Введение в OpenGL — страница 6 из 9

Методы наложения текстуры

При наложении текстуры, как уже упоминалось, надо учитывать случай, когда размеры текстуры отличаются от размеров объекта, на который она накладывается. При этом возможно как растяжение, так и сжатие изображения, и то, как будут проводиться эти преобразования может серьезно повлиять на качество построенного изображения. Для определения положения точки на текстуре используется параметрическая система координат (s,t), причем значения s и t находятся в отрезке [0,1]. Для изменения различных параметров текстуры применяются команды:

void glTexParameter[i f](GLenum target, GLenum pname, GLenum param)

void glTexParameter[i f]v(GLenum target, GLenum pname, GLenum *params)

При этом target имеет аналогичный смысл, что и раньше, pname определяет, какое свойство будем менять,а с помощью param или params устанавливается новое значение. Возможные значения pname:

GL_TEXTURE_MIN_FILTER параметр param определяет функцию, которая будет использоваться для сжатия текстуры. При значении GL_NEAREST будет использоваться один (ближайший), а при значении GL_LINEAR четыре ближайших элемента текстуры.

Значение по умолчанию: GL_LINEAR.

GL_TEXTURE_MAG_FILTER параметр param определяет функцию, которая будет использоваться для увеличения (растяжения) текстуры. При значении GL_NEAREST будет использоваться один (ближайший), а при значении GL_LINEAR четыре ближайших элемента текстуры.

Значение по умолчанию: GL_LINEAR.

GL_TEXTURE_WRAP_S параметр param устанавливает значение координаты s, если оно не входит в отрезок [0,1]. При значении GL_REPEAT целая часть s отбрасывается, и в результате изображение размножается по поверхности. При значении GL_CLAMP используются краевые значения: 0 или 1, что удобно использовать, если на объект накладывается один образ.

Значение по умолчанию: GL_REPEAT.

GL_TEXTURE_WRAP_T аналогично предыдущему значению, только для координаты t.

Использование режима GL_NEAREST значительно повышает скорость наложения текстуры, однако при этом снижается качество, так как в отличие от GL_LINEAR интерполяция не производится.

Для того, чтобы определить, как текстура будет взаимодействовать с материалом, из которого сделан объект, используются команды

void glTexEnv[i f](GLenum target, GLenum pname, GLtype param)

void glTexEnv[i f]v(GLenum target, GLenum pname, GLtype *params)

Параметр target должен быть равен GL_TEXTURE_ENV, а в качестве pname рассмотрим только одно значение GL_TEXTURE_ENV_MODE, которое наиболее часто применяется. Параметр если param может быть равен:

GL_MODULATE конечный цвет находится как произведение цвета точки на поверхности и цвета соответствующей ей точки на текстуре.

GL_REPLACE в качестве конечного цвета используется цвет точки на текстуре.

GL_BLEND конечный цвет находится как сумма цвета точки на поверхности и цвета соответствующей ей точки на текстуре с учетом их яркости.

Координаты текстуры

Перед нанесением текстуры на объект осталось установить соответствие между точками на поверхности объекта и на самой текстуре. Задавать это соответствие можно двумя методами: отдельно для каждой вершины или сразу для всех вершин, задав параметры специальной функции отображения.

Первый метод реализуется с помощью команд

void glTexCoord[1 2 3 4][s i f d](type coord)

void glTexCoord[1 2 3 4][s i f d]v(type *coord)

Чаще всего используется команды вида glTexCoord2…(type s, type t), задающие текущие координаты текстуры. Вообще, понятие текущих координат текстуры аналогично понятиям текущего цвета и текущей нормали, и является атрибутом вершины. Однако даже для куба нахождение соответствующих координат текстуры является довольно трудоемким занятием, поэтому в библиотеке GLU помимо команд, проводящих построение таких примитивов, как сфера, цилиндр и диск, предусмотрено также наложение на них текстур. Для этого достаточно вызвать команду

void gluQuadricTexture(GLUquadricObj*quadObject, GLboolean textureCoords)

с параметром textureCoords равным GL_TRUE, и тогда текущая текстура будет автоматически накладываться на примитив.

Второй метод реализуется с помощью команд

void glTexGen[i f d](GLenum coord, GLenum pname, GLtype param)

void glTexGen[i f d]v(GLenum coord, GLenum pname, const GLtype *params)

Параметр coord определяет для какой координаты задается формула и может принимать значение GL_S, GL_T; pname определяет тип формулы и может быть равен GL_TEXTURE_GEN_MODE, GL_OBJECT_PLANE, GL_EYE_PLANE. С помощью params задаются необходимые параметры, а param может быть равен GL_OBJECT_LINEAR, GL_EYE_LINEAR, GL_SPHERE_MAP. Рассмотрение всех возможных комбинаций значений аргументов этой команды заняло бы слишком много места, поэтому в качестве примера рассмотрим, как можно задать зеркальную текстуру. При таком наложении текстуры изображение будет как бы отражаться от поверхности объекта, вызывая интересный оптический эффект. Для этого сначала надо создать два целочисленных массива коэффициентов s_coeffs и t_coeffs со значениями (1,0,0,1) и (0,1,0,1) соответственно, а затем вызвать команды:

glEnable(GL_TEXTURE_GEN_S);

glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);

glTexGendv(GL_S, GL_EYE_PLANE, s_coeffs);

и такие же команды для координаты t с соответствующими изменениями.

Приложение

Приложение содержит информацию в основном прикладного характера, которая может понадобиться при изучении описанного выше материала.

Стандартные геометрические примитивы

Рассмотрим стандартные команды построения примитивов, которые реализованы в библиотеках GLU и GLUT.

Как уже было сказано, чтобы построить примитив из библиотеки GLU, надо сначала создать указатель на quadric- объект с помощью команды gluNewQuadric(), а затем вызвать одну из команд gluSphere(), gluCylinder(), gluDisk(), gluPartialDisk(). Рассмотрим эти команды отдельно:

void gluSphere(GLUquadricObj*qobj, GLdouble radius, GLint slices, GLint stacks)

Строит сферу с центром в начале координат и радиусом radius. При этом число разбиений сферы вокруг оси z задается параметром slices, а вдоль оси z параметром stacks.

void gluCylinder(GLUquadricObj*qobj, GLdouble baseRadius, GLdouble topRadius, GLdouble height, GLint slices, GLint stacks)

Строит цилиндр без оснований (то есть кольцо), продольная ось параллельна оси z, заднее основание имеет радиус baseRadius, и расположено в плоскости z=0, переднее основание имеет радиус topRadius и расположено в плоскости z=height. Если задать один из радиусов равным нулю, то будет построен конус.

Параметры slices и stacks имеют тот же смысл, что и в предыдущей команде.

void gluDisk(GLUquadricObj*qobj, GLdouble innerRadius, GLdouble outerRadius, GLint slices, GLint loops)

Строит плоский диск (то есть круг) с центром в начале координат и радиусом outerRadius. При этом если значение innerRadius ненулевое, то в центре диска будет находиться отверстие радиусом innerRadius. Параметр slices задает число разбиений диска вокруг оси z, а параметр loops -число концентрических колец, перпендикулярных оси z.

void gluPartialDisk(GLUquadricObj *qobj, GLdouble innerRadius, GLdouble outerRadius, GLint slices, GLint loops, GLdouble startAngle, GLdouble sweepAngle);

Отличие этой команды от предыдущей заключается в том, что она строит сектор круга, начальный и конечный углы которого отсчитываются против часовой стрелки от положительного направления оси y и задаются параметрами startAngle и sweepAngle. Углы измеряются в градусах.

Команды, проводящие построение примитивов из библиотеки GLUT, реализованы через стандартные примитивы OpenGL и GLU. Для построения нужного примитива достаточно произвести вызов соответствующей команды.

void glutSolidSphere(GLdouble radius, GLint slices, GLint stacks)

void glutWireSphere(GLdouble radius, GLint slices, GLint stacks)

Команда glutSolidSphere() строит сферу, а glutWireSphere() - каркас сферы радиусом radius. Остальные параметры имеют тот же смысл, что и в предыдущих командах.

void glutSolidCube(GLdouble size)

void glutWireCube(GLdouble size)

Эти команды строят куб или каркас куба с центром в начале координат и длиной ребра size.

void glutSolidCone(GLdouble base, GLdouble height, GLint slices, GLint stacks)

void glutWireCone(GLdouble base, GLdouble height, GLint slices, GLint stacks)

Эти команды строят конус или его каркас высотой height и радиусом основания base, расположенный вдоль оси z. Основание находится в плоскости z=0. Остальные параметры имеют тот же смысл, что и в предыдущих командах.

void glutSolidTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings)

void glutWireTorus(GLdouble innerRadius, GLdouble outerRadius, GLint nsides, GLint rings)

Эти команды строят тор или его каркас в плоскости z=0. Внутренний и внешний радиусы задаются параметрами innerRadius, outerRadius. Параметр nsides задает число сторон в кольцах, составляющих ортогональное сечение тора, а rings- число радиальных разбиений тора.