турна никакой сложности не представляют — если, конечно, в данный момент планета не находится в соединении с Солнцем.
Впрочем, решение MAC было принято отнюдь не единогласно — более того> Д° сих разделяется далеко не всеми учеными. В число «несоглас- ных», кстати, входит и один из авторов этой книги. — Примеч. авт.
49
Уран был открыт Уильямом Гершелем в 1781 году во время рутинного обзора звездного неба при помощи самодельного рефлектора Ньютона с диаметром зеркала всего-навсего 150 мм. Строго говоря, Уран виден и невооруженным глазом как слабая звезда 6-й величины, но, конечно, неотличим от звезд. Гершелю удалось рассмотреть в телескоп крохотный желто-зеленый диск, каковой он принял за комету. Первое официальное сообщение Гершеля 26 апреля 1781 года так и было озаглавлено — «Сообщение о комете». Однако новая «комета» почти не меняла яркости и не обнаруживала признаков приближения к Солнцу. Хуже того: для «кометы» не удавалось вычислить параболическую орбиту. Последующие наблюдения и вычисления показали, что орбита нового небесного тела — чисто планетная, почти круговая, а значит, речь идет о новой планете. Это была научная сенсация! Как ни странно, мысль о наличии в Солнечной системе неизвестных планет до той поры не посещала головы астрономов. Впоследствии выяснилось, что Уран наблюдался до Гершеля по меньшей мере 20 раз, и впервые это произошло еще в 1690 году, но всякий раз планета неизменно принималась за звезду. Мы увидим, что это скорее не исключение, а правило в астрономическом поиске.
Имя Уран было присвоено планете по предложению немецкого астронома Иоганна Боде, а в целом планета поначалу казалась довольно заурядной, разве что далекой — вдвое дальше Сатурна. Но прошло совсем немного времени, и Уран преподнес первые сюрпризы.
К концу XVIII века средняя точность наблюдений звезд и планет повысилась уже до трех угловых секунд. Поэтому не составило труда выяснить, что движение Урана не вполне подчиняется классическим законам движения планет. Точная (казалось бы!) эллиптическая орбита Урана была вычислена Фикслмилнером в 1784 году. Однако уже в 1788 году расхождение между вычисленным и реальным положением планеты оказалось столь велико, что объяснить его неточностью прежних наблюдений и, соответственно, внести поправки в элементы эллиптической орбиты
50
— Ближайшие окрестности —
уже не удавалось. Было очевидно, что Уран катастрофически быстро уходит вперед по сравнению с расчетным движением, как ни корректируй эллиптическую орбиту.
Уже тогда было совершенно понятно, что орбита оставалась бы строго эллиптической лишь в том случае, если бы на планету действовала всего одна сила — тяготение Солнца. В случае с Ураном пришлось учитывать гравитационные возмущения со стороны планет, в первую очередь Юпитера и Сатурна. Задача казалась сложной, но не единственной в своем роде — ведь и Луна движется вокруг Земли по не совсем кеплеровской орбите, и объяснение ее движения долгое время являлось труднейшей проблемой небесной механики. Впрочем, уже имелись кое-какие наработки. Леонард Эйлер разработал новый метод теоретического анализа движений небесных тел, известный как метод оскулирующих элементов. Дальнейшее его развитие связано с именами Лагранжа, Клеро, Даламбера, Лапласа. Применение разработанных ими методов к Луне дало обнадеживающие результаты, хотя Луна, по правде говоря, оказалась сложным объектом. Настолько сложным, что высказывались сомнения в строгости закона Ньютона — и далеко не в последний раз, как мы увидим.
Естественно было применить эти методы к движению Урана. В 1790 году Ж. Б. Деламбр составил новые таблицы движений Урана с учетом гравитационных возмущений от Юпитера и Сатурна. Эти таблицы отвечали с достаточной точностью и старым наблюдениям, начиная с 1690 года.
Казалось бы, проблема Урана была решена. Конечно, не оставалось сомнений в том, что теория его движения может быть уточнена с учетом возмущений от планет земной группы и даже астероидов, но «в общем и целом» задача считалась решенной. Во всяком случае, казалось, что существенные поправки придется вносить еще очень не скоро. На Уран стали обращать гораздо меньше внимания. К тому же по Европе прокатилась волна наполеоновских войн, а войны, если только они не «звездные», мало способствуют развитию наблюдательной астрономии...
51
После того как неугомонный корсиканец был наконец спроважен англичанами на остров Св. Елены и европейские астрономы возобновили активную научную деятельность, выяснилось, что Уран опять «выкинул фортель» и движется не так, как предписывал ему Клеро. Сначала, что вполне естественно, казалось, что в предыдущие расчеты вкралась ошибка. Расчеты были проделаны заново, причем по возможности с учетом всех возмущений со стороны Юпитера и Сатурна. Что до остальных планет, то их влияние было справедливо признано пренебрежимо малым по сравнению с наблюдаемой ошибкой.
Эту работу закончил в 1820 году французский астроном А. Бувар. Пожалуй, нелишним будет подчеркнуть, что все работы такого рода были в те времена колоссально громоздкими, кропотливыми и на редкость рутинными, так как требовали громадного числа вычислений, проводящихся вручную. Современный исследователь построил бы компьютерную модель и насладился бы результатом максимум через день, а не через годы напряженного труда.
Бувар отказался от старых наблюдений Урана, без достаточных оснований заподозрив их в неточности. Вместе с тем он видел, что решение проблемы Урана может быть совершенно иным, и писал, что странности движения планеты могут быть обусловлены «некоторым внешним и неизвестным влиянием». Каким же? Сопротивлением газово-пылевой среды? Влиянием не открытого еще спутника? Столкновением с кометой незадолго до открытия Урана Гершелем? Поправками к закону Ньютона, которые надо вносить при больших расстояниях между телами? Или все-таки новой планетой, пока еще не открытой?
К 1832 году теория Бувара окончательно рухнула. Уран уже отставал от вычисленного положения на 30 угловых секунд, и это отставание увеличивалось на 6-7 с в год, что не лезло ни в какие ворота. Из перечисленных гипотез после «проверки на прочность» вскоре остались две: несовершенство закона Ньютона и наличие неизвестной планеты. Где искать ее? Вычисления ее положения на небе, по словам Бувара, не столько трудны, сколько
52
— Ближайшие окрестности —
громоздки. Но, как мы знаем, отсутствие компьютеров и даже механических счетных устройств не останавливало в те времена людей, ищущих истину.
Вокруг открытия Нептуна «на кончике пера» разыгрались нешуточные страсти, каковые с еще большей силой бушуют и теперь, когда речь заходит о приоритете. Первым за поиск неизвестной планеты (точнее, за вычисление места, где ее следует искать) взялся немецкий астроном Фридрих Бессель, но смерть помешала ему закончить вычисления. Успех сопутствовал англичанину Джону Адамсу и французу Урбену Леверье.
Адамс закончил вычисления раньше. С 1843 по 1845 год он получил шесть решений, из которых каждое следующее он считал точнее предыдущего. Но осенью 1845 года английские астрономы не откликнулись на призыв молодого и еще мало кому известного Адамса искать планету в вычисленном им «теоретическом квадрате». Объясняется это как неверием в новую планету директора Гринвичской обсерватории Д. Эри, весьма авторитетного астронома, так и личными качествами Адамса, человека скромного до робости и напрочь лишенного «пробивной силы». Адамс отлично понимал, что его расчеты не вполне совершенны, и не настаивал. Позднее Эри, признавший свою ошибку, заметил по этому поводу: «В некоторых случаях полезно для прогресса, чтобы публикация теорий, которые не оставляют сомнения в своей корректности в целом, не задерживалась до их наибольшей мыслимой степени совершенства». Заметим в скобках, что в наше время подчас так и происходит, только осторожные выражения «в некоторых случаях» и «которые не оставляют сомнения в своей корректности», увы, прочно позабыты.
Спустя почти год после Адамса и независимо от него свои расчеты закончил Леверье. Опубликованные им статьи вполне убедили Эри (и в Англии, оказывается, нет пророка в своем отечестве!), и он обратился к английскому астроному Чэллису с просьбой начать поиски новой планеты. Чэллис занимался этим до тех пор, пока планета не была открыта И.Г. Галле, ассистентом Берлинской обсерватории, и студентом Г.Л. д’Аррестом
53
в ночь 23 сентября 1846 года. Можно представить себе досаду Чэллиса, обнаружившего после этого, что он уже дважды — 4ц
12 августа — наблюдал неизвестную планету и не отождествил ее! Как ни удивительно, опытный наблюдатель Чэллис занимался кропотливым трудом по сравнению положений звезд, наблюдаемых в разные ночи, в то время как гораздо проще было найти планету по видимому диску либо использовать уже имеющиеся звездные карты (Галле и д’Аррест так и сделали, что привело к знаменитому восклицанию д’Арреста: «Этой звезды нет на карте!»). Таким образом, приоритет открытия Нептуна «на кончике пера» англичанам пришлось разделить с французами, да и то с перевесом в пользу последних, так как расчеты Леверье оказались точнее, а приоритет открытия Нептуна на небе англичане потеряли совсем.
История эта имеет еще немало почти детективных подробностей, если коснуться ее более глубоко. Но мы привели ее лишь для того, чтобы показать, какими странными путями подчас движется наука и какую роль играет в ней случай.
Надо еще заметить, что если бы не было планет, то их стоило бы выдумать. Именно вопросы небесной механики вдохновили Гаусса, Лагранжа, Эйлера, Даламбера, Лапласа, Адамса и других математиков к разработке новых методов вычислений, широко применяемых и поныне, причем нередко в областях, совершенно не связанных с астрономией. Уж таково свойство инструментов, будь то простая отвертка или математический метод.
Новый сюрприз, однако, не заставил себя долго ждать. Построенная Леверье наиточнейшая теория движения Урана и Нептуна спустя несколько лет стала «традиционно» расходиться с наблюдениями. А ведь массы Урана и Нептуна были значительно уточнены после открытия у них спутников!