Вселенная. Вопросов больше, чем ответов — страница 8 из 72

турна никакой сложности не представляют — если, конечно, в данный момент планета не находится в соединении с Солнцем.

Впрочем, решение MAC было принято отнюдь не единогласно — более того> Д° сих разделяется далеко не всеми учеными. В число «несоглас- ных», кстати, входит и один из авторов этой книги. — Примеч. авт.

49

Уран был открыт Уильямом Гершелем в 1781 году во время рутинного обзора звездного неба при помощи самодельного рефлектора Ньютона с диаметром зеркала всего-навсего 150 мм. Строго говоря, Уран виден и невооруженным глазом как слабая звезда 6-й величины, но, конечно, неотличим от звезд. Гершелю удалось рассмотреть в телескоп крохотный желто-зеленый диск, каковой он принял за комету. Первое официальное сооб­щение Гершеля 26 апреля 1781 года так и было озаглавлено — «Сообщение о комете». Однако новая «комета» почти не меняла яркости и не обнаруживала признаков приближения к Солнцу. Хуже того: для «кометы» не удавалось вычислить параболиче­скую орбиту. Последующие наблюдения и вычисления показа­ли, что орбита нового небесного тела — чисто планетная, почти круговая, а значит, речь идет о новой планете. Это была науч­ная сенсация! Как ни странно, мысль о наличии в Солнечной системе неизвестных планет до той поры не посещала головы астрономов. Впоследствии выяснилось, что Уран наблюдался до Гершеля по меньшей мере 20 раз, и впервые это произошло еще в 1690 году, но всякий раз планета неизменно принималась за звезду. Мы увидим, что это скорее не исключение, а правило в астрономическом поиске.

Имя Уран было присвоено планете по предложению немец­кого астронома Иоганна Боде, а в целом планета поначалу ка­залась довольно заурядной, разве что далекой — вдвое дальше Сатурна. Но прошло совсем немного времени, и Уран преподнес первые сюрпризы.

К концу XVIII века средняя точность наблюдений звезд и пла­нет повысилась уже до трех угловых секунд. Поэтому не состави­ло труда выяснить, что движение Урана не вполне подчиняется классическим законам движения планет. Точная (казалось бы!) эллиптическая орбита Урана была вычислена Фикслмилнером в 1784 году. Однако уже в 1788 году расхождение между вычислен­ным и реальным положением планеты оказалось столь велико, что объяснить его неточностью прежних наблюдений и, соот­ветственно, внести поправки в элементы эллиптической орбиты

50

— Ближайшие окрестности —

уже не удавалось. Было очевидно, что Уран катастрофически бы­стро уходит вперед по сравнению с расчетным движением, как ни корректируй эллиптическую орбиту.

Уже тогда было совершенно понятно, что орбита оставалась бы строго эллиптической лишь в том случае, если бы на плане­ту действовала всего одна сила — тяготение Солнца. В случае с Ураном пришлось учитывать гравитационные возмущения со стороны планет, в первую очередь Юпитера и Сатурна. Задача казалась сложной, но не единственной в своем роде — ведь и Луна движется вокруг Земли по не совсем кеплеровской орбите, и объяснение ее движения долгое время являлось труднейшей проблемой небесной механики. Впрочем, уже имелись кое-какие наработки. Леонард Эйлер разработал новый метод теоретиче­ского анализа движений небесных тел, известный как метод оскулирующих элементов. Дальнейшее его развитие связано с именами Лагранжа, Клеро, Даламбера, Лапласа. Применение разработанных ими методов к Луне дало обнадеживающие ре­зультаты, хотя Луна, по правде говоря, оказалась сложным объ­ектом. Настолько сложным, что высказывались сомнения в стро­гости закона Ньютона — и далеко не в последний раз, как мы увидим.

Естественно было применить эти методы к движению Урана. В 1790 году Ж. Б. Деламбр составил новые таблицы движений Урана с учетом гравитационных возмущений от Юпитера и Сатурна. Эти таблицы отвечали с достаточной точностью и ста­рым наблюдениям, начиная с 1690 года.

Казалось бы, проблема Урана была решена. Конечно, не оста­валось сомнений в том, что теория его движения может быть уточнена с учетом возмущений от планет земной группы и даже астероидов, но «в общем и целом» задача считалась решенной. Во всяком случае, казалось, что существенные поправки придет­ся вносить еще очень не скоро. На Уран стали обращать гораз­до меньше внимания. К тому же по Европе прокатилась волна наполеоновских войн, а войны, если только они не «звездные», мало способствуют развитию наблюдательной астрономии...

51

После того как неугомонный корсиканец был наконец спро­важен англичанами на остров Св. Елены и европейские астроно­мы возобновили активную научную деятельность, выяснилось, что Уран опять «выкинул фортель» и движется не так, как пред­писывал ему Клеро. Сначала, что вполне естественно, казалось, что в предыдущие расчеты вкралась ошибка. Расчеты были про­деланы заново, причем по возможности с учетом всех возмуще­ний со стороны Юпитера и Сатурна. Что до остальных планет, то их влияние было справедливо признано пренебрежимо малым по сравнению с наблюдаемой ошибкой.

Эту работу закончил в 1820 году французский астроном А. Бувар. Пожалуй, нелишним будет подчеркнуть, что все работы такого рода были в те времена колоссально громоздкими, кро­потливыми и на редкость рутинными, так как требовали громад­ного числа вычислений, проводящихся вручную. Современный исследователь построил бы компьютерную модель и насладился бы результатом максимум через день, а не через годы напряжен­ного труда.

Бувар отказался от старых наблюдений Урана, без достаточ­ных оснований заподозрив их в неточности. Вместе с тем он видел, что решение проблемы Урана может быть совершенно иным, и писал, что странности движения планеты могут быть обусловлены «некоторым внешним и неизвестным влиянием». Каким же? Сопротивлением газово-пылевой среды? Влиянием не открытого еще спутника? Столкновением с кометой незадолго до открытия Урана Гершелем? Поправками к закону Ньютона, которые надо вносить при больших расстояниях между телами? Или все-таки новой планетой, пока еще не открытой?

К 1832 году теория Бувара окончательно рухнула. Уран уже отставал от вычисленного положения на 30 угловых секунд, и это отставание увеличивалось на 6-7 с в год, что не лезло ни в ка­кие ворота. Из перечисленных гипотез после «проверки на проч­ность» вскоре остались две: несовершенство закона Ньютона и наличие неизвестной планеты. Где искать ее? Вычисления ее по­ложения на небе, по словам Бувара, не столько трудны, сколько

52

— Ближайшие окрестности —

громоздки. Но, как мы знаем, отсутствие компьютеров и даже механических счетных устройств не останавливало в те времена людей, ищущих истину.

Вокруг открытия Нептуна «на кончике пера» разыгрались нешуточные страсти, каковые с еще большей силой бушуют и теперь, когда речь заходит о приоритете. Первым за поиск не­известной планеты (точнее, за вычисление места, где ее следует искать) взялся немецкий астроном Фридрих Бессель, но смерть помешала ему закончить вычисления. Успех сопутствовал ан­гличанину Джону Адамсу и французу Урбену Леверье.

Адамс закончил вычисления раньше. С 1843 по 1845 год он получил шесть решений, из которых каждое следующее он счи­тал точнее предыдущего. Но осенью 1845 года английские астро­номы не откликнулись на призыв молодого и еще мало кому известного Адамса искать планету в вычисленном им «теорети­ческом квадрате». Объясняется это как неверием в новую плане­ту директора Гринвичской обсерватории Д. Эри, весьма автори­тетного астронома, так и личными качествами Адамса, человека скромного до робости и напрочь лишенного «пробивной силы». Адамс отлично понимал, что его расчеты не вполне совершенны, и не настаивал. Позднее Эри, признавший свою ошибку, заметил по этому поводу: «В некоторых случаях полезно для прогресса, чтобы публикация теорий, которые не оставляют сомнения в своей корректности в целом, не задерживалась до их наиболь­шей мыслимой степени совершенства». Заметим в скобках, что в наше время подчас так и происходит, только осторожные вы­ражения «в некоторых случаях» и «которые не оставляют сомне­ния в своей корректности», увы, прочно позабыты.

Спустя почти год после Адамса и независимо от него свои расчеты закончил Леверье. Опубликованные им статьи впол­не убедили Эри (и в Англии, оказывается, нет пророка в своем отечестве!), и он обратился к английскому астроному Чэллису с просьбой начать поиски новой планеты. Чэллис занимался этим до тех пор, пока планета не была открыта И.Г. Галле, асси­стентом Берлинской обсерватории, и студентом Г.Л. д’Аррестом

53

в ночь 23 сентября 1846 года. Можно представить себе досаду Чэллиса, обнаружившего после этого, что он уже дважды — 4ц

12 августа — наблюдал неизвестную планету и не отождествил ее! Как ни удивительно, опытный наблюдатель Чэллис занимал­ся кропотливым трудом по сравнению положений звезд, наблю­даемых в разные ночи, в то время как гораздо проще было найти планету по видимому диску либо использовать уже имеющиеся звездные карты (Галле и д’Аррест так и сделали, что привело к знаменитому восклицанию д’Арреста: «Этой звезды нет на кар­те!»). Таким образом, приоритет открытия Нептуна «на кончике пера» англичанам пришлось разделить с французами, да и то с перевесом в пользу последних, так как расчеты Леверье оказа­лись точнее, а приоритет открытия Нептуна на небе англичане потеряли совсем.

История эта имеет еще немало почти детективных подробно­стей, если коснуться ее более глубоко. Но мы привели ее лишь для того, чтобы показать, какими странными путями подчас движется наука и какую роль играет в ней случай.

Надо еще заметить, что если бы не было планет, то их стоило бы выдумать. Именно вопросы небесной механики вдохновили Гаусса, Лагранжа, Эйлера, Даламбера, Лапласа, Адамса и других математиков к разработке новых методов вычислений, широко применяемых и поныне, причем нередко в областях, совершен­но не связанных с астрономией. Уж таково свойство инструмен­тов, будь то простая отвертка или математический метод.

Новый сюрприз, однако, не заставил себя долго ждать. Построенная Леверье наиточнейшая теория движения Урана и Нептуна спустя несколько лет стала «традиционно» расходить­ся с наблюдениями. А ведь массы Урана и Нептуна были значи­тельно уточнены после открытия у них спутников!