80.LastVCN
), дата и время создания и последней модификации (инициализируются
$MFT:$10.FileCreationTime
,
$MFT:$10.FileAlertedTime
,
$MFT:$10.FileReadTime
,
$MFT:$30.FileCreationTime
,
$MFT:$30.FileAlertedTime
,
$MFT:$30.MFTChangeTime
и
$MFT:$30.FileReadTime
) и, самое главное, создается новый список отрезков (data-runs), необратимо затирающий старый. Это значит, что собирать фрагментированный файл
$MFT
нам придется по частям.

6. Создается новый файл

/$MFT:$BITMAP
, отвечающий за занятость файловых записей в MFT. При этом все старые записи помечаются как свободные, однако их фактического удаления не происходит (поле
FileRecord.flags
остается нетронутым), благодаря чему процедура восстановления заметно упрощается. Чаще всего
$MFT:$BITMAP
располагается на том же самом месте, что и старый (т.е. между загрузочным сектором и MFT), забивая прежнее содержимое нулями, однако с помощью утилиты chkdsk его можно восстановить.

7. Создается новый файл

/$BITMAP
, отвечающий за распределение дискового пространства (свободные и занятые кластеры). Этот файл также записывается поверх прежнего файла
/$BITMAP
, который, тем не менее, может быть восстановлен с помощью chkdsk.

8. Создается новый файл журнала транзакций —

/$LogFile
, структура которого подробно описана в документации LINUX-NTFS Project.

9. В заголовок файловой записи

$MFT
заносится новый LSN (LogFile Sequence Number).

10. 

$MFT
назначается новый номер последовательности обновления (Update Sequence Number).

11. Создается новое зеркало $MFTMirr, необратимо затирающее старое (в текущих версиях файловых систем оно расположено в середине раздела NTFS).

12. Создаются новые

/$Volume
,
/$AttrDef
и другие служебные файлы, играющие сугубо вспомогательную роль и легко восстанавливаемые утилитой chkdsk. Следует отметить, что хотя
/$Volume
и присутствует в зеркальной копии MFT, его ценность явно преувеличена.

13. Осуществляется проверка целостности поверхности диска, и все обнаруженные плохие кластеры заносятся в файл

/$BadClus
.

14. Формируется новый корневой каталог.

15. Если до форматирования тома на нем присутствовал файл

/System Volume Information
, то он обновляется, в противном случае новый файл
/System Volume Information
создается только после перезагрузки.

На самом деле процесс форматирования протекает намного сложнее. Тем не менее, для восстановления данных с непреднамеренно переформатированных разделов приведенной здесь информации вполне достаточно. Углубленное обсуждение этих технических деталей требуется только программисту, разрабатывающему собственную нестандартную утилиту форматирования. Заинтересованные читатели могут самостоятельно дизассемблировать утилиту format.com (рекомендуется делать это с помощью IDA Pro).

Совет

Утилита format.com содержит лишь высокоуровневую надстройку, опирающуюся на библиотеки ifsutil.dll, untfs.dll, и непосредственно на сам драйвер файловой системы. Так что дизассемблировать придется много. Чтобы упросить себе работу, можно пронаблюдать за процессом форматирования с помощью шпионских средств (рис. 7.6), например, утилит Марка Руссиновича Filemon.exe, Diskmon.exe, бесплатные копии которых можно скачать с сайта http://www.sysinternals.com. Кроме того, не забывайте о точках останова на основные функции native API, такие как

NtFsControlFile
,
NtDeviceIoControlFile
и т.д.

Рис. 7.6. Исследование процесса форматирования с помощью шпионских средств

Автоматическое восстановление диска после форматирования

Форматирование не уничтожает файловые записи пользовательских файлов, и они могут быть полностью восстановлены. Существует множество утилит для восстановления данных, например, R-Studio, EasyRecovery, GetDataBack, и т.д. Тем не менее, прямых наследников утилиты unformat среди них не наблюдается. Утилита unformat.exe восстанавливала весь том целиком, а все перечисленные выше современные средства всего лишь извлекают отдельные уцелевшие файлы и каталоги, переписывая их на новый носитель. Вот здесь мы сталкиваемся с рядом проблем. Во-первых, это выбор носителя, на который будут извлекаться восстанавливаемые данные. Запись на оптические накопители отпадает сразу же. так как количество носителей, потребное для сохранения содержимого жесткого диска объемом 80–120 Гбайт, неприемлемо велико. Кроме того, непосредственная запись CD-R/RW не всегда возможна, ведь при крахе системы восстанавливающие утилиты приходится загружать с CD-ROM, а в большинстве компьютеров установлен только один оптический привод. Наконец, ни одна из известных мне утилит автоматического восстановления данных не позволяет "разрезать" большие файлы на несколько маленьких. Если в вашем распоряжении есть локальная сеть, можно перегнать данные по ней. Еще один вариант — установка дополнительного жесткого диска (при условии наличия свободных каналов контроллера). Выбирая этот подход, следует иметь в виду, что, если корпус компьютера опечатан, то его вскрытие автоматически лишает вас гарантии. То есть вам в любом случае не обойтись без определенных финансовых затрат. Тем не менее, для извлечения пары сотен особо ценных файлов такая методика вполне подходит.

Продемонстрируем технику автоматического восстановления данных на примере утилиты R-Studio от компании R-TT Inc. (http://www.r-tt.com). Это — довольно мощный и в тоже время простой в управлении инструмент, на который можно положиться. После запуска утилиты на экране появится окно Drive View, где перечислены все физические устройства и логические разделы. Найдите среди них тот, который требуется восстановить, и, нажав правую кнопку мыши, выберите опцию Scan.

Программа предложит указать начальный сектор для сканирования (поле Start), который по умолчанию равен 0. Это значение следует оставить без изменений. Размер сканируемой области (поле Size) по умолчанию развертывается на весь раздел. Это гарантирует, что сканер обнаружит все уцелевшие файловые записи, хотя сам поиск займет значительное время. Можно ли ускорить этот процесс? Давайте возьмем ручку и подсчитаем. Предположим, что восстанавливаемый раздел содержит сто тысяч файлов. Типичный размер файловой записи составляет 1 Кбайт. При условии, что файл $MFT не фрагментирован, достаточно просканировать всего около 100 Мбайт от начала раздела. Если эта величина (размер пространства, зарезервированного под MFT) не превышает 10% от полной емкости тома и диск никогда не заполнялся более чем на 90%, то, скорее всего, все так и есть. В противном случае файл $MFT фрагментирован и живописно разбросан по всему диску. Впрочем, в случае ошибки мы ничем не рискуем. Вводим значение N Кбайт, где N — предполагаемое количество файлов (каталог также считается файлом), и выполняем сканирование. Если один или несколько файлов останутся необнаруженными, возвращаемся к настройкам по умолчанию и повторяем процедуру сканирования вновь (если количество имеющихся файлов заранее неизвестно, следует указать значение, равное 10% от емкости тома). В поле File System выбираем файловую систему NTFS, сбрасывая флажки напротив двух других доступных опций (FAT и Ext2fs). Затем нажмите кнопку Scan и сканирование начнется (рис. 7.7).

Рис. 7.7. R-Studio осуществляет поиск уцелевших файловых записей

В процессе сканирования будут найдены все уцелевшие файлы (как удаленные, так и нет). Кроме того, будет восстановлена структура каталогов, включая и корневой каталог (рис. 7.8). Постойте! Как же так? Ведь, как вы помните, при форматировании корневой каталог был уничтожен и сформирован заново! Но ничего удивительного в этом нет. Просто файловая система NTFS еще раз доказала свою живучесть — уничтожить ее можно, скорее всего, только динамитом. В отличие от FAT, в NTFS каталоги являются лишь вспомогательной структурой данных, проиндексированной для ускорения отображения их содержимого. Всякая файловая запись, независимо от своего происхождения, содержит ссылку на родительский каталог, представляющую собой номер записи в MFT. А запись корневого каталога всегда располагается по одному и тому же адресу!

Рис. 7.8. Восстановленная структура каталогов

Удаленные файловые записи могут ссылаться на уже уничтоженные каталоги. R-Studio собирает их в папку $$$FolderXXX, где XXX — порядковый номер каталога. Поэтому иерархия подкаталогов в большинстве случаев успешно восстанавливается.

Просмотр виртуального дерева обнаруженных файлов осуществляется нажатием кнопки или с помощью соответствующей команды контекстного меню. Выбрав файл (или даже целый каталог с большим количеством вложенных подкаталогов), нажмите клавишу . При желании можно выполнить предварительный просмотр или редактирование (выбрав из контекстного меню пункт Edit|View). Это достаточно мощный инструмент, отображающий содержимое восстанавливаемого файла со всеми его атрибутами, списками отрезков и т.д. в удобочитаемом формате. При желании можно восстановить все файлы за одну операцию (Recover All) или выбрать восстановление по маске (Mask). Хваленая утилита EasyRecovery от Data Recovery Software (рис. 7.9), вопреки своему названию, простотой управления отнюдь не отличается и имеет довольно специфические особенности поведения. С настройками по умолчанию никаких файлов на отформатированном разделе эта утилита не увидит. Чтобы заставить ее работать, необходимо нажать кнопку Advanced Options и в раскрывшемся окне выбрать опцию Ignore MFT. Однако и в этом случае качество восстановления будет оставлять желать лучшего.

Рис. 7.9. Красивый интерфейс EasyRecovery еще не говорит о высоком качестве восстановления данных

Ручное восстановление жесткого диска после форматирования

Нашей целью будет ручное восстановление всего отформатированного раздела без использования дополнительных носителей информации и дорогостоящих утилит от сторонних производителей. Все что для этого потребуется — это любой редактор диска (предпочтительнее всего, конечно же, NT Explorer от Runtime Software, но на крайний случай сойдут и бесплатные Disk Probe и Sector Inspector от Microsoft) в комбинации со встроенной утилитой chkdsk.

В процессе форматирования происходит необратимое разрушение большого количества ключевых структур данных, восстанавливать которые вручную было бы слишком затруднительно. К счастью, для извлечения особо ценных файлов этого и не требуется! Идея состоит в том, чтобы вернуть разделу потерянные файловые записи, а все остальные восстановительные операции поручить утилите chkdsk.

Дизассемблирование показывает, что единственной структурой данных, без которой не может работать chkdsk, является атрибут

$DATA
файла
$MFT
. А раз так, все, что требуется сделать, сводится к воссозданию прежнего файла
$MFT:$DATA
и его размещению поверх старых файловых записей. В простейшем случае, если файл
$MFT:$DATA
не фрагментирован, это достигается так называемым спекулятивным увеличением его длины. Как это сделать?

Запускаем NT Explorer, переходим в начало MFT (Goto|Mft), выделяем файл

$MFT
, находим атрибут
$DATA
(
80h
) и увеличиваем поля
Allocated size
,
Real Size
и
Compressed Size
на требуемую величину, параллельно с этим корректируя список отрезков (рис. 7.10). Поле
Last VCN
трогать не нужно, так как оно будет исправлено утилитой chkdsk. Как определить длину нефрагментированного файла MFT? Она равна разнице номеров первого и последнего секторов, в начале которых присутствует сигнатура
FILE
, умноженной на 512 байт (исключая сектора, принадлежащие
$MFTMirr
). Известные мне дисковые редакторы не поддерживают поиска последнего вхождения, поэтому соответствующую утилиту приходится писать самостоятельно. К счастью, точную длину MFT определять совершенно необязательно, и вполне допустимо взять ее с запасом, так как лишнее все равно отсеет chkdsk. Действуйте по принципу — лучше перебрать, чем недобрать.

Рис. 7.10. Ручное восстановление MFT. Подчеркнуты поля, подлежащие изменению

Утилита NT Explorer не позволяет редактировать поля в естественном режиме отображения, заставляя нас переключаться в HEX-mode и искать смещения всех значений самостоятельно. Найти заголовок атрибута

$DATA
очень просто — в его начале расположена последовательность
80 00 00 00 xx 00 00 00 01
. В NTFS версии 3.0 она находится по смещению
F8h
от начала сектора. Поле
Real size
во всех версиях NTFS располагается по смещению
30h
относительно заголовка, а поля
Allocated Size
и
Initialized Size
, соответственно, по смещениям
28h
и
38h
байт, причем значение
Allocated Size
должно быть кратно размеру кластера. Убедитесь, что при переформатировании диска размер кластера не изменился, в противном случае у вас ничего не получится. Как восстановить исходный размер кластера? Да очень просто — набраться мужества и переформатировать восстанавливаемый диск с ключом
/A:x
, где
x
— размер кластера. А как его определить? Возьмем любой файл с известным содержимым и проанализируем его список отрезков. Запускаем контекстный поиск по всему диску, находим файл, запоминаем (записываем на бумажке) его стартовый сектор, после чего открываем закрепленную за ним файловую запись, декодируем список отрезков и вычисляем номер первого кластера. Делим номер сектора на номер кластера и получаем искомую величину.

Теперь необходимо сгенерировать новый список отрезков. В общем виде он будет выглядеть так:

13 XX XX XX YY 00
, где
XX XX XX
 — трехбайтное значение размера
$MFT
в кластерах, a
YY
— стартовый кластер. Стартовый кластер обязательно должен указывать на первый кластер MFT, в противном случае chkdsk не сможет работать. Если новый список отрезков длиннее нынешнего (скорее всего, именно так и будет), то необходимо скорректировать длину атрибутного заголовка (она расположена по смещению
04h
от его начала). Проделав эту нехитрую операцию, запустим chkdsk с ключом
/F
и блаженно откинемся на спинку кресла, созерцая, как возрождаются наши милые папки и файлы. Единственное, что не восстанавливается — так это дескрипторы безопасности. Всем файлам и папкам будут назначены права доступа по умолчанию. Во всех остальных отношениях с отремонтированным таким образом диском вполне можно будет работать, не опасаясь, что он рухнет окончательно. Файлы, ссылающиеся на несуществующие каталоги, складываются в папку Found.xxx. Это — "долгожители", пережившие несколько циклов переформатирования, в буквальном смысле вытащенные из небытия.

Сложнее восстановить том, чья MFT сильно фрагментирована. Прежний список отрезков при форматировании был уничтожен, зеркальная копия также пострадала. Ничего другого не остается, как собирать все фрагменты руками. К счастью, на практике это оказывается не так сложно, как может показаться на первый взгляд. В отличие от всех остальных файлов диска, файл

$MFT
имеет замечательную сигнатуру file, присутствующую в начале каждой файловой записи. Поэтому все, что нам требуется сделать, сводится к следующим операциям. Последовательно сканируя раздел от первого кластера до последнего, выпишите начало и конец каждого из фрагментов, принадлежащих MFT. Затем из этой цепочки необходимо исключить файл
$MFTMirr
. Его легко узнать, так как он расположен в середине раздела и содержит копии файловых записей
$MFT
,
$MFTMirr
,
$LogFile
и
$Volume
, причем
$MFTMirr
ссылается на себя. В рассматриваемом примере наш список выглядит так:
08h
333h
,
669h
966h
,
1013
3210h
. В грубом приближении ему будет соответствовать следующий список отрезков:
12 2B 03 08 22 23 03 69 96 22 FD 21 13 10 00
. Подробная информация о кодировании и декодировании списков отрезков была приведена в гл. 6.

"В грубом приближении" сказано потому, что мы не знаем, в какой последовательности располагались эти отрезки в файле (порядок расположения фрагментов на диске далеко не всегда совпадает с порядком отрезков в списке отрезков). Что произойдет, если порядок сборки файла

$MFT
окажется нарушен? Внутри MFT все файловые записи ссылаются друг на друга по своим порядковым номерам, представляющим собой индексы массива. Эти ссылки необходимы для восстановления структуры каталогов, организации жестких ссылок (hard links) и еще некоторых служебных структур. Ссылки на родительский каталог дублируются в индексах и восстанавливаются элементарно.

Жесткие ссылки теряются безвозвратно (единственный способ восстановить их заключается в повторении попытки сборки файла

$MFT
в другом порядке). Однако они практически нигде и никак не используются, так что их потеря не столь уж существенна. По-настоящему туго приходится сильно фрагментированным файлам, занимающим несколько файловых записей, раскиданных по разным фрагментам
$MFT
. Здесь выручает только перестановка фрагментов. К счастью, количество комбинаций обычно бывает невелико, и процедура восстановления занимает совсем немного времени. Хорошая новость — начиная с NTFS версии 3.1 (соответствующей Windows XP) в MFT номера файловых записей хранятся в явном виде (четырехбайтовое поле, расположенное по смещению 2Ch от начала файловой записи), что делает задачу восстановления тривиальной.

Восстановление после тяжелых повреждений

В результате сбоя содержимое дискового тома может стать недоступным операционной системе. При попытке чтения оглавления такого тома будут выдаваться различные сообщения об ошибках (рис. 7.11). Chkdsk сообщает о повреждении MFT и прекращает работу.

Рис. 7.11. Безуспешная попытка прочитать поврежденный том

Не паникуйте! Попробуйте запустить NT Explorer и посмотрите, что он покажет. Маловероятно, чтобы содержимое всего тома было утеряно целиком. Если хотя бы часть файловых записей уцелела, то R-Studio. GetDataBack или EasyRecovery их обязательно восстановят!

Анализ показывает, что основной причиной, по которой chkdsk отказывается проверять том, обычно становится порча файловой записи, описывающей

$MFT
. Если в процессе обновления
$MFT
внезапно отключить питание, то такой исход вполне вероятен, особенно на жестких дисках с емким аппаратным кэшем. Такие диски не успевают завершить сохранение секторов, потребляя энергию, накопленную в конденсаторах, а вот их младшие собраться с этим справляются. То же самое происходит при неудачном перемещении файла
$MFT
или физическом разрушении первого сектора MFT. Зеркальная копия
$MFT
во всех этих случаях остается цела, однако chkdsk по каким-то таинственным причинам не хочет ей пользоваться, и вы должны восстановить ее самостоятельно. Просто скопируйте первый сектор
$MFTMirr
в первый сектор
$MFT
! Поклонники утилиты Sector Inspector могут воспользоваться для этого командным файлом, приведенным в листинге 7.2.

Листинг 7.2. Командный файл для ручного восстановления $MFT из $MFTMirr, XXX — номер сектора $MFTMirr, YYY — номер сектора $MFT

SECINSPECT.EXE -backup  d: backup.dsk XXX 1

SECINSPECT.EXE -restore d: backup.dsk YYY CONFIRM

Теперь можно смело запускать chkdsk. Если же chkdsk по-прежнему не работает, это может происходить по одной из следующих причин.

□ Повреждение загрузочного сектора. Решить проблему можно, восстановив загрузочный сектор, используя методику, рассмотренную в гл. 5.

□ Несовпадение списка отрезков файла

$MFT:$DATA
с истинным началом MFT. Чтобы решить эту проблему, найдите сектор с файловой записью
$MFT
и исправьте список отрезков. Вопросы, связанные с кодированием и декодированием списка отрезков, были изложены в гл. 6, а методика исправления списка отрезков — ранее в этой главе.

□ Несовпадение размера кластера, указанного в загрузочном секторе с фактическим размером кластера. Определение истинного размера кластера и методика восстановления были рассмотрены ранее в этой главе.

Если же сбой был настолько серьезен, что вместе с

$MFT
пострадало и зеркало, задача сводится к восстановлению отформатированного диска. При тяжелых разрушениях файловой структуры, когда на диске образуется настоящий кавардак, восстановление тома полезно начинать не с чего-нибудь, а именно с его форматирования. Нет, это не первоапрельская шутка! Утилита format.exe формирует заведомо исправные ключевые структуры, а подключение файловых записей — не проблема. Главное — сохраните список отрезков файла
$MFT:$DATA
, если, конечно, он еще уцелел. Все остальное — дело техники!

Наш затянувшийся разговор о восстановлении данных подходит к своему логическому завершению, однако NTFS не стоит на месте, а интенсивно развивается. И хотя до сих пор эти изменения носили чисто косметический характер, в Windows Longhorn все обещает кардинальным образом измениться. Microsoft активно работает над новой файловой системой — Windows File System (WinFS). Сроки выхода WinFS постоянно переносятся, что и неудивительно, ведь разработка файловой системы — это не шутка!

По словам вице-президента Microsoft Боба Маглиа (Bob Muglia), WinFS — это все та же NTFS, дополненная расширениями SQL и XML. Насколько изменятся базовые структуры файловой системы, общественности до сих пор неясно. И уж совсем непонятно, зачем NTFS понадобились расширения SQL, когда эти возможности в нее закладывались изначально, просто их не успели завершить. Любой системный программист без проблем напишет драйвер, принимающий SQL/XML запросы и транслирующий их в обращения к драйверу текущей файловой системы! Что-либо менять в самой NTFS совсем необязательно. Как лично мне кажется, это всего лишь очередной маркетинговый трюк, подталкивающий пользователей к переходу на Longhorn!

С другой стороны, развитие NTFS можно только приветствовать, поскольку оно создает широкое поле деятельности всем специалистам по восстановлению данных, ведь старые утилиты с новой файловой системой скорей всего окажутся несовместимы.

Восстановление тома NTFS после форматирования под FAT16/32

При переформатировании диска операционные системы семейства Windows NT никогда не изменяют тип файловой системы, если только им не дать такое указание явно. Поэтому непреднамеренное переформатирование раздела NTFS под FAT16/32 крайне маловероятно. Windows 9x и MS-DOS, напротив, любой диск стремятся отформатировать под FAT16/32, не замечая, что на нем что-то уже находится. Непреднамеренная порча разделов NTFS в процессе установки Windows 9x/MS-DOS поверх Windows NT — обычное дело, через которое проходит уже второе поколение пользователей.

Стратегия восстановления данных во всем похожа на восстановление тома NTFS, случайно переформатированного под NTFS. Единственное отличие состоит в том, что при создании таблицы размещения файлов (file allocation table) первые несколько тысяч файловых записей в MFT затираются безвозвратно. Впрочем, даже их можно попытаться собрать вручную, действуя по методике, описанной ранее в данной главе.

Файлы с уцелевшей файловой записью легко восстанавливаются с помощью утилит R-Studio, GetDataBack или EasyRecovery. Для ручного восстановления всего тома его необходимо заново отформатировать под NTFS, предварительно определив количество секторов в кластере. Далее действуем по плану — увеличиваем размер

$MFT
, запускаем chkdsk и собираем все, что только можно собрать. Поскольку количество файлов, хранящихся на современных дисках, зачастую исчисляется многими миллионами, потеря первой тысячи из них не так уж и страшна (если только по закону подлости они не окажутся самыми ценными из всего, что хранилось на диске).

Источники угрозы

Почему погибают дисковые разделы? Ниже приводится список наиболее распространенных причин, отсортированный в порядке убывания их "популярности".

□ Ошибки оператора, вирусы, троянские программы.

□ Отключение питания или зависание системы во время интенсивных дисковых операций, сопровождаемых обновлением MFT (например, удаление/добавление файлов или каталогов).

□ Некорректное поведение различных дисковых утилит (Partition Magic, Ahead Nero, Norton Disk Doctor и т.д.).

□ Физические дефекты оперативной памяти, приводящие к нарушению целостности дискового кэша и, следовательно, к порче самого диска.

□ Некорректное поведение привилегированных драйверов, случайно или преднамеренно "залетающих" внутрь служебных структур драйвера NTFS.

Полезные советы

Чтобы предотвратить разрушение тома и упростить задачу восстановления данных, рекомендуется заблаговременно выполнить следующий комплекс мероприятий.

□ Переместите

$MFT
подальше от начала раздела. Первые секторы раздела — это, как показала практика, самое небезопасное место (рис. 7.12). Во-первых, сюда стремятся попасть практически все вирусы. Невозможность прямого доступа к диску под управлением операционных систем из семейства Windows NT — это всего лишь миф. Если вам требуется аргументированное опровержение этого мифа, прочтите описание функции
CreateFile
и инструкцию к драйверу ASPI32. Во-вторых, некоторые утилиты (и в частности, Ahead Nero) при некоторых обстоятельствах путают жесткий диск с оптическим накопителем, записывая образ не "туда". Это значит, что в первых ~700 Мбайт физического диска (обратите внимание — физического диска, а не логического тома) не должно содержаться ничего ценного. В-третьих, если вы вдруг запустите WipeDisk или любую другую затирающую утилиту, первым погибнет именно
$MFT
, без которого весь дисковый том — это просто груда мусора. Можно привести и множество других, самых различных причин! Поэтому просто переместите
$MFT
, тем более, что это совсем несложно. Достаточно взять любой дефрагментатор, распространяющийся в исходных текстах (энтузиасты! ау! присоединяйтесь к проекту http://sourceforge.net/projects/opendefrag/), и слегка доработать его (рис. 7.13). Разумеется, резервная копия при этом всегда должна находиться под рукой.

Рис. 7.12. Нормальный дисковый том (MFT расположена в начале раздела)

Рис. 7.13. "Иммунизированный" дисковый том (MFT расположена в середине)

□ Не допускайте фрагментации файла

$MFT
! Не создавайте на диске огромного количества мелких файлов и не заполняйте его более чем на 90%. Стандартный дефрагментатор, входящий в комплект штатной поставки Windows 2000/XP, не позволяет дефрагментировать
$MFT
. Для этой цели приходится прибегать к сторонним средствам, лучшим из которых, на мой взгляд, является О&О Defrag Pro от одноименной компании (http://www.oo-software.com). Это — действительно профессиональный дефрагментатор, к тому же поддерживающий командную строку.

□ Периодически создавайте резервную копию файловой записи

$MFT
. Для этого достаточно сохранить один-единственный сектор — первый сектор MFT, номер которого содержится в загрузочном секторе. Только не забывайте его периодически обновлять, ведь при добавлении новых файлов и каталогов MFT планомерно расширяется, и старые списки отрезков становятся все менее и менее актуальны.

Глава 8