стями углерода с точки зрения образования химических связей[27]. Молекула воды состоит из водорода, первого по распространенности элемента во вселенной, и кислорода – он стоит на третьем месте (при этом занимающий второе место гелий является инертным газом и молекулы практически не образует). Поэтому вода, что подтверждается и наблюдениями, – более распространенное вещество в сравнении с другими возможными растворителями, такими как аммиак, метанол и метан. Хотя идея замены углерода на кремний в качестве «элемента жизни» и популярна у фантастов, при научном анализе проблемы ученые сталкиваются с трудностями. Кроме того, что кремний – существенно более редкий элемент, его преимущества перед углеродом начинают проявляться при столь экзотических условиях (например, высоких температурах и/или высоком давлении), что они сами по себе могут стать препятствием на пути развития живых организмов.
Сейчас достоверно известно о нескольких тысячах экзопланет – планет, вращающихся вокруг других звезд[28]. Активно обсуждаются поиски биомаркеров – веществ, свидетельствующих о наличии биосферы. В ближайшие годы это станет возможным благодаря работе новых космических инфракрасных телескопов, а также гигантских наземных оптических инструментов. Анализ спектральных свойств атмосфер экзопланет позволит выявить присутствие биосфер. Но, вероятнее всего, это будет жизнь, качественно похожая на земную, т. е. основанная на углероде и воде.
Возвращаясь к нашей аналогии, можно сказать, что и наука в других мирах должна быть похожа на существующую у нас. Физики, химики, математики с разных планет должны найти общий язык, поскольку они описывают одну Вселенную, а эффективно это можно делать, видимо, одним способом. По крайней мере, на нашем уровне развития.
А. КАЖУЩИЕСЯ ИНОГДА ЧУДЕСНЫМИ ВОЗМОЖНОСТИ СОВРЕМЕННОЙ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ ВО МНОГОМ ОБЪЯСНЯЮТСЯ ДЛИТЕЛЬНЫМ РАЗВИТИЕМ ЭТИХ НАУК, МНОЖЕСТВОМ ПОПЫТОК ПРИДУМАТЬ ТЕ ИЛИ ИНЫЕ МЕТОДЫ И КОНСТРУКЦИИ, ИЗ КОТОРЫХ ЛИШЬ НЕМНОГИЕ ВОШЛИ В СОВРЕМЕННЫЙ АРСЕНАЛ НАУКИ, ВЫДЕРЖАВ ВСЕ ПРОВЕРКИ.
Б. РАЗВИТИЕ МАТЕМАТИКИ НАЧАЛОСЬ С ПРАКТИЧЕСКИХ И ДОСТАТОЧНО ПРОСТЫХ ПО СОВРЕМЕННЫМ МЕРКАМ ЗАДАЧ.
В. В ХОДЕ ЭВОЛЮЦИИ НАУКИ МНОГИЕ ФИЗИЧЕСКИЕ ТЕОРИИ ОКАЗАЛИСЬ ТУПИКОВЫМИ И В ИТОГЕ СТАЛИ ДОСТОЯНИЕМ «ХРАНИЛИЩ НАУЧНЫХ ОКАМЕНЕЛОСТЕЙ».
Глава 5«Эволюция, детка»
Мы уже упоминали о «непостижимой эффективности математики». Некоторые ситуации выглядят абсолютно чудесными[29]. В XIX веке математики для своих надобностей (я бы не побоялся сказать: «Во время своей игры в бисер») придумали тензоры. А потом Марсель Гроссман, который как раз и был математиком, вовремя рассказал о них Эйнштейну. В результате получилась общая теория относительности. Разве это не чудо, что к тому моменту, когда Эйнштейн (а также, например, Давид Гильберт) размышлял о природе гравитации, у математиков был готов весь необходимый инструментарий? Иначе говоря, не просто были придуманы «какие-то тензоры», а разработаны методы работы с ними, доказаны соответствующие теоремы, под все подведен надежный базис. В 1912 г., когда произошел важный обмен идеями между Гроссманом[30] и Эйнштейном, тензоры уже стали неотъемлемой частью большой математики и вся надежность и достоверность этой науки были в распоряжении исследователей гравитации (о которой математики наверняка обычно не задумываются, принимая ее как должное и/или неизбежное).
Кажущаяся «магия» математики во многом связана с тем, что чаще всего люди видят лишь конечный результат. В самых разных областях и ситуациях, если мы не знаем о длительном процессе развития, об огромных усилиях, о пробах и ошибках, о множестве отброшенных вариантов, то удивленно восклицаем: «Как это у них получается!» Например, одежда из ткани, которая не горит, не протыкается ножом, но при этом легкая, удобная и теплая, поразила бы древнего человека. С его точки зрения, это практически чудо, но на самом деле– результат долгого, постепенного развития технологии. Это можно было бы ему продемонстрировать, начав с того, как делается нить из шерсти или хлопка, затем объяснить, как из этого ткется ткань, потом показать процесс создания искусственных нитей и т. д. и т. п.
Нелишне заметить, что подобные рассуждения верны не только для развития технологии и науки, но и для высокоорганизованных социально- политических структур. Устойчивые демократические общества пришли к такому состоянию в результате продолжительного и зачастую весьма болезненного развития, через периоды напряженной работы общества в целом, перемежаемые революциями и другими потрясениями.
Длительное и хотя бы относительно устойчивое развитие может приводить к удивительным по сложности результатам, если оценивать их исходя из начального состояния. «Чудеса» современной математики в этом смысле подобны «чуду глаза», чему мы посвятим отдельный разговор. Неоднократно сложность зрительного аппарата представляли в качестве аргумента против эволюции: «Как мог сразу возникнуть такой сложный орган?» Но глаз не возник одномоментно. Он – продукт длительной естественной эволюции без конечной цели, начавшейся с очень простых «устройств». В эволюционном процессе при каждом шаге обычно происходят не такие уж большие усовершенствования, призванные решить локальные проблемы.
Похожим образом развиваются и математика, и области ее применения в науке. Стартовав с простых (по современным меркам) и понятных задач, нередко носивших сугубо практический характер, математика за два тысячелетия достигла уровня, на котором лишь единицы узких специалистов могут реально разобраться в тех или иных самых современных результатах в своей области. Древние греки, начавшие писать первые уравнения, не думали о развитии математического аппарата для теории струн. При этом в биологической эволюции бывают и большие скачки, сопровождаемые массовым вымиранием одних видов и появлением или бурным развитием других. Такие события происходят и в развитии науки, в частности математики и физики.
Примеров «вымерших» теорий и моделей очень много. В физике это и уже упоминавшаяся выше геоцентрическая система мира, и теплород, и теория эфира. В математике можно вспомнить задачу о квадратуре круга, неразрешимость которой была доказана только в конце XIX века, и другие подобные проблемы, над решением которых бились веками (иногда получая попутно важные результаты). В борьбе конкурирующих моделей в естественных науках выживает более приспособленная – та, что лучше описывает реальный мир. В сегодняшней науке мы видим противостояние различных подходов к созданию квантовой гравитации, разных моделей ранней вселенной. Идут споры о необходимости гипотезы слабовзаимодействующих элементарных частиц, не входящих в так называемую Стандартную модель (т. е. гипотезы о темном веществе), для объяснения большого комплекса астрофизических данных. Продолжаются дискуссии о природе черных дыр – о процессах вблизи горизонта и под ним. Почти все из обсуждающихся моделей окажутся ошибочными, а потому со временем будут забыты. То же самое верно и для менее глобальных вопросов. Вообще, можно сказать, что активная научная деятельность существует, только если есть соперничество различных подходов к описанию или объяснению каких-то явлений. В этом смысле наука всегда находится в стадии становления. Она существует в относительно тонком переходном слое, отделяющем познанное от непознанного: впереди – темный лес, позади – учебники.
Длительный эволюционный процесс нашего понимания мира подарил нам ряд удивительных открытий. Среди кажущихся парадоксальными выводов в духе «Неужели такое может быть?!» можно выделить корпускулярно-волновой дуализм. Чтобы прийти к заключению, что у элементарных частиц проявляются волновые свойства, а некоторые волны в ряде процессов ведут себя как поток частиц, пришлось проделать долгий путь.
«Из точки А в точку Б вышел… вышла… вышло…» Что может переместиться из одной точки в другую? Во-первых, объект, предмет. Маленький объект – частица, кусочек вещества. Во-вторых, волна. Вот вы в полный штиль ловите рыбу, смотрите на поплавок и бросаете подкормку. Поплавок начинает колебаться, но вы не напрягаетесь, так как понимаете, что это до него дошла волна, в данном случае продольно-поперечная. Бывают чисто поперечные волны, как при колебаниях струны, или продольные, например звуковые. Но это все равно волны.
В XVII веке начали активно изучать волновые процессы и параллельно начался спор о природе света: то ли это поток частиц, то ли волны. Мнения ученых разделились: Ньютон считал, что частицы, а Франческо Гримальди, открывший дифракцию и интерференцию, – что волны.
Дифракция, по сути, сводится к тому, что волна может огибать препятствие, а интерференция – к тому, что волны могут складываться или вычитаться так, что сигнал оказывается усиленным или ослабленным. Это довольно легко наблюдать на волнах, появляющихся на воде. Оказалось, что свет ведет себя похожим образом. В XIX веке сложилось четкое понимание, что свет – это поток поперечных волн, что было закреплено в теории Максвелла. Однако к концу того же века стали накапливаться данные, не вписывающиеся в волновое описание света. Это были, во-первых, фотоэффект, а во-вторых – так называемая ультрафиолетовая катастрофа.
Теорию фотоэффекта построил Эйнштейн и именно за это получил Нобелевскую премию. Парадокс в первую очередь состоял в том, что при освещении некоторых материалов даже незначительным потоком коротковолнового излучения они начинают испускать электроны, а если светить мощным потоком излучения с большой длиной волны, то эффекта нет. Это странно, ведь во втором случае мы передаем образцу гораздо больше энергии. Кроме того, если измерить индивидуальную энергию вылетающих электронов, то оказывается, что она растет не при увеличении мощности потока излучения, а с уменьшением длины волны λ (т. е. с ростом частоты электромагнитных волн ν =