, по условиям износостойкости шин при работе их на пониженных давлениях имеются ограничения по скорости. Например, у автомобиля ЗИЛ-131 при различных внутренних давлениях рш в шинах, скорость не должна превышать следующих величин: при рш = 0,5–0,75 кгс/см2 — 10, при рш = 0,75 — 1,5 кгс/см2 — 20, при рш = 1,5–3,0 кгс/см2 — 30 км/ч.
С введением шин сверхнизкого давления и системы регулирования давления воздуха в них проходимость полноприводных грузовых автомобилей резко возросла, однако случаи их застревания возможны. И в этих случаях основным средством, повышающим проходимость, становится лебедка.
Если тяга на колесах, например у ЗИЛ-157, ограничена на сухом снегу величиной 3220 кгс, на сырой луговине 4420, то в этих же условиях тяга, развиваемая лебедкой, при использовании подвижного блока достигает 9000 кгс.
Применения лебедки при самовытаскивании определяется возможностью надежного крепления ее троса, как правило, за деревья или пни. Величина тяги на барабане лебедки составляет у автомобиля высокой проходимости около 50 % его полной массы с грузом и при надежном креплении троса и использовании блока на нужном направлении гарантирует успешное самовытаскивание.
Лебедка автомобиля может быть использована как для самовытаскивания, так и для оказания помощи застрявшим автомобилям. При оказании помощи другим автомобилям на успех применения лебедки сильно влияет состояние грунта, на котором находится вытаскивающий автомобиль, и соотношение его массы к массе вытаскиваемого автомобиля, а также степень застревания последнего.
Например, автомобиль ЗИЛ-131, стоящий на плотном скользком укатанном снегу, сможет развить тягу, вытаскивая лебедкой застрявший автомобиль, немногим более 1 тс (рис. 12, а). В то же время при закреплении вытаскивающего автомобиля за ствол дерева достаточного диаметра и применения блока на вытаскиваемом автомобиле возможно получение тяги на крюке блока 9000 кгс (рис. 12, б).
Одним из важнейших элементов конструкции автомобиля, влияющих на его проходимость, является дифференциал. Этот механизм, без которого автомобиль на твердых дорогах был бы неуправляем, а шины его изнашивались бы в несколько раз быстрее, в условиях бездорожья является в большинстве случаев причиной застревания автомобиля.
Обычный конический дифференциал, применяемый на автомобилях высокой проходимости массового производства, устроен так, что силы тяги правого и левого колес ведущего моста, всегда равны между собой. Так как величина тяги, передаваемая колесом, зависит от его сцепления с грунтом, то при попадании одного из колес на участок грунта с низким сцеплением, например на лед, смежное колесо, находящееся на грунте с высоким коэффициентом сцепления, например на асфальте, будет передавать такую же низкую тягу, как и находящееся на льду.
Разница в моментах сопротивления вращению у колес, стоящих на скользком и сухом грунте, приводит к тому, что частота вращения колеса, находящегося на скользком грунте, возрастает, а на противоположном колесе падает, при этом буксующее колесо закапывается в грунт, а находящееся на сухом останавливается.
Аналогичный эффект получается при движении автомобиля по бездорожью со значительным креном. В этом случае нагрузка на колеса перераспределяется. Колеса того борта, на который накренился автомобиль, догружаются, а противоположные разгружаются. В таком положении тяга, развиваемая колесами догруженного борта падает, и величина ее определяется величиной тяги колес разгруженного борта. Как уже говорилось ранее, движение автомобиля по бездорожью возможно тогда, когда силы тяги, развиваемые колесами, превышают силы сопротивления движению. В условиях движения по бездорожью часто это превышение бывает невелико. Поэтому при возникновении крена и падении тяги на колесах из-за действия дифференциала при сохранении высокого уровня сопротивления движению положительная разница в этих силах может пропасть, что приведет к остановке и застреванию автомобиля.
При движении по бездорожью возможны случаи, когда имеет место не только разница в сцеплении колес с грунтом, но и полное вывешивание одного из колес. Естественно, тяга, развиваемая смежным колесом, в этом случае равна нулю. Для уменьшения отрицательного влияния дифференциала па проходимость автомобиля необходимо сделать как можно меньшей разницу в нагрузках, приходящихся на колеса. С этой целью, например, на трехосных автомобилях применяется балансирная подвеска задних осей, которая несколько снижает неравномерность нагрузок и уменьшает склонность к буксованию при движении автомобиля по неровной поверхности. Однако при боковом крене автомобиля балансирная подвеска не помогает. Поэтому при движении в условиях бездорожья преодолевать неровные участки следует по таким направлениям, на которых крен был бы минимальным.
У автомобиля Урал-375 передний мост постоянно включен и связан с задней тележкой через специальный дифференциал, находящийся в раздаточной коробке. Этот дифференциал устроен таким образом, что к передним колесам передается 1/3 общего крутящего момента, а к задней тележке 2/3. При попадании колес переднего моста на грунт с низким коэффициентом сцепления тяга, развиваемая колесами задней тележки, будет определяться удвоенной величиной тяги передних, что может быть совершенно недостаточно для движения. Поэтому межмостовой дифференциал при движении по бездорожью должен быть обязательно заблокирован. Включать блокировку необходимо не тогда, когда автомобиль уже буксует, а перед въездом на труднопроходимый участок.
На двухосном автомобиле ГАЗ-66 для повышения проходимости вместо обычных конических дифференциалов применены дифференциалы повышенного трения плунжерно-кулачкового типа. Конструкция этого дифференциала широко известна.
Такие дифференциалы позволяют получить на колесе, имеющем лучшее сцепление, не такую же тягу, как на буксующем, а большую на величину дополнительного трения, возникающего в дифференциале. Величина, показывающая, во сколько раз тяга на колесе, имеющем лучшие условия сцепления, выше, чем тяга, развиваемая смежным буксующим колесом, называется коэффициентом блокировки дифференциала. Для дифференциала ГАЗ-66 он равен 3–4.
Рассмотрим работу обычного дифференциала и дифференциала повышенного трения (рис. 13) и сравним их работу при одинаковых вертикальных нагрузках на колеса ведущей оси в трех рассматриваемых случаях.
Случай 1. Сцепление правого и левого колес с грунтом одинаково (рис. 13, а). Тяга, развиваемая правым и левым колесами, одинакова и составляет 1000 кгс. Суммарная тяга, развиваемая ведущей осью, равна 2000 кгс.
Случай 2. Сцепление правого колеса осталось прежним, а у левого колеса сцепление с грунтом уменьшилось и составляет 33 % от первоначального (рис. 3, б), а поэтому тяга, развиваемая им, составляет всего около 300 кгс. Так как тяга, развиваемая правым колесом, определяется величиной тяги левого, из-за выравнивающего действия дифференциала, ее величина составит также 300 кгс.
Суммарная тяга, развиваемая ведущей осью, составит всего 600 кгс.
Случай 3. Показывает, как будет работать в условиях, рассмотренных во втором случае, дифференциал повышенного трения с коэффициентом блокировки К = 3 (рис. 13, в). В этом случае тяга, развиваемая правым колесом, будет определяться величиной тяги, развиваемой левым колесом (находящимся на скользком грунте), умноженной на коэффициент блокировки, т. е. 300х3 = 900 кгс.
Суммарная тяга, развиваемая ведущей осью, будет уже составлять не 600, а 300 + 900 = 1200 кгс, т. е. дифференциал повышенного трения в рассмотренном случае увеличил суммарную тягу, развиваемую ведущей осью, в 2 раза.
Подготовка автомобилей к поездке по бездорожью
Езда по бездорожью на автомобилях связана с определенными трудностями. Нагрузка на водителей автомобилей при этом существенно выше, чем в обычных условиях. Если на автомобилях высокой проходимости перевозятся люди, последним приходится переносить все невзгоды, связанные с трудностями пути. Возникшая в пути неисправность, поломка, нехватка топлива, потеря ориентировки могут стать причиной различных происшествий, заболеваний и даже гибели людей. Поэтому к рейсам по бездорожью, особенно дальним, необходимо тщательно готовиться.
Желательно иметь карту или, как минимум, схему маршрута с нанесенными на нее ориентирами. До выезда в рейс маршрут следует тщательно изучить, разбив его таким образом, чтобы наиболее труднопроходимые участки проехать в светлое время дня. Не следует пренебрегать подробными расспросами о трассе водителей, уже ездивших по ней. На схему маршрута следует нанести ориентиры (по результатам расспросов) и места объездов, а также населенные пункты, в которых можно заправить автомобиль топливом, получить горячую пищу, обогреться и отдохнуть. Следует иметь в виду субъективный подход водителей к оценке расстояний, поэтому при сборе данных о трассе опросом ездивших их необходимо сопоставлять между собой.
При движении по бездорожью расходы топлива резко возрастают. Так как точно определить предполагаемые расходы топлива на трудных участках трассы сложно, можно для приблизительных расчетов пользоваться часовым расходом топлива двигателем, работающим на полной мощности. Для двигателя автомобиля ЗИЛ-157 он ориентировочно равен 28,3, для ЗИЛ-131 — 40,5, для Урал-375 — 47,5 и для ГАЗ-66- 28,6 л/ч. Учитывая, что скорость движения в особо тяжелых условиях бездорожья составляет 10–15 км/ч, можно ориентировочно определить запас хода и рассчитать, сколько топлива взять с собой