с / λ, где c – скорость света).
Загадку удалось разгадать, предположив, что свет представляет собой поток частиц – фотонов. Таким образом, энергия излучения передается электрону при индивидуальном взаимодействии двух частиц. Если свет имеет большую длину волны (т. е. низкую частоту, λν = с), то энергия фотонов ниже (E = hν, здесь h – постоянная Планка). Поэтому, несмотря на большую мощность потока (много фотонов), каждый из них несет маленькую энергию и не может оказать сильного воздействия на электрон: ниже некоторой энергии вообще не может его вырвать, а если вырывает, то не может придать большую энергию этой частице.
Парадокс с фотоэффектом возник раньше, чем была осознана проблема ультрафиолетовой катастрофы, но его удалось разрешить на несколько лет позже. В самом конце XIX века, в 1900 г., Макс Планк смог объяснить, почему формула Рэлея – Джинса, описывающая распределение энергии излучения в спектре так называемого абсолютно черного тела (им может быть, с некоторой точностью, нагретый металлический шар или плотное облако газа), дает «безумный» (катастрофический) результат для коротких (ультрафиолетовых) волн. Гипотеза Планка состояла в том, что свет может испускаться лишь порциями – квантами. Энергия одного кванта пропорциональна частоте, а коэффициент пропорциональности впоследствии назвали постоянной Планка. Отметим, что это одна из трех самых важных констант в современной физике (две другие – это скорость света и гравитационная постоянная).
Теперь возник другой парадокс, с которым нам жить: свет одновременно и волна, и частица. При этом нельзя представлять себе излучение как поток неделимых частиц: можно поглотить порцию электромагнитных волн одной частоты и переизлучить на другой частоте. Разумеется, число квантов до и после переизлучения будет разным, если сохраняется полная энергия квантов. Иначе говоря, электромагнитная волна как таковая не имеет какой-то минимальной порции. Эйнштейн пояснял его так: «Если пиво всегда продают в бутылках, содержащих пинту, отсюда вовсе не следует, что пиво состоит из неделимых частей, равных пинте».
У электромагнитных волн высокой частоты (гамма- и рентгеновский диапазоны) в большей степени проявляются свойства частиц, а в радиодиапазоне, наоборот, заметнее волновые свойства. Например, в астрономии детекторы излучения в разных диапазонах спектра работают по принципиально разным методикам. В радиодиапазоне, где длина волны велика, приборы регистрируют именно волны (т. е. колебания электромагнитного поля), а детекторы гамма-квантов похожи на детекторы элементарных частиц. Однако в случае и малой, и большой длины волны можно поставить эксперименты, где будут проявляться как корпускулярные, так и волновые свойства[31]. Таким образом, «двойственная» природа света стала надежно подтвержденным фактом.
Думаете, на этом все закончилось? Вовсе нет – ягодки были еще впереди. Если про свет со времен Ньютона и Гримальди спорили, то про электроны (а заодно и другие частицы) – нет. Это же частицы! Оказалось, тоже не совсем. Эксперименты показали, что электроны также демонстрируют дифракцию и интерференцию, равно как и другие элементарные частицы. И даже не совсем элементарные. Современные эксперименты позволяют увидеть волновые свойства даже у довольно крупных молекул[32]. А в 2018 г. волновые свойства удалось непосредственно продемонстрировать и у частиц антивещества[33].
Такие «волны материи» называют волнами де Бройля в честь Луи де Бройля, впервые построившего соответствующую теорию. В общем и целом она заключается в том, что если две частицы имеют одинаковые скорости, то чем больше масса частицы, тем меньше длина соответствующей ей волны. Соответственно, тем сложнее наблюдать волновые свойства таких объектов. Если масса частицы равна так называемой массе Планка (примерно 0,00001 грамма), то соответствующая ей длина волны равна так называемой планковской длине (около 10–33 см)[34].
Интересно представить себе, как мы переносимся в XVII век, усаживаем за один стол Ньютона и Гримальди и объясняем им (видимо, на латыни, придется брать с собой продвинутого гуманитария в качестве переводчика), что оба они правы. Конечно, педант вспомнит, что в год смерти Гримальди (1663) Ньютону было всего 20 лет, но это не остановит наш полет фантазии.
Описание поведения света и частиц существенно усложнилось за сотни лет, разделяющих времена Рене Декарта, впервые объяснившего радугу, и Эрвина Шрёдингера, заложившего основы волновой квантовой механики. Готов поспорить, что прогресс в этой области может заметить даже неспециалист, просто на глазок сравнив публикации XVII и XX веков.
А. ПО МЕРЕ РАЗВИТИЯ МАТЕМАТИКИ И ТЕОРЕТИЧЕСКОЙ ФИЗИКИ УРАВНЕНИЯ СТАНОВЯТСЯ СЛОЖНЕЕ: В ФИЗИКЕ ПОЯВЛЯЮТСЯ НОВЫЕ ПРОЦЕССЫ И ЯВЛЕНИЯ (ВКЛЮЧАЯ ГИПОТЕТИЧЕСКИЕ), НУЖДАЮЩИЕСЯ В ОПИСАНИИ, А В МАТЕМАТИКЕ ВОЗНИКАЮТ НОВЫЕ МЕТОДЫ И КОНСТРУКЦИИ.
Б. ФИЗИЧЕСКИЕ МОДЕЛИ ЯВЛЕНИЙ СТАНОВЯТСЯ СО ВРЕМЕНЕМ ВСЕ СЛОЖНЕЕ, ПОСКОЛЬКУ ОПИСАНИЕ СТАНОВИТСЯ БОЛЕЕ ДЕТАЛЬНЫМ И КОМПЛЕКСНЫМ: В НЕГО ВКЛЮЧАЮТСЯ ВСЕ НОВЫЕ ЭФФЕКТЫ И ВСЕ БОЛЕЕ МЕЛКИЕ ДЕТАЛИ.
Глава 6Возрастание сложности
Одной из самых ярких иллюстраций усложнения науки является исчезновение ученых-универсалов. Теперь трудно не то что работать в нескольких разных областях, но даже внутри своей науки (физики, биологии, химии, математики, да даже астрофизики) практически невозможно разбираться на профессиональном уровне в очень широком круге проблем. Как у животных по мере совершенствования в ходе эволюции нередко сужаются ареалы обитания, так и ученые занимают свои небольшие экологические ниши. И это очевидная общая тенденция. Раньше один механик мог разобраться в любой проблеме в гоночной машине, теперь же специалист по коробке передач вряд ли сможет исправить сбой в бортовом компьютере болида «Формулы-1». Раньше один врач лечил от всех болезней, а теперь для каждого органа нужен свой доктор (а то и не один).
Сравнив научные приборы начала и конца XX века, любой сделает вывод о том, что прогресс есть, причем довольно стремительный. Тут даже не надо быть специалистом. Посмотрите на первый ускоритель, построенный в начале 1930-х гг. и помещавшийся на столе, а теперь сравните его с… – читатель ждет уже продолжения «с Большим адронным коллайдером». Ну так с ним и сравните! Посмотрите на первые радиотелескопы (тоже, кстати, 1930-х гг.) и на систему ALMA[35], на телескоп Галилея и JWST[36]. А способен ли неспециалист заметить прогресс, глядя только на уравнения?
Можно выделить по крайней мере три причины, почему более поздние научные публикации с формулами будут отличаться от ранних в сторону глазом заметного усложнения, а также одну причину для обратного эффекта. Во-первых, появляются новые сферы исследований. Во-вторых, в уже существовавших областях начинает использоваться новый матаппарат. В-третьих, даже в рамках одних и тех же областей и одних и тех же подходов с точки зрения математики модели становятся детальнее, т. е. в уравнениях появляются дополнительные члены. Итак, возникают уравнения про что-то новое, новые типы уравнений, новые члены в уравнениях.
Если мы возьмем университетские учебники по физике за несколько сотен лет, то, конечно же, заметим существенную разницу из-за того, что постоянно появляются новые разделы, новые темы. Соответственно, растет объем учебников и/или увеличивается их количество. В учебниках XIX века мы не увидим уравнений общей теории относительности и квантовой механики. В учебниках XVIII века нет уравнений электродинамики. В XVII веке и более ранних веках будет, в общем-то, только механика в разных ее проявлениях.
Чтобы заметить эту разницу, не надо разбираться в том, что означают уравнения. Надо просто быть внимательным. Новые области появляются в первую очередь благодаря развитию экспериментальной физики. Теоретикам приходится описывать новые грани реальности, а для этого используют другие математические выражения с другой структурой, потому что старые не подходят. И выглядят они иначе.
Можно провести такой эксперимент. Пригласить давнего выпускника физического факультета, который не имел никакой связи с наукой с момента окончания университета, и начать показывать ему на карточках разные уравнения. Причем все их писать с ошибками (плюс поменять на минус, оператор дивергенции заменить на лапласиан, синус – на косинус, вторую степень – на третью и т. д.). Наверняка тем не менее человек будет угадывать: «Вот это – уравнения Максвелла, это – уравнение Шрёдингера» и т. д., потому что он запомнил их общий вид. Соответственно, появление новых «формульных образов» можно заметить, листая учебники физики разных лет.
Перейдем ко второму пункту программы. Как мы уже неоднократно отмечали, часто оказывается, что у математиков есть большой набор методов, пока невостребованных физикой. Последняя по мере своего развития обращается к этим методам. Условно говоря, экспериментаторы что-то открыли, теоретик пытается это описать, но у него не хватает «слов», и он идет к математикам. В результате в физических статьях появляются гиперболические синусы и косинусы, матрицы, тензоры, какие-то элементы топологии, что-то из теории групп и т. д.
Особая статья здесь – новые статистические методы и новые методы работы с данными. Оказавшийся на самом переднем крае науки исследователь всегда сталкивается с тем, что сигнал лишь чуть-чуть сильнее шума. Причем сам шум может иметь очень необычные свойства. Данных всегда не хватает: экспериментальных точек мало. Чтобы получить необходимую информацию для надежных выводов, надо не просто провести эксперимент или наблюдения, но и обеспечить тщательную обработку данных, выжав из них все, что только можно (и при этом не выжать больше – не получить то, чего в данных нет, а хочется). Для этого ученые постоянно создают все более продвинутые методы, и уравнения, с ними связанные, выглядят по-новому, что тоже можно заметить, просматривая публикации.